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Abstract

The spacetime metric around a rotating SuperConductive Ring
(SCR) is deduced from the gravitomagnetic London moment in ro-
tating superconductors. It is shown that theoretically it is possible
to generate Closed Timelike Curves (CTC) with rotating SCRs. The
possibility to use these CTC’s to travel in time as initially idealized by
Godel is investigated. It is shown however, that from a technology and
experimental point of view these ideas are impossible to implement in
the present context.

1 Introduction

In Newtonian physics, causality is enforced by a relentless forward march
of an absolute notion of time. In special relativity things are even more
restrictive; not only must you move forward in time, but the speed of light
provides a limit on how swiftly you may move through space (you must stay
within your forward light cone). In general relativity it remains true that
you must stay within your forward light cone; however this becomes strictly
a local notion, as globally the curvature of spacetime might ”tilt” light cones
from one place to another. It becomes possible in principle for light cones
to be sufficiently distorted that an observer can move on a forward directed
path that is everywhere timelike and yet intersects itself at a point in its
"past”-this is a Closed Timelike Curve (CTC) [1] [2].
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2 Closed Timelike Curves in Stationary, Ax-
isymmetric Metrics

The general metric for a stationary, axisymmetric solution of Einstein Field
Equations (EFE) containing CTCs, with rotation is given by [3] [4]:

ds® = —A(r)c*dt* + 2B(r)redpdt + C(r)r?d¢? + D(r)(dr® +dz?) (1)

The range of the coordinates is: t €] — oo, +oo[, r € [0,400], ¢ € [0, 27],
and z €] — 0o, +00, respectively. The metric components are functions of r
alone. The determinant of the metric tensor is assumed to be Lorentzian,

g = det(g,,) = —(AC + B2)D2 <0, (2)

therefore
(AC + B?) > 0. (3)

Landau demonstrated that condition, Equ.(3]), is always fulfilled in physi-
cally real spacetime [5] [6]. If the metric becomes non-Lorentzian, space-
time becomes unstable [7] and decays in very short intervals of time to the
Minkowsky metric.

Since the angular coordinate, ¢, is periodic, an azimuthal curve v = {t =
Cte,r = Cte, z = Cte} is a closed curve of invariant length s2 = C(r)(2m)*.
If C(r) is negative then the integral curve with (¢, 7, 2) fixed is a CTC.

3 Gravitomagnetic London Moment and Space-
time Metric around a Rotating SCR

When a SCR is set into rotation it generates a gravitomagnetic field, call
gravitomagnetic London moment [§][9][L10].

* *

B, = L ooy="vx Vg (4)

p p
Where p* is the Cooper pairs mass density, p is the SC bulk mass density, w
is SC’s angular velocity, and v, is the tangential velocity of the SCR along
the azimuthal direction. For commodity we define the Cooper pair fraction,
a = p*/p. This London-type gravitomagnetic field is constant within the
interior surface of the ring. Since the gravitomagnetic field is originated

from a vector potential A,
B, =V x A, (5)



We deduce that in a superconductor the gravitomagnetic vector potential is
proportional to the azimuthal velocity of the ring.

A, = avy = arw (6)

Where r is the radial distance from the SCR’s rotation axis. From the weak
field approximation of EFE, which leads to the laws of gravitoelectromag-
netism [11], we know that the gravitomagnetic vector potential determines
the go; components of the metric tensor.

goi = EAgi (7)

Doing Equ. () into Equ.(6]) we obtain

4
Jop = —arw. (8)

Assuming a SCR with height much larger than its radius, R, which is equiva-
lent to the assumption of an hollow infinitely long superconductive cylinder,
we have no gravitomagnetic field outside the cylinder. Therefore knowing
goe, and imposing a flat metric outside the SCR, i.e. for r > R, we deduce
the other metric components in Equ. ().

A(r) =1 (9)
B(r) = %arw (10)
C(r)=1-8a (11)
D(r)=1 (12)

The relativistic interval is:
ds® = —c2dt* + (8aﬂ)rcdgbdt + (1 - 8a)r2dgz52 + dr? + dz? (13)
1

which as expected from the boundary conditions defined above, simplifies to
the flat metric in the limit where » = R and w = d¢/dt:

ds* = —c2dt* + R*d¢® + dr® + dz* (14)

As we mentioned above, when the azimuthal metric component becomes
negative CTCs become possible in certain regions.

1-8a<0 (15)
1

- 1

0> < (16)



Therefore when the Cooper pair fraction in the superconductive material is
higher than 1/8, azimuthal closed curves v = {t = Cte,r = Cte, z = Cte},
designated by CTCs, are generated when the superconductor is set rotating.
In general the Cooper pair fraction in common SCs is a ~ 10~7. Therefore
a Cooper pair fraction higher that 1/8 is extremely challenging and is not
achievalble presently with any known superconductor. Making abstraction
of current technological limitations, let us ask in what region of space, with
respect to the SCR’s rotation axis, will the CTCs be located? To answer this
question we need to evaluate the constraints imposed by having a Lorentzian
metric determinant .

Doing Equ.([@)-Equ.(II) into Equ.(3), we find five different cases: For
a < 1/8, the SCR cannot generate CTCs and the metric Equ.(I3]) will be
allowed for all » > 0. In the case, in which the SCR is capable to generate
CTCs, i.e., a > 1/8 we have four possibilities depending on the value of a
and of the angular velocity, w:

1. If 1/8 <a < 1and w < 1/a leads to r > 7z
2. If1/8<a<1and w > 1/aleads to r < rya.
3. If a > 1 and w > 1/a, then r > 1,4,

4. If a > 1 and w < 1/a, then r < 740

Where .
max — —— (8 —1)/? 17
" 4aw< “ ) ( )

From Equ.(I7) we see that for conditions close to the boundary conditions
of case [, Bl, and M, the radius, 7,4, is approximately equal to the
distance between the Earth and the Moon. Therefore in the case [Il, and
Bl the metric Equ.(I3]) is not Lorentzian inside any SCR having a realistic
radius (R << T'ypq. ). In these cases the metric Equ.(I3) decays to Minkowsky
metric and By, = 0 for 7 < 7,,,4,. For the case 2, and @I, however, SCR’s
with realistic size would be capable to host CTC’s in their hollow region
(if the challenging Cooper pair fraction could be achieved). The light cone
structure and the requirements to use these CTCs for traveling in time will
be investigated in the next two sections.

4 Lightcone Structure Along the Azimuthal
Direction

In the examination of the lightcone structure, we will see in what follows
that the azimuthal closed ¢-curves (note that since we are here interested in

4



lightcones dt # 0) are indeed spacelike for certain values of a and timelike
for others. Doing dr = dz = 0 in Equ.(I3]), for the case of lightcones, ds = 0

8awr

— d? + (= )rededt + (1 — 8a)r?de? = 0 (18)

Solving Equ.(I8)) with respect to the variable cdt/rd¢ we obtain.

at 1( 8 8
;7:_5(_ “;”i\/( azjr)2+4<1—8a)> (19)

For 0 < a < %, which also includes the case of a non-superconductive

material, a = 0, we have

cdt
— ~ 41 2
rdeo (20)

the lightcone is just the usual Minkowskian one.
For a = 1/8, we have:

dt
et _ 10 (21)
rdo wr/c
the lightcone becomes very narrow, since in general wr << ¢, it also dips

and touches the ¢ axis.
For a > 1/8; the ¢-curve is enclosed within the lightcone:

c;alt ~ Bawr
rdp  2c

(22)

Where € > 8‘;%. The lightcone is still very narrow. To enlarge it we would
need to have rw ~ ¢, which also requires a >> 1/8 and v, =~ ¢. The curve
is always timelike, and hence the propertime flows monotonically and never
becomes imaginary, i.e. the curve does not reverse and proceed into the past
lightcone. This timelike curve returns to its original location in spacetime,
it is a closed timelike curve, as we expected for the considered Cooper pair
fraction.

In summary when the Cooper pair fraction is important enough for the
rotating superconductor to generate CTCs, a > 1/8, then in the regions indi-
cated in condition [, 2, Bl, and [, the light cone will open in the azimuthal
direction and will contain time-like directions for decreasing ¢ pointing into
the past, making travel into the past possible. These time-like circles v are
not geodesics. Since the total acceleration of the curve does not vanish, as
we will see in the next section.



5 Acceleration Requirements for Godel’s time
travel

If we consider the circle v given by
2 =ct = Cte,2' =r = Cte,x* = 2 = Cte (23)
In this case the interval Equ.(I3]) will reduce to:
ds* = (1 — 8a) r2d¢® = gsede? (24)

with 7 belonging to the CTC’s allowed domains defined in conditions [1I.,
Bl, and [4l.The first question to ask is wether there exist any closed time-like
geodesics in the spacetime described by the metric inside the SCR’s hole,
Equ.(33)). If so, it would be possible to execute time travel in a state of free
fall. It turns out that the answer is no (at least for the stationary case, in
which no angular acceleration is communicated to the SCR). We see that the
tangent vector to the circle v,

0 0
Ep = —= = — 25
= 002" 94’ (25)
has the length squared
dN2
(5g) = oo = 900 = g = (1 = 8a)® (26)

The quadri-acceleration vector A7 is given by
Al = CQU;jkuk (27)
For the time-like unit vector
wuy =1, W = —83|gaa| V2 (28)

The semicolon in Equ.(27) indicates covariant differentiation. We then obtain
that the acceleration A defined by

becomes [12]
1 5dIn|ggsl
A=-c2—=2,
< (30)



Or doing Equ.(26)) into Equ.(30)

2 2
A= (31)

r

We see that A does not vanish (it becomes null as r — c0).
The total integrated acceleration over - is

TA(v) = 7{ Adr (32)

v

Where A is the acceleration at any point of the curve, Equ.(31]), and 7 is

the elapsed proper time along v, dr = ds/c = (‘gw‘)l/zdgb/c. Notice that
TA(y) = 0 if and only if v is a geodesic (closed gravitational field lines like

the ones obtained through gravitomagnetic induction, V x g = —Bl,, are
geodesics). Doing Equ.(24]) and Equ.(31) into Equ.(32]) we obtain:
TA(y) = 4mey/|1 — 8al (33)

the total acceleration of the v curve, is a measure of the total variation of
velocity Av needed to achieve a complete Godel’s round trip.
The total elapsed proper time PT'(y) along v will be:

271y /|1 — 8al
PT(y) = 7{ dr=— V77 (34)
0 C
Therefore a CTC taken as the world line of an observer would enable
her/him to travel into her/him own past if the acceleration were tolerable
and the proper time for the round trip was less than its lifetime[13][14][15].

6 Conclusion

It seems that the rotation of a superconductive ring is capable to generate
CTCs if the Cooper pair fraction, a = p*/p, could be raised above the critical
value of @ = 1/8. This is a huge value with respect to the current Cooper pair
fraction of presently known superconductors, a ~ 10~7. Even if it becomes
possible to design superconductors having this threshold of Cooper pairs
fraction, we see from conditions [, and 2, Bl, and [, that the possible
values of Cooper pairs fraction a > 1/8, and the SCR’s angular velocities w
are severely constrained by the fact that the metric must remain Lorentzian.
CTCs will only be present inside the SCR’s hole, with radius R << 7,4, for
values of (a,w) defined by conditions 21, and @l In other words conditions [II,
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and [3] form non-Lorentzian barriers which constrain the operation of the SCR
in terms of allowed Cooper pair fraction and angular velocities. Outside this
allowed regime of operation, spacetime would become unstable, and would
decay to the Minkowskian metric in a very short time [7]. This would also
mean that the gravitomagnetic London moment, Equ.(d), would be null in
the non-Lorentzian regions.

The utilization of these CTC’s to travel in time as Godel first idealize
seems to be unpracticable, since the total accelerations needed to perform
the time travel, Equ.(B1), is not technically achievable, and the total elapsed
time for a round trip is negligibly small, Equ.(34)).
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