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Abstract

After a pedagogical review of elementary cosmology, I go on to dis-
cuss some obstacles to obtaining inflationary or accelerating universes in
M/String Theory. In particular, I give an account of an old “No-Go The-
orem” to this effect. I then describe some recent ideas about the possible
rôle of the tachyon in cosmology. I stress that there are many objections
to a naive inflationary model based on the tachyon, but there remains the
possiblity that the tachyon was important in a possible pre-inflationary
“Open-String Era ” preceeding our present “Closed String Era”.
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1 Introduction

The original aim of my lecture was to give a brief outline some recent work and
its justification on the possible role of the tachyon in cosmology [23]. I also
wanted to describe some recent work with Hashimoto and Yi [24], extending
some older work with Hori and Yi [25] on the effective-field-theoretic details of
the process of tachyon condensation. In particular I intended to describe what
we have called the Carollian confinement mechanism for open string states.
Since this entails familiarity with the Carroll group I planned to include some
some new and old material on that as well.

However I was also asked to cover some more elementary topics in cosmology
by way of an introduction. This I have done, but it has lead to a slightly lengthy
write-up. Since the subject of cosmology is not short of excellent books and
reviews, I have approached the subject from a deliberately idiosyncratic fashion
which I hope may appeal to those whose appetite has become somewhat jaded
while not misleading the beginner. The reference list, especially when it comes
to elementary cosmology, is rather selective, not through any desire to slight the
many valuable contributions to the subject but to limit what would be a very
large list to a size which I could handle.

2 Elementary Cosmology

Before getting on with the main business, I will, as requested by the organisers
and various participants, begin with a summary of elementary cosmology. As a
first step, we assume the Cosmological Principle which states that the universe is
spatially homogeneous and isotropic. Observational support for this assumption
comes both from the high degree of isotropy of the cosmic microwave background
radiation (CMB), radio observations and the large scale distribution of galaxies.

2.1 Kinematics of Homogeneity and Isotropy

Mathematically we reformulate the assumption as stating that locally the metric
admits a six-dimensional isometry group acting on three-dimensional spacelike
orbits G/SO(3) , with G = SO(4), E(3) or SO(3, 1). These possibilities are
indexed by a quantity k taking the values 1,0,-1, respectively. Locally, the orbits,
i.e. the spatial cross sections, inherit the geometry of S3, E3 or H3 respectively
with their standard metrics ds2k. The metric thus takes the Friedman-Lemaitre-
Roberson-Walker (FLRW) form

− dt2 + a2(t)ds2k, (1)

where the function a(t) is called the scale factor.
Globally it is always possible to make identifications on the orbits under

the action of a discrete sub-group Γ ⊂ G, even to the extent that the orbits,
ΓG/SO(3), in the case k = 0, 1 become compact. Therefore one should avoid
labelling the cases k = 1 “‘closed” and k = 0,−1 “open”. Future observations
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using the MAP satellite will tell us the extent to which these possibilities are
actually realised [20]. In general such identifications destroy isotropy and also
homogeneity. The latter may be avoided by taking k = 1 and identifying S3

with SU(2) and taking Γ to act exclusively on the left or on the right. One may
retain both isotropy and homogeneity by taking Γ to be the antipodal map. The
spatial sections are then RP

3 ≡ SO(3) ≡ SU(2)/Z2. This is sometimes called
the elliptic case and was first suggested in the context of relativistic cosmology
by Felix-Klein. In fact in 1900, long before the advent of General Relativity,
the observational consequences of the universe being spatially S3 or RP

3 had
been investigated by Karl Schwarzschild (see [20] for an English translation of
his paper).

In a general FLRW spacetime the Lorentz group is spontaneously broken
down to it’s orthogonal subgroup. The cosmological background acts in this
respect as a kind of æther. This “æther” is translation invariant, but if k 6= 0,
the translations do not commute.

For particular scale factors however the metric admits enhanced symmetry:
there are additional isometries rendering it homogeneous both in space and time
and in fact locally maximally symmetric and thus of constant curvature

Rµναβ =
Λ

3

(

gµαgνβ − gµβgνα
)

. (2)

This implies that the metric is also Einstein

Rµν =
Λ

3
gµν . (3)

The cases are

• de-Sitter spacetime dS4 ≡ SO(4, 1)/SO(3, 1) which happens if k = 1 and
a(t) = cosh(Ht), k = 0 and a(t) = exp(Ht), and k = −1 and a(t) =
sinh(Ht), with H2 = Λ

3

• Minkowski spacetime E
3,1 = E(3, 1)/SO(3, 1), which happens if k = 0

and a(t) = constant or k = −1 and a(t) = t.

• Anti-de-Sitter spacetime AdS4 ≡ SO(3, 2)/SO(3, 1), which happens if k =
−1 and a(t) = sin(Ht) with H2 = −Λ

3 .

Some of coordinate systems are purely local. For example the Milne universe
(i.e. the k = −1 form of Minkowski spacetime) covers only the interior of the
future light cone of a point. The light cone corresponds to the coordinate
singularity at t = 0. This model was originally introduced to describe a single
creation event for the universe avoiding the use of general relativity. The Steady
State universe was invented to achieve the opposite goal. However it (i.e. the
k = 0 form of de-Sitter spacetime) is geodesically incomplete in the past and
covers only half of de-Sitter spacetime. There is a past horizon at the coordinate
singularity at t = −∞. Thus it is really not past eternal as the founders of
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that theory had supposed and indeed there are now grounds for doubting that
inflation can ever be past eternal [19].

In connection with eternal inflation, one might ask what 4-dimensional Lorentzian
Einstein spaces can be homogeneous, that is admit a transitively acting isometry
group. This requirement is a weak version of what Bondi calls the Perfect Cos-
mological Principle. The list is not large and moreover contains a surprise. In
addition to the previously noted maximally symmetric cases, Minkowski space-
time, E3,1, De-Sitter spacetime dS4 and Anti-de-Sitter spacetime AdS4, there
are the two expected two products dS2×S2 and AdS2×H2. If the cosmological
constant is positive, Λ > 0 this is all there are. If Λ ≤ 0 there are two more
cases. If Λ = 0 there are homogeneous plane waves, some of which are geodesi-
cally complete and another case of Petrov type I. If Λ < 0 one has a Petrov
Type N generalized plane wave and another Petrov type III solution.

Thus if eternity is homogeneous and the cosmological constant is positive,
then there is really only de-Sitter spacetime or AdS2 × S2 to choose from.

Just as the Poincaré group contracts to the Galilei group or the Carroll
group [1, 2], the de-Sitter and Anti-de-Sitter groups have interesting contractions
which have been classified in [3, 4]. One may also obtain the Poincaré group as
a contraction of the de-Sitter or Anti-de-Sitter groups and these are in fact the
only groups for which this is possible [42].

2.2 Kinematics of the Energy Momentum Tensor

It follows directly from the metric and the Einstein equations or, if one wishes,
just from the symmetry assumptions, that the energy momentum tensor takes
the form of a perfect fluid

Tµνdx
µdxν = ρ(t)dt2 + P (t)gijdx

idxj , (4)

where ρ(t) is called the energy density and P (t) is called the pressure. The
Weak Energy Condition requires that the energy density is non-negative

ρ ≥ 0. (5)

Eliminating the coordinate t leads to an equation of state P = P (ρ). Note
that this is purely a kinematic statement without necessarily having any ther-
modynamic content. A priori, the pressure need not even be a single valued
function of density. If

P = (γ − 1)ρ, (6)

with γ a constant one refers to a polytropic equation of state. More generally
one may define the ratio

w =
P

ρ
, (7)

and in the polytropic case w = (γ − 1) = constant.
The speed of acoustic or sound waves cs is given by Newton’s formula

c2s =
∂P

∂ρ
. (8)

4



It is real and less than that of light if

1 ≤ γ ≤ 2. (9)

If γ = 1, i.e. P = 0, one speaks of pressure free matter or ‘dust”, γ = 4
3 ,

P = 1
3ρ, one speaks of “radiation” and if γ = 2, i.e. P = ρ one speaks of “stiff

matter”. Thus acoustic waves in a radiation fluid travel at a speed 1√
3
. This

is the analogue for a gas of photons of “second sound” in a gas of phonons.
The acoustic peaks in the BOOMERANG observations of the CMB show clear
evidence for the propagation of “second light”.

The Dominant Energy Condition allows a negative pressure as well as the
usual positive pressure as long as

|P | ≤ ρ. (10)

As an example consider a single scalar field φ with potential V (φ). If φ depends
only on time then

ρ =
1

2
φ̇2 + V (φ), (11)

P =
1

2
φ̇2 − V (φ). (12)

If the kinetic energy dominates we have stiff matter, P = ρ, with the maximal
possible positive pressure . If the potential energy dominates and we have the
greatest possible tension or negative pressure P = −ρ.

2.3 Consequences of the Einstein equations

The Einstein equations provide three equations.

• Raychaudhuri’s equation

ä

a
= −4πG

3
(ρ+ 3P ). (13)

• Friedman’s equation
ȧ

a

2

+
k

a2
=

8πG

3
ρ. (14)

• The First Law

ρ̇+
3ȧ

a
(ρ+ P ) = 0. (15)

The Bianchi identity implies that of these only two are independent. The
“First Law“ expresses the fact that the energy in a co-moving volume a3ρ is
not conserved during the expansion of the universe. If one assumes that the
matter is in local thermodynamic equilibrium and passes adiabatically through
a succession of equilibrium states whose equilibrium pressure is given exactly
by P , then one may deduce that the entropy in a co-moving volume is con-
served. In practice the matter is never in complete equilibrium, moreover it is
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always tending to the equilibrium configuration of constant entropy at a lower
and lower energy, i.e at a lower and lower temperature. This is why naive nine-
teenth century ideas about the “ Heat a Death of the Universe” were essentially
misguided. They were predicated on the assumption that the matter in the
universe was both static and isolated.

If the equation of state is known one may integrate the first law to obtain
the pressure as a function of the scale factor. In the polytropic case one obtains

P ∝ 1

a3γ
. (16)

From this it follows that if the universe is expanding then the density of radiation
falls of with one more power of the scale factor a than pressure free matter, which
will therefore ultimately dominate.

2.4 Future and Past Horizons

We now turn to light propagation and horizons. If r is the radial coordinate on
S3,E3 or H3 with us taken as the origin, then by symmetry, radial null geodesics
are given by r = η with

dη =
dt

a(t)
, (17)

The coordinate η is called conformal time because using it, the FLRW metric
becomes explicitly conformally static

a2(t)
(

−dη2 + gijdx
idxj

)

. (18)

In fact the FLRW metric is also conformally flat but we shall not need that fact
here.

To read of the causal structure it suffices to consider the Penrose diagram
i.e. the orbit space of the SO(3) action, which has coordinates r ≥ 0 and η in
which light rays are at 45 degrees. Thus if the polytropic index is a constant so

that ρ ∝ 1
a3γ we define y = a

3γ−2

2

d2y

dη2
+ k(

3γ

2
− 1)2y = 0. (19)

If k = 1, this is a simple harmonic oscillator with total duration from Big
Bang to Big Crunch equal to 2π

|3γ−2| . Thus for dust, γ = 1, a lightray will just

circumnavigate an S3 in that time, while for de-Sitter spactime with γ = 0, it
would only get half way. The same is true of radiation for which γ = 4

3 , while
for stiff matter, γ = 2, it only gets one quarter of the way around.

The structure of the conformal boundary is determined by the range of η.
As originally clarified by Rindler,

• If the universe expands forever and :

r+(t) = a(t)

∫ ∞

t

dt′

a(t′)
< ∞, (20)
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there will be a future event horizon, that is a null hypersuface separating
events which the observer at r = 0 will see from those he or she will
never see. In this case the future boundary at t = ∞ is spacelike .The
standard example of a cosmological spacetime with a future horizon is
de-Sitter spacetime. In this case the (observer dependent) horizon is also
Killing horizon and its area A+(t) = 4πa2(t)r+(t) is constant with time.
In general, if the weak energy condition holds, A+(t) is non-decreasing.
In the static case one has an associated constant temperature T+ = 2π

H
. It

is reasonable to assume that if A+(t) does not change too fast one simply
replaces 1

H
in this expression by the instantaneous Hubble radius. One

usually ascribes a non-decreasing entropy

S(t) =
1

4G
A−(t), (21)

to each co-moving observer’s horizon and interprets it as a measure of the
total information lost to he or she up to time t.

• If the scale factor vanishes at t = 0, a Big-Bang singularity, and

r−(t) = a(t)

∫ t

0

dt′

a(t′)
< ∞, (22)

then there will be a past horizon , that is a null hypersurface separating
events with which an observer at r = 0 can have been in causal contact
since the Big Bang from those he or she cannot have been. In this case
there is a singular spacelike past boundary at t = 0. Events with time
coordinate t and radius r < r−(t) are said to be inside the particle hori-
zon. If identified with the points on co-moving geodesics for which r is
independent of time, the entire past geodesic is outside the past light cone
of the observer at the origin. Indeed a light ray starting from t = 0 and
r = 0 just reaches the particle horizon at any subsequent time.

Note that to calculate the particle horizon radius r−(t) at time t requires knowl-
edge of the scale factor at all previous times. In other words it is an anti-
teleological concept, just as the future horizon is a teleological concept. It is
a widespread, misleading and incorrect practice to muddle the particle horizon
with the more or less directly observable and instantaneously defined Hubble
radius

rH(t) =
a(t)

ȧ(t)
. (23)

If the scale factor goes to zero like tp near t = 0, then there will be a particle
horizon if p < 1. For a k = 0 universe with a polytropic equation of state, the
Einstein equations imply

p =
2

3
. (24)

Regardless of the actual value of k, it is almost always a good approximation
to set it to zero near a Big Bang because the term k

a2 in the Friedman equation
(14) is negligible compared with the other terms.
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2.5 The Horizon Problem

This gives rise to the Horizon Problem. The point is that the present day
observed CMB photons at temperature roughly 3K arrive unscattered from the
spherical intersection Sls of our past light cone with the Hypersurface of Last

Scattering t = tls, red shifting by factor 1 + z = a(o)
a(tls

) ≈ 103 on the way.

Note that they keep their almost perfectly thermal spectrum purely by means
of the kinematic effect of their redshift. Before last scattering t = tls they are
presumed to have been in thermal contact. Observations of the CMB reveal
that the temperature on Sls was uniform to better than one part in 104. This
uniformity is a puzzle if one assumes that the universe was radiation dominated
all the way back to a Big Bang before t = tls ( i.e. p = 1

2 ) because the horizon
radius r−(tls) calculated under that assumption is about 80 times smaller than
the proper diameter 2a(tls)rls of the last scattering sphere Sls. In other words,
under this assumption, the past light cones of most pairs of points on Sls never
intersected.

The recent BOOMERANG and MAXIMA data on the deviations of the
temperature of the CMB from isotropy allow us to sharpen this argument.
Roughly speaking, such second light behaves like

δT

T
=

∫

d3k eik.x
[

A(k) cos(
kη√
3
) +B(k) sin(

kη√
3
)
]

. (25)

The cosine mode is known to cosmologists as the “iso-curvature” mode and the
sine mode as the “adiabatic” mode. The physical distinction between them is
that in the latter case the ratio of baryon number to photon number is inde-
pendent of position whereas in the former it depends upon position. Moreover
for “causal” perturbations one expects that the cosine mode is absent because
it varies non-trivially at the largest scales, i.e. at the smallest possible values of
k = |k|. If one decomposes the temperature T = T (θ, φ) on the sphere of last
scattering Sls into spherical harmonics

δT

T
=

∑

almY m
l (θ, φ), (26)

one finds so-called peaks in the amplitudes, the lowest at l ≈ 200. These can only
be explained if the sine mode is absent, thus establishing that the primordial
fluctuations have scales much larger than could have arisen from causal processes
if the past horizon was roughly the Hubble radius at that time.

A more detailed examination of the data reveals more. The universe is
almost flat and the content roughly 30% cold dark non-baryonic matter, and
70% matter with negative pressure and w < −.5.

2.6 Inflation

The theory of Inflation seeks to remedy this, and other defects of the Standard
Cosmological Model by postulating a much more rapid growth of the scale factor
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sometime before tls; growth at least as fast as t. If true, this means that the
scale factor must have accelerated some time before tls,

ä > 0. (27)

It follows from the Raychaudhuri equation, that the pressure must have been at
least as negative as− 1

3P . In other words, the universe must have anti-gravitated
in the past. Using

ρ+ 3P = 2
(

T00 −
1

2
g00T

λ
λ

)

=
1

4πG
R00, (28)

the Raychaudhuri equation (13) may be written as

ä

a
=

1

3
R00, (29)

we need
R00 < 0. (30)

In the language of energy conditions, we need a massive violation of the Strong
Energy Condition in the past.

Observations of distant Type 1A supernovae, which essentially use the cur-
vature of the redshift magnitude or Hubble diagram, assuming that this class of
super-novae provide us with standard candles whose light is unscattered on its
way to us, also seem to indicate that the universe is accelerating at the present
epoch. To explain this anti-gravitating behaviour one is forced to accept di-
rectly from Raychaudhuri’s equation (13), which is no more than a statement of
Newton’s law of gravitation, that there must be massive violation of the strong
energy condition, with large negative pressures at late times. Indeed if one
models the data one finds that about 70% of the energy density is of this exotic
form, the bulk of the remaining matter is dark, non-baryonic and pressure free
and less than 4 % is ordinary baryonic matter.

3 The Inflaton

The standard way of arranging for a violation of the strong energy condition is
to postulate the existence of one or more hitherto unobserved scalar fields ad-
mitting everywhere non-negative potentials usually with an absolute minimum
for which the potential either vanishes or is very small. Because potentials have
dimensions mass to the power 4, what is required to get a suitable non-vanishing
value at late times is a mass scale near the minimum less than 10−4eV . Cu-
riously, this is rougly the order of magnitude of some neutrino masses, in fact
which perhaps lends greater credence to the idea.

The simplest case is just one scalar field, called in this context an inflaton.
It is usually assumed to start near the top of a fairly flat potential and to roll
slowly down to the minimum of the potential. The potential needs to be fairly
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flat so that sufficiently many e-folds ( at least 60) take place before the minimum
is reached.

During slow rolling the second derivative term in the equation of motion

φ̈+
3ȧ

a
φ̇+

∂V

∂φ
= 0, (31)

is neglected so
3ȧ

a
φ̇+

∂V

∂φ
≈ 0, (32)

and the Friedman equation is approximated by

ȧ2

a2
≈ 8πG

3
V (φ). (33)

Given V (φ) one may now solve (32) and (33) in what is called the Slow Rolling
Approximation to find a(t). I will not give the easily derived formulae here. It
is important to realise that because V (φ) is not constant during slow rolling,

the inflation is not exponential and so the de-Sitter metric with H =
√

8πGV (φ)
3

is only an approximation to the actual metric at that time.
An interesting simple case for which an exact solution is available is given

by [27].
V = V0 exp(αφ). (34)

If k = 0, one has a solution with

V ∝ 1

t2
, a(t) ∝ t. (35)

In string theory, one may think of φ as the dilaton. The solution is then a
timelike version of the usual spacelike linear dilaton vacuum. In string conformal
frame, the metric is flat.

3.1 “Reheating ”

Slow roll over is usually supposed to terminate with a period during which the
inflaton executes damped oscillations near the bottom of the potential. During
this period its coupling to the matter of the Standard Model of Particle Physics
leads to something called in the characteristically confused and muddle and
misleading jargon of cosmologists which we encountered when applied to the
Hubble radius, “re-heating ” since it is not clear, nor more damningly very rele-
vant, whether the universe was ever heated before this time. (Similar strictures
apply to the terms “recombination” and “adiabatic ”).

Polemic aside, the main point is to get some of the energy in the oscillations
of the inflaton to produce a radiation dominated universe at a suitably high
temperature so that baryon-violating processes can give rise to the puzzling
small number of baryons that we both see and love today compared with the
very large number of photons in the CMB.
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3.2 Planck Scale Inflation

To get a suitable inflationary scenario, not only must one assume that the po-
tential V (φ) is such as to ensure sufficient inflation, one also needs to ensure that
the transition to a radiation era is not too abrupt, otherwise more gravitational
waves will be produced than are compatible with the isotropy of the CMB. This
is usually taken to bound below the value of the Hubble radius during inflation.
If mp is the Planck mass then one needs roughly

1

H
> 10−5 1

mp

. (36)

In other words naive models involving Planck scale inflation are very probably
ruled out [?].

4 Machian Considerations, Chronology Protec-

tion and the Spontaneous Breakdown of Lorentz-

Invariance

Many cosmologists in the past have worried about “Mach’s Principle”. This
can be taken in many ways. I prefer to think of the “ Machian Coincidence ”.
This is the fact that locally, without reference to any astronomical observations,
one may define a non-rotating inertial frame, i.e one in which the usual laws of
Newtonian mechanics hold, while astronomically we may define a frame with
respect to which distant glaxies are at rest and one finds that these two frames
coincide. Traditionally the first frame is determined using a version of Newton’s
bucket experiment. The second may nowadays be determined in terms of the
last scattering surface rather than the distant stars or galaxies.

The basic example of a spactime in which these two standards of rest disagree
is the well known Goedel solution. It is homogeneous, and hence stationary.
This universe, which is spatially non-compact, rotates about every point. How-
ever it admits closed timelike curves. A less well-known but in some ways much
more striking example was constructed by Ozsvath and Schucking [30]. It is
also homogeneous but the space sections are squashed S3’s. More importantly,
it is causally well behaved. In particular it has no CTC’s.

Some years ago, Hawking [13], by considering the transverse Doppler effect,
argued that the extent to which the two frames agree is such that the universe
can have completed only a very small, fraction of a rotatation since the epoch
of combination at which the cosmic plasma became transparent. The original
bounds of Hawking have been strengthened somewhat by Barrow, Juskiewicz
and Sonada [14].

One mathematical formulation of the Machian coincidence is to consider the
average 4-velocity U of the matter in the universe. This may be defined as
the timelike eigen-direction of the energy momentum tensor. Inertial frames
are Fermi-Walker propagated along the integral curves of U. Given the vector
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field U one may also define its vorticity ω = ⋆u ∧ du, where u is the one
form obtained from the vector field U by lowering an index using the metric.
The Machian Coincidence is essentially the fact that our present vorticity is
very small. One explantion for this fact comes from Inflation as pointed out
by Ellis and Olive [15]. Their point is that as the universe expands, then by
angular momentum conservation, the vorticity necessarily decreases. Moreover
according to inflation, there was probably no initial vorticity to begin with.
The first argument holds in almost all inflationary scenarios and the second also
holds in inflationary scenarios based on single scalar field. In that case vorticity
perturbations necessarilly vanish.

As an aside, let me remark that a striking feature of of many spacetimes with
non-vanishing vorticity, which has been known almost since the beginnings of
general relativity, is the existence in them of closed timelike curves. Because
of the expansion of the universe, violations of Mach’s coincidence now require
large vorticities at early times. If those large vorticities entailed the existence
of CTC’s and some mechanism, along the lines of that invoked in Hawking’s
Chronology Protection Conjecture holds, that might have prevented the occur-
rence of CTC’s thus providing an alternative explanation: the large vorticiy
could not have been generated in the first place. For further references and a
calculation supporting this idea see [39].

The absence of vorticity implies, a velocity potential, and hence, if the fun-
damental group of spacetime is trivial, a time function, i.e. a function which
increases along every timelike curve. The existence of such a function, which is
defined only up to a re-parameterization, guarantees that there are no CTC’s.
The time-function also provides an absolute rest frame or æther. It may be
thought of as the analogue of the Higgs field, responsible for the spontaneous
breakdown of Lorentz-invariance, itself somewhat of a Machian conundrum. A
time function is also what is needed to resolve the much discussed Problem of
Time in quantum cosmology. In inflationary scenarios these functions are per-
formed by the mysterious inflaton. In the theories we are about to describe it
is the tachyon field which is responsible. For some recent ramifications of this
idea, the reader is directed to [37].

5 M-Theory and Cosmology

The elementary introduction makes it clear that if we are to make contact
between cosmology and fundamental theory, such as M/String Theory we need
to violate the strong energy condition and more particularly, obtain scalar fields
with positive potentials. This is a notoriously difficult thing to do. It is not just
that de-Sitter spacetime is not a supersymmetric background and so reliable
quantum calculations like the those around Anti-de-Sitter spacetime cannot be
done. The problem is much more basic than that. It is that pure supergravity
theories, without additional supermatter in arbitrary dimensions satisfy the
strong energy condition and thus do not permit accelerating behaviour. As a
consequence they also do not allow oscillatory or cyclic behaviour for the scale
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factor. In fact for compact universes, Tipler has adapted the techniques used to
prove the Hawking-Penrose Singularity Theorems to show that the strong energy
condition rules out any type of recurrence behaviour [32] . For related reasons,
the negative tension branes required in certain brane-world scenarios violate
even the weak positive energy condition and cannot come out of supergravity
theories [40].

As is well known, if a cosmological term is possible it must be negative,
not positive. The reasons for this seem to be rather deep. One explanation
comes from thinking of the theories in higher dimensions, specifically 10 and
12 dimensions. This will be the subject of the next section. It is well known
that gauged supergravities in 4 spacetime dimension for vector gauging have
negative cosmological constant

Λ = − 3e2

4πG
. (37)

Curiously for axial gauging Freedman [49] showed that one has a positive cos-
mological constant

Λ = −(γ5)
2 3e2

4πG
. (38)

However such axial gauging leads to anomalies and hence to non-viable theories.
It seems that this problem can arise in hybrid inflation models in which Fayet-
Illiopoulos terms come into play.

6 Compactification and a No-Go Theorem

In what follows, I shall recall some facts which have been known since the
early ’80’s but which still seem relevant today [35]. Despite the passage of
time, compactification is still a very imperfectly understood process from the
physical point of view. One speaks of an N -dimensional spacetime M being
compactified if it is a (possibly warped) product of a Lorentzian spacetime X
with a Riemannian spacetime Y :

M = X ×W K. (39)

with a metric given in local coordinates xM which split as xµ for X and ym for
Y

gMNdxMdxN = W 2(y)gµν(x)dx
µdxν + gmn(y)dy

mdyn, (40)

where W (y) is called the warp factor. This statement gives no insight into the
process of compactification itself, which was presumably a dynamical process
which occurred in the early universe, possibly as some sort tunnelling process “ex
nihilo or as a semi-classical approximation to the wave function of the universe
according to the “no boundary” proposal. An alternative picture is obtained
if one views the present universe as the outcome of some sort of dynamical
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collapse to a branelike configuration. More generally one might envisage that
M contains more than one brane which may also undergo collision. In the
former two cases at least it is natural to assume that Y is compact, complete
and non-singular without boundary ∂Y = 0 and that the warp factor W (y) is a
smooth and no-where vanishing function on Y . In the latter cases, Y may well
be non-compact and W might well vanish at the location of Killing horizons.

Rather general restrictions on the form that the metric (40) may take are
obtained if one recalls (or checks that) that for all pure supergravity models the
bosonic energy momentum tensor TMN satisfies the Strong Energy Condition.
The Einstein equations in M read:

RMN = 8πGN

(

TMN − 1

N − 2
gMNTL

L

)

. (41)

and the strong energy condition is the statement that for all non-spacelike vec-
tors TM

RMNTMTN ≥ 0, (42)

or in any local coordinate system

R00 ≥ 0. (43)

Physically the Strong Energy Condition is the condition that locally gravity
is attractive. It amounts to saying that any tensions or negative pressures,
themselves a rather unusual occurrence, can never exceed 1

N−1 times the energy
density. In other words, a medium not satisfying the Strong Energy Condition
must be one supporting extremely large tensions or negative pressures. Usually
such a medium would be expected to be highly unstable. It is curious that in
pre-relativistic discussions of Newtonian Gravity, a stress tensor was ascribed to
the æther with precisely this odd property (see [26]) and it was felt, for example
by Clerk Maxwell, to be odd at the time [41].

It is not immediately obvious why this restriction (considered via 41) as a
condition on the energy momentum tensor is satisfied for all by all the usual
bosonic energy momentum tensors considered in physics, built for example from
p-form field strengths, p ≥ 2, and for minimally coupled scalar fields with the
exception of scalar fields with a potential which can somewhere become positive.
Moreover the inequality is strict in the sense that if R00 = 0 then the energy mo-
mentum tensor must vanish and hence the bosonic fields must actually vanish.
For minimally coupled massless scalars without potentials, one finds that they
can depend on space but not on time. In checking the Strong Energy Condition
in string theory, it is essential to work in Einstein conformal frame, in which
the dilaton is minimally coupled. In string conformal frame, second derivatives
of the dilaton appear on the right hand side of Einstein’s equations and nothing
can then be said about the sign of R00.

It is important to note that if the Strong Energy Condition is satisfied for
the energy momentum tensors then it is also satisfied for arbitrary positive
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linear combinations. Thus for a multi- component system of fields, possibly a
statistical mixture, it is necessarily satisfied if the individual components of the
mixture satisfy it. For this reason it is satisfied for all the gaseous and liquid
media (so-called “perfect fluids ”) that one typically considers in cosmology.
It also implies that the exponential factors involving dilatons, which appear
ubiquitously in supergravity lagrangians, do not prevent the Strong Energy
Condition holding if it holds for the individual pieces in the Lagrangian.

One should also note that the Strong Energy Condition [8] is independent
of the Dominant Energy Condition. This states that in all orthonormal frames
T00 ≥ |TMN |, or more geometrically if TM lies inside or on the future light cone
then so does TM

NTN . The Dominant Energy Condition may be interpreted
as requiring that matter may not move superluminally. It again is satisfied by
all the usual bosonic energy momentum tensors, including minimally coupled
scalars with positive potentials. Evidently it may violated by minimally cou-
pled scalars with negative potentials. The Dominant Energy condition is used to
prove the Positive Energy Theorem which in turn implies that the purely grav-
itational force between isolated systems is always attractive. In other words
it rules out the possibility of long range gravitational repulsions. The Strong
Energy Condition rules out antigravity in a more local sense in that, as we shall
see shortly, it says that the source of the Newtonian potential is always locally
of the same sign. Applied to cosmology it implies that the acceleration of the
universe is always negative. In particular it is incompatible with de-Sitter or
de-Sitter-like behaviour for the spacetime metric gµν on X .

To see this in detail we use the formulae relating the Ricci tensor RMN of
M to those, XRµν and Y Rmn of X and Y respectively. They are

Rµν = XRµν + gµν
1

p+ 1

1

W p+1
Y ∇2(W p+1), (44)

and

Rmn = Y Rmn − 1

W
Y ∇m

Y ∇n(W
p+1), (45)

where Y ∇m is the Levi-Civita covariant derivative on Y and Y ∇2 the Laplacian
on Y and the dimension of X is p + 1. If p = 0, then we may with no loss of
generality put g00 = −1, the warp factor is essentially the Newtonian potential
of the static N dimensional metric on M and (44) becomes the relativistic
Poisson equation. If R00 ≥ 0 then it will have a source with the standard sign
for a gravitational field. As a consequence the total gravitational mass of such
a static spacetime spacetime is non-negative.

Now let’s allow p > 0, and work in an arbitrary orthonormal frame. We get

R00 = XR00 −
1

p+ 1

1

W p−1

Y

∇2(W p+1). (46)

If the “internal “ manifold Y is compact and without boundary and W smooth
and nowhere vanishing on it, then we may multiply equation (46) by W p+1 and
integrate over Y . The term involving Y ∇2 vanishes and we we deduce that
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XR00 ≥ 0. (47)

In other words, the Strong Energy Condition is hereditary. If it holds on M and
we compactify on Y then it continues to hold on X . This is of course obvious
for a strict metric product for which the warp factor W is constant. What we
have shown is that it remains true for a non-constant warp factor, as long as Y
is compact non-singular and without boundary.

If for example X is a maximally symmetric spacetime it must be an Ein-
stein space with Rµν = Λgµν and we deduce that necessarily the cosmological
constant is non-positive

Λ ≤ 0. (48)

Moreover if we want X to be Minkowski spacetime then we can easily deduce
from (46), that since

∫

Y

W p+1R00 ≥ 0, (49)

in fact R00 = 0 and hence RMN = 0 and thus the higher dimensional spacetime
must be Ricci flat. The bosonic fields must vanish. It is now clear that W p+1 is
a harmonic function on the closed manifold Y and hence it must be constant.
The compactification must in fact be the metric product of Minkowski spacetime
with a closed Ricci flat manifold. Moreover it follows that, unless it splits as
the (possibly local) metric product of a circle and a lower dimensional Ricci flat
manifold Y ′ , that the internal manifold Y can admit no continuous isometries.
To see why this is true, recall that from Killing’s equations, it follows that any
Killing vector field Km satisfies

−Y ∇2Km −Rm
nK

n = 0. (50)

Multiplying (50) by Km and integrating over Y shows that Km must be covari-
antly constant,

Y ∇mKn = 0. (51)

In particular we find that gmnK
mKn is constant and that Km = ∂

∂ym θ for some

function θ. Using coordinates in which Km = δm1 we deduce that y1 = θ and
the metric may be written as

gmndy
mdyn = dθ2 + gmndy

mdyn, (52)

where the summation on the right hand side is from 2 to the dimension of Y
and gmn is independent of θ.

We may apply these results to either eleven or ten dimensional supergrav-
ity. If we want X to be Minkowski spacetime and in addition we want some
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supersymmetry, then Y must be Ricci flat and admit some covariantly constant
spinor fields. If it is irreducible and seven dimensional it must have holonomy
G2 and if it is six dimensional it must have holonomy in SU(3). Note that
one can in fact deduce that if Y is irreducible and that it admits a covariantly
constant spinor then it must be Ricci flat. We saw regardless of whether we had
Killing spinors, that Y must be Ricci flat and admit no continuous isometries.

Note that in ten-dimensional string theory, as opposed to ten dimensional
supergravity, we have extra complications. Yang-Mills fields are present which
are not coupled minimally to the metric but in a more subtle way to the curva-
ture involving Chern-Simons terms. The consequence is that if we start with a
purely supergravity solution and then identify the Yang-Mills connection with
(part of) the Levi-Civita connection, then it will automatically satisfy the Yang-
Mills equations of motion. Moreover the source in the dilaton equations of mo-
tion vanishes , and it thus is consistent to take the dilaton to be constant, thus
evading the No-Go theorem which would otherwise follow. The full curvature
modified Einstein equations are now much more complicated and the simple
arguments given above do not directly apply. Thus in string theory the Yang-
Mills sector combined with the curvature contributions does in effect conspire
to violate the Strong Energy Condition. Similar remarks apply to M-theory,
as opposed to eleven-dimensional supergravity. If extra curvature terms are
introduced then the simple arguments given above need not apply.

Of course a No-Go Theorem is no better than the assumptions that go into
it. If one considers non-compact internal spaces [48] or couples super-matter
to supergravity [47] then one can obtain de-Sitter space as a solution of the
classical equations of motion.

7 The Tachyon

In the light of these rather discouraging results, it seems clear that it is worth
exploring a new idea. Moreover it is very striking that an intrinsic part of
string theory, both open and closed, and apparent from its very beginnings
in Regge theory, is the existence of tachyons. It is true that in closed string
theory they are projected out, but even there the projection mechanism has
only been checked explicitly in perturbation theory to 2 loops! In open string
theory tachyons abound. Great progress has been made of late in understanding
their significance. I shall not attempt to describe any of that work in detail. I
shall merely take away from it the idea that one the existence of a tachyon in
the perturbative spectrum indicates that the perturbative vacuum is unstable
and that there exist a true vacuum, with zero energy density, toward which
a tachyon field T (x) naturally moves. Moreover it seems that aspects of this
process can be capture by comparatively simple effective field theory models.
Perhaps the simplest is that proposed by Sen. It has (in units in which 2πα′ = 1)
the Lagrangian

L = −V (T )
√

1 + gµν∂µT∂νT
√

− det(gµν)
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= −V (T )
√

− det Gµν ,

where what we shall call the tachyon metric is given by

Gµν =
(

G
)

µν

= gµν + ∂µT∂ν.T

The potential V (T ) is taken to be non-negative have a unique local maximum
at the origin T = 0 and a unique global minimum away from the origin at which
V vanishes. In the most interesting case the global minimum is taken to lie at
|T | = ∞. Obviously more complicated potentials may be contemplated but this
is the simplest case to begin with. Small fluctuations around the “false vacuum”
at T = 0 have negative mass squared and so it is unstable. How does the system
evolve?

The equation of motion is

(

gµν − ∂µT∂νT

1 + (∂T )2

)

∂µ∂νT = −V ′

V

(

1 + (∂T )2
)

. (53)

From (53) we deduce that contrary to popular prejudice: the tachyon is not a

tachyon! If we define the tachyon co-metric by

(

G−1
)µν

= gµν − ∂µT∂νT

1 + (∂T )2
, (54)

so that
(

G−1
)µν

Gνλ = δµλ , (55)

we see that the characteristic cones of (53) are given by the co-metric (G−1)µν

and the rays by the metric Gµν . It is these which govern the speed of propa-
gation of small disturbance around some background, as may readily be seen
by linearising (53). According to the general theory of hyperbolic partial dif-
ferential equations, the characteristic cones also govern the maximum speed of
any possible signal. Note that the characteristic cones do not depend in any
way upon the potential V (T ), but just on the coefficients of the highest deriva-
tive term in the equations of motion. Thus for example linearizing around flat
spacetime, we see that the maximum signal speed is that of light because gµν
and Gµν coincide in that case. However in general they will not coincide with
the standard Einstein cone gµν and co-cone gµν , in other words, in a non-trivial
tachyon background, tachyon fluctuations will travel at a different speed from
that of light. Nevertheless even in this case, because

Gµν l
µlν =

(

lµ∂µT
)2
, (56)

for any vector lµ lying on the Einstein cone, i,e, such that

gµν l
µlν = 0, (57)
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it is clear that the Einstein cone lies outside or on the tachyon cone, which we
denote by

gµν ≥ Gµν (58)

and no super-luminal propagation is ever possible.
The energy momentum tensor T µν of the tachyon takes the form:

T µν = −V
√

1 + (∂T )2
(

G−1
)µν

(59)

from which one deduces from (58) that it satisfies the dominant energy condi-
tion, with respect to the Einstein metric gµν (as well in fact with respect to
the metric Gµν). which according to a result of Hawking, ensures that if the
tachyon vanishes at time zero outside some compact set, then it vanishes outside
the future of that compact set. Specifically, in a local frame in which T depends
only upon time,

ρ =
V (T )

√

1− Ṫ 2
P = −V (T )

√

1− Ṫ 2. (60)

Thus

P = −V 2(T )

ρ
. (61)

Note that because of the square root, |Ṫ | can never exceed unity. If it were the
case that V (T ) were a constant, independent of T then (61) is the equation of
state of what is called a Chaplygin gas. As a pedagogic warm up for the real
thing, it is interesting to review the cosmology of such a gas as worked out by
Karmenshik, Moshella and Pasquier [29]. It is a special case of what have been
called “k-essence” cosmologies [31].

8 Chaplygin Cosmology

We set P = −A
ρ
, A > 0. The first law (15) may be integrated to give the

density ρ as a function of the scale factor a. One gets

ρ =

√

A+
B

a6
, (62)

where B is an integration constant which we take to be positive. Clearly, at
large scale factor, i.e at late times, we have a cosmological term

ρ = −P = constant. (63)

At small scale factor we have a dust-like behaviour, P = 0, and

ρ ∝ 1

a3
. (64)

19



The scale factor can thus make a smooth transition from a matter dominated
form a ∝ t

2

3 to an exponentially inflating form a ∝ expH∞t with H∞ =
√

8πG
√
A

3 .
At large scale factor we have corrections to the pure cosmological term:

ρ ≈
√
A+

√

B

4A

1

a6
, (65)

P ≈ −
√
A+

√

B

4A

1

a6
. (66)

Thus at late times there is a small admixture of stiff matter.

9 Tachyons and the strong energy condition

It is clear that at high density, both the Chaplygin and the tachyon case violate
the strong energy condition. In fact

ρ+ 3P =
V

√

1− Ṫ 2

(

3Ṫ 2 − 2
)

. (67)

Thus the strong energy condition fails if |Ṫ | <
√

2
3 .

10 Coupling to gravity

We assume that the relevant action is
∫

d4x
( R

16πG

√

− det gµν − V
√

− detGµν

)

plus boundary term. (68)

Substituting in the Raychaudhuri and Friedman equations gives

ä

a
=

8πG

3

V (T )
√

1− Ṫ 2

(

1− 3

2
Ṫ 2

)

, (69)

ȧ2

a2
+

k

a2
=

8πG

3

V
√

1− Ṫ 2
. (70)

The equation of motion for the tachyon field is

T̈

1− Ṫ 2
+ 3

ȧ

a
Ṫ +

V ′

V
= 0. (71)

The first law becomes

ρ̇+
3ȧ

a
Ṫ 2ρ = 0. (72)
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Since |Ṫ | ≤ 1 we deduce from (72). that

˙(ρa3) ≤ 0. (73)

Now let us suppose that we set T off some where near the top of the potential

at positive T and 0 < Ṫ <
√

2
3 . Let also suppose that k = 0 and that V (T )

takes its minimum value of zero at infinity. The tachyon field will increase
monotonically, eventually reaching infinity with Ṫ = 1. Initially the scale factor
will accelerate but this acceleration is self-limiting, eventually become negative (

once Ṫ >
√

2
3 ) and slowing down like pressure free matter. From (73) we deduce

that the pressure falls dramatically (at least exponentially for reasonable choices
of V (T )).

11 Shortcomings

Many authors have pointed out the shortcomings of the rolling of the tachyon
as a mechanism for inflation [33]. They include

• The natural scale of the model is the Planck or String scale. Planck scale
inflation will in general give fluctuations which are too large.

• If the mass scale near the local maximum at the origin is too large, then
insufficient inflation will result before the tachyon field nears the minimum
value of the potential.

• The model requires fine tuning so as to avoid being becoming matter
dominated before there is time for a hot radiation era during which nucle-
osynthesis takes place. Alternatively, if one wants the tachyon to act as
the cold dark matter apparently seen at the present time, again one seems
to require an element of fine-tuning.

• Because the tachyon does not oscillate in a potential well at the end of
rolling, the usual mechanism for reheating does not operate.

Although these are all perfectly valid objections, in my opinion, they ignore

• The provisional and approximate nature of the model.

• The incomplete nature of the modelling of the relation between the open
and closed string sectors.

For these reasons, I feel that it is too early to abandon completely the idea
that the tachyon may have a role to play in cosmology, particularly at very
early times. However, as we shall see, if those times were of Planck scale, there
remain difficulties in accommodating any such model with the absence of large
gravitational wave perturbations. Before passing to that, I wish to make some
pedagogic comments on the issue of fine tuning.
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12 Fine tuning, initial conditions and Anthropic

Considerations

Issues of fine tuning in cosmology, as opposed to particle physics, are concerned
with plausible initial conditions in real time rather than the evolution of the
renormalization group equations with energy scale. At the classical level, this
requires some sort of a priori probability distribution on the space of Cauchy
data. At the quantum level, some sort of a priori measure on the space of
initial quantum states, that is an a priori density matrix against which to test
the plausibility of various “proposals” for the wave function of the universe [46].
To make this quantitative, rather than just a description of personal prejudice,
seems to be extremely difficult.

Even at the classical level, and for a finite number of degrees of freedom, such
as we have in the model discussed above, this is an extremely tricky business. We
have in effect a “mini-superspace“ model, with the structure of a Hamiltonian
system with a constraint. The constraint is that the flow

(

q(t), p(t)
)

in a 2n-
dimensional phase space P is confined to the (2n− 1)- dimensional submanifold
Γ on which the Hamiltonian vanishes

H(p, q)|Γ = 0. (74)

Precisely because we have an autonomous dynamical system on Γ we know that
given any present condition, there must be some initial conditions which gave
rise to it, namely any point on the trajectory or classical history through our
present point. Thus we cannot expect a complete “chaotic” style explanation
of our present condition: that all initial conditions will inevitably give rise to
it. This would only be mathematically possible if we consider what happens
if the time went strictly to infinity, but clearly this is not true in cosmology.
Rather we need a purely classical measure on the possible histories. This has
been provided to us by Liouville and was introduced for this purpose in [22]
(see [43] for its independent introduction and use in the context of Bianch-IX
models). We first seek to capture all the trajectories on Γ by cutting with a
2n− 2 dimensional surface S intersecting each trajectory once and only once. S
is the space of classical histories and the point is that the Liouville or symplectic
measure dnp dnq on P descends to S via a construction called the Symplectic
or Marsden-Weinstein quotient.

Using this symplectic measure one may now break S into two domains, one,
Syes, with histories close enough to what we believe our own to have been and,
those Sno unlike our own.

We can now evaluate the measure and hence probabilities , according to
Liouville. The problem is that typically both

measure(Syes) = ∞ (75)

and
measure(Sno) = ∞. (76)
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In other words quantities like for example the “probability of sufficient inflation”
which are constructed form ratios of these infinite quantities are just not well
defined [44, 45].

This problem, which arises even in the simplest finite dimensional case, and
is essentially an infra-red problem having nothing to do with the usual need
to impose an ultra-violet cutoff in quantum theory, gets much much worse if
one goes to the full field theory with its infinite number of degrees of freedom.
Similarly, in the quantum theory, even of one particle, one arrives at the problem
that one cannot easily normalise density matrices, and certainly not the unit
density matrix, which represents complete ignorance. It is for these reasons I am
extremely skeptical of claims that the Anthropic Principle can ever be elevated
to the level of a precise quantitative tool. On the other hand, the Anthropic
Principle does seem to give a very convincing explantion of why the world is
3 + 1 -dimensional. Interesting renormalizable quantum field theories of the
sort we use to describe intelligent life cease to exist in higher dimensions. This
comment is particularly relevant to brane scenarios in which our universe may
contain branes of different dimensions. All may have excitations propagating
on them described by quantum field theories but only on 3-branes will Nobel
prizes be awarded for their discovery [21].

13 Tachyon Condensation

The most optimistic scenario is that

• All open string states get confined in the true tachyon ground state.

• Closed string states arise as flux tubes or some sort of related solitonic or
non-perturbative excitations.

To implement this idea is the ambition of many people. It is a major chal-
lenge in string theory. In what follows, I will offer a commentary on how this
might look like at the level of an effective classical field theory. More details of
the underlying microphysics may be found in for instance [36, 24].

Since the precise tachyon Lagrangian is not completely known at present,
although there exist a number of impressive calculations, and in any case any
actual Lagrangian may change under field redefinitions, we consider a general
one

L = L(T, y), y = gµν∂µT∂νT. (77)

From a cosmological point of view such Lagrangians correspond to what is called
“k-essence”, a pun on “quintessence” [31].

14 Carollian Confinement

The confinement of open string states may be given a rather elegant kinematic
description in terms of an old, but hitherto unused, idea.
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The Poincaré group E(n− 1, 1),1 has two important Inönü-Wigner contrac-
tions which occur in the limiting cases when c ↑ ∞ or ↓ 0 . The former case
corresponds to the Galilei group when we have instantaneous propagation and
action at a distance with fields satisfying elliptic partial differential equations,
the latter, which is less well known, is called the Carroll group [1, 2] and corre-
sponds to the case of no propagation at all. Fields at each spatial point evolve
independently and are typically governed by ordinary differential equations with
respect to just the time variable. For that reason, this case often arises as the
symmetry group of an approximation scheme in which spatial derivatives are
ignored compared with time derivatives. Such approximation schemes are some-
times called “velocity dominated”.

Geometrically the Galilei group arises when the future light cone flattens out
to become a spacelike hyperplane. The Carroll group arises when it collapses
down to a timelike half line. In the Galilean case only the contravariant metric
tensor has a well defined limit as c ↑ ∞:

ηµν → diag(0, 1, 1, . . . , 1) (78)

and the limiting spacetime structure is called a Newton-Cartan spacetime. In
the case of the Carollian limit it is the covariant metric tensor which survives

ηµν → diag(0, 1, 1, . . . , 1), (79)

and one has a Carrollian spacetime.
Now let’s look at Sen’s tachyon metric in the limit of tachyon condensation,

i.e. in the limit that |Ṫ | → 1. We have

Gµν = gµν + ∂µT∂νT

= diag
(

− 1 + Ṫ 2, 1, 1, 1
)

→ diag
(

0, 1, 1, 1
)

Clearly as |Ṫ | → 1, the cone defined by Gµν squeezes onto a half-line and no
open tachyonic excitations can propagate. If one thinks of these as sound waves,
then the speed of sound goes to zero and hence the pressure drops to zero.

In fact, one may consider a more general tachyon Lagrangian, possibly cou-
pled to a Born-Infeld vector field Aµ with field strength Fµν = ∂µAν − ∂νAµ.

L = −V (T )
√

− det(gµν + Fµν)F(z), (80)

with
z =

(

G−1
open

)µν
∂µT∂νT, (81)

where the open string co-metric is given by

(

G−1
open

)µν
=

( 1

g + F

)(µν)

. (82)

1sometimes referred to as the inhomogeneous Lorentz group and such written as ISO(n−

1, 1)
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We know that in general, the open string metric
(

Gopen

)

µν
lies inside or on the

closed string metric gµν , coinciding along two special null directions lµ such that
Fµν l

ν = 0. It also seems to satisfy a version of the Equivalence Principle, it
is universal for all open string states, just as the closed string metric satisfies
the standard Einstein Equivalence Principle: it is universal for all closed string
states.

For the time being lets set Fµν = 0. We then have in Sen’s case

L = V (T )
√

1 + y, (83)

or from boundary string conformal field theory (BSFT)

L = e−
1

2
T 2F(y), (84)

with

F(y) =
y4yΓ(y)2

2Γ(2y)
. (85)

In general the energy momentum tensor is

T µν = Lgµν − 2Ly∂
µT∂νT, (86)

thus
ρ = 2yLy − L, P = L. (87)

The dominant energy condition will hold as long as

2yLy − L ≥ 0. (88)

The equations of motion are

(

G−1
)µν

∂µ∂νT =
LT

2Ly

, (89)

and the propagation co-metric given by

(

G−1
)µν

= gµν +
2Lyy

Ly

∂µT∂νT, (90)

and the propagation metric given by

Gµν = gµν − 2Lyy

Ly + 2Lyy

. (91)

Thus we shall get causal propagation if

2Lyy

Ly

≤ 0. (92)

Using these formulae one may check that not only Sen’s energy momentum
tensor but also that coming from BSFT satisfy both the strong energy condition
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and have causal propagation. More importantly for the present considerations,
one may check that as we approach the condensate, y → −1, the metric becomes
Carollian. In general we have

Gµν = diag
(

−1− Ṫ 2 2Lyy

L+ y + 2Lyy
, 1, 1, 1

)

. (93)

It follows that as long as |Lyy| → ∞ as y → −1 then

Gµν = diag
(

0, 1, 1, 1
)

. (94)

In fact in the case of BSFT,

L → −1

2

1

(1 + y)
. (95)

It is an attractive extrapolation from this example to speculate that, al-
though the tachyon metric may not enjoy the same universality properties as
the open string metric [5, 12, 6, 7], the Carollian confinement property described
here is universal.

15 Inclusion of Fluxes

What happens if we consider a case in which Fµν 6= 0? One way is to generalise
Sen’s action to

L = V (T )
√

− det(gµν + Fµν + ∂µT∂νT ) (96)

In this case the tachyon field is on the same footing as a transverse scalar in
the Dirac-Born-Infeld action for a brane. Alternatively one could use the full
BSFT action given above. In both cases we look for a solution with a constant
electric field and find that the condensed state at V (T ) → 0 is now given by

Ṫ 2 + E2 = 1, (97)

with E = |E|. To understand the dynamics it is, as in a previously studied
case, convenient to pass to the Hamiltonian formulation of the theory. Define
the conjugate variables

D =
∂L

∂E
, P =

∂L

∂Ṫ
. (98)

The Hamiltonian density is

H = D.E+ P Ṫ − L. (99)

In the Sen case one discovers that

H =
√

D2 + P 2 + (D.∇T )2 + (FijDj + ∂iT )2 + V 2 det(δij + Fij + ∂iT∂jT )

(100)
Obviously there is a smooth V ↓ 0 limit.

One may now investigate the propagation of small fluctuations in the limit
when Ṫ 2 + E2 = 1. One finds that
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• Propagation in directions orthogonal to E is suppressed.

• Propagation along the direction of parallel to E has speed ±E. This is
just what one expects of a fluid of parallel flux tubes or strings and is
consistent with earlier work on string fluids

We recover that system by dropping the tachyon. One gets, in the limit V ↓ 0

H =
√

D2 + (D×B)2. (101)

One should note that the energy of a static electric flux line with B = 0 is
proportional to its length, as expected, because in that case H = |D|. Now,

H =
BD

2 −D(B.D)
√

D2 + (D×B)2
(102)

and

E =
D+DB

2 −B(B.D
√

D2 + (D×B)2
(103)

It follows that
D.H = 0, D

2 −H
2 > 0. (104)

Thus if one constructs an Ampère tensor K = 1
2Kµνdx

µ ∧ dxν from (D,H) in
the same way that one construct the Faraday tensor Fµν from (E,B) one gets.

detKµν = 0,⇔ K ∧K = 0, (105)

and
KµνK

µν < 0. (106)

Thus the two-form K is simple and defines a distribution of timelike 2-planes
in the tangent space at each point of spacetime. The field equations

dK = 0, (107)

imply that this distribution is integrable, i.e. that spacetime is foliated by
timelike 2-surfaces tangent to K. Physically one may identify these surfaces
with the world sheets of a fluid of electric flux tubes. Their energy momentum
tensor is given by

T µν = − Kµ
λK

νλ

√

− 1
2KαβKαβ

(108)

For a static flux tube

Tµν =







H 0 0 0
0 −H 0 0
0 0 0 0
0 0 0 0






.
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This has a tension equal to the energy density in the direction of the electric
field and zero pressure transverse to the electric field, again as expected.

Although this classical model exhibits a string fluid behaviour with flux
tube solutions, there remain some obvious problems. Neither the thickness nor
the value of the flux is determined. Hopefully, this will emerge in some future
quantum mechanical treatment.

16 Carroll versus Galilei

It is clear that there is some sort of duality between the Carroll and Galilei
groups. The purpose of this penultimate section is to describe this duality in a
geometrical way by lifting there action up to one higher spatial dimension and
exhibiting both groups as subgroups of the Poincaré group E(n, 1). By passing
to one further temporal dimension one may embed the Poincaré group in the
Conformal group E(n, 2). The description of the Carroll group I am about to
describe is not new, in that it is very briefly described in [38], which is largely
about the lifting of the action of the Galilei group to one higher dimension first
given by Kunzle and Duval (see [38] for original references). The reason for
returning to the subject here is the hope that it may afford some more insight
into the properties of the tachyon condensate.

In fact, as we shall see from our discussion, the Carroll group will also
emerge naturally in brane-dymanics in the limit that the brane world volume
becomes lightlike. Another direct consequence of our analysis, is that one sees
the Carroll group emerging naturally in the isometry group of certain pp-wave
spacetimes which have been intensively studied of late. Much earlier the possible
role of Carrollian spacetimes near spacetime singularities and in the so called
strong coupling (i.e. large inverse gravitational tension G

c4
[26]) limit of General

Relativity has been discussed by Henneaux [16, 17] and this is closely related
to recent work on Kac-Moody symmetries in M-theory [28]. Finally one might
hope that just as the Galilei-covariant theories can easily be constructed using
the null reduction described below, so one might hope to construct Carroll-
covariant theories using the dual related ideas. This might lead to an extension
of the work in [34] 2.

16.1 The Lift

Let us start with the well studied Galilei case. The basic idea is to start with
flat Minkowski spacetime E

n,1 whose metric written in double null coordinates
(u, v, xi), i = 1, 2, . . . , n− 1, is

ds2 = −2dudv + dxidxi. (109)

The Lie algebra of the Poincaré group e(n, 1) is spanned by the Killing vector
fields generating the Lie algebra of the Euclidean group e(n − 1), translations

2I am grateful to Joaquim Gomis for drawing my attention to the possible interest of
Carrollian string theories
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and rotations
Pi = ∂i Lij = xi∂j − xj∂i, (110)

two null translations and one boost

U = ∂u, V = ∂v N = u∂u − v∂v, (111)

and two further sets of boosts

Ui = u∂i + xi∂v Vi = v∂i + xi∂u. (112)

There is an obvious symmetry under inter-changing u and v induced by reflection
in the timelike (n− 1)- plane u = v.

To obtain the Bargmann group, the central extension of the Galilei group,
we ask for the subgroup which commutes with the null translation generated by
V = ∂v. This is generated by {Pi, Lij , U, V, Ui, }. The Galilei group is obtained
by taking the quotient by the null translation group R generated by V . It
is easy to see that the Galilei group acts on the quotient E

n,1/R which may
be identified with a Newton-Cartan spacetime Mn, the coordinate u playing
the role of Newtonian absolute time. The generators Vi are Galilean boosts.
Because

[Pi, Uj ] = δijV, (113)

they commute with spatial translations (modulo V ) but not with time transla-
tions

[U,Ui] = Pi. (114)

We may think of this construction in terms of a Kaluza-Klein type reduction
in which we think of En,1 as a fibre bundle with projection map

π : En,1 → Mn (115)

given by (u, v, xi) → (u, xi). However in contrast to the usual case, the fibres are
lightlike. Using the map π one may push forward the Minkowski co-metric on
E
n−1 down to the Newton–Cartan spacetime to give the degenerate co-metric

(78).
To obtain the Carroll group, we ask instead for the subgroup of the Poincaré

group which leaves invariant the null hyperplane u = constant. This is generated
by {Pi, Lij , V, Ui}. Now the null coordinate v plays the role of time. The
Carollian boosts Ui commute with time translation

[V, Ui] = 0, (116)

but by (113) they no longer commute with spatial translations Pi. In fact one
obtains a Heisenberg sub-algebra with the time translations being central. From
an algebraic point of view the Carrol and Galilei groups differ only in the choice
of generator of time translations: one picks either V or U .

One may think of the null hyperplane u = constant as the image under the
embedding map

x : Mn → E
n,1, (117)
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such that (v, xi) → (constant, v, xi), of a Carollian spacetime time. The pull
back of the Minkowski metric gives the degenerate Carrollian metric (79). Thus
the duality relating the cases is between an immersion x (117) and a submersion
π (115) and interchanges domain and range.

16.2 Plane Waves

One may generalize the idea of a Newton-Cartan spacetime to include gravita-
tional fields by replacing E

n,1 in the construction above by an n+1 dimensional
spacetime admitting a covariantly constant null Killing field. In the context of
Galilei kinematics such spacetime is said to admit a Bargmann structure. Phys-
ically it corresponds to a plane-fronted gravitational wave with parallel rays, or
pp-wave for short. In harmonic coordinates, the metric takes the form

ds2 = −2dudṽ +H(x̃, u)du2 + dx̃idx̃i. (118)

In the special case that the function H(x̃, u) is quadratic in x̃, the isometry
group is enhanced from R to a (2n + 1)-dimensional Heisenberg group. This
acts on null hypersurfaces and is a subgroup of the Carroll group. Gravitational
waves of this type are called plane waves and as emphasised by Bondi, Pirani
and Robinson in the case n = 3 the symmetry group and number of polarisation
states coincide exactly with what one obtains from linearised theory and also
for plane electromagnetic waves. If n > 3 the symmetry groups also coincide
but the number of polarisation states of course differ.

17 Concluding Remarks

Given the speculative picture of the tachyon condensate outlined above, it is
clear that issues such as “reheating ” and gravitational wave production may
be very different from what they are in the standard picture. It therefore seems
to me to be premature to rule out a rôle for the tachyon in cosmology.

Consider for instance, a world which initially contains both open string states
and hence necessarily closed string states. One could envision an initial Open
String Era during which the system rolled down to the true vacuum, a tachyon
condensate in which all open string states suffer Carrollian Confinement, there
propagation cone collapses onto a half-line and thereafter only closed string
states can propagate. We now enter the Closed String Era in which presum-
ably the open strings eventually reassemble themselves to give the standard
model during some Primordial Radiation Era . After this point a more or less
conventional inflationary scenario could have set in.

One might think that we might never have access to any information form
before the confining phase transition separating the Open String Era from the
Closed String Era. However this may not be completely correct. As I described
earlier, we can treat in a rough way the cosmological rolling to wards the tachyon
condensate using a simple FLRW model. We can also consider gravitational
wave perturbations around that background configuration. If these gravitational
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waves can penetrate beyond the confining phase transition, then they should be
observable today and this raises difficulties with the observational data. This is
of course just the basic problem with all primordial inflationary models. How-
ever in this case things might just be different, because the graviton is just a
closed string state and closed strings are supposed to be topological excitations,
flux tubes in the true open string vacuum. If that is true then the gravitons we
can see today must, in some sense have been created then. More particularly,
it is not obvious that any gravitons created earlier could have passed through
the Carrollian barrier. If that is true, then we need not worry about the present
limits.

It appears that a complete theoretical treatment of a scenario like this is
way out of reach of present day techniques in String Theory. Some relevant new
ideas involving the Wheeler-De-Witt equation may be found in [37]. Thus it
must remain at present a speculation. Nevertheless it seems to me well worth
bearing in mind, if only as a challenge of our powers of theoretical analysis.
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Nature 280 (1979) 203-205; General Relativity and the Eternal Return, in
Essays in General Relativity Academic Press (1980) 21-35 ; The Physics of
Immortality, Anchor Books (1995)

[33] A. Linde, L. Kofman and A. Starobinsky, Prospects and Problems of
Tachyon Cosmology hep-th/0204187 L. Kofman and A .Linde , Problems
with Tachyon Inflation hep-th/0205121; M. Fairbairn and M. H. G. Tytgat
Inflation from Tachyon Fluid ? hep-th/0204070; G. Shiu and I. Wasser-
man, Cosmological Constraints on Tachyon Matter,hep-th/0205003; G.
Felder, L. Kofman and A. Starobinsky, Caustics in Tachyon matter and
Other Born-Infeld Scalars, hep-th/0208019; J Cline, H. Firouzjahl and
P. Martineau, Reheating from Tachyon Condensation hep-th/0207156;C.
Kim, H. B. Kim and Y. Kim, Rolling Tachyons in String Cosmology
hep-th/0210101

[34] J. Gomis and H. Ooguri , Non-relativistic closed String Theory
hep-th/0009181

[35] G W Gibbons, Aspects of Supergravity Theories, in Supersymmetry, Su-
pergravity and Related Topics eds. F. del Aguilla, A. Azcarrage and L. E.
Ibanez (World Scientific) (1985)

[36] A. Sen, Rolling Tachyon hep-th/ 0203211; Tachyon Matter
hep-th/0203255 Field Theory of Tachyon Matter hep-th/0204143

[37] A Sen, Time and the Tachyon hep-th/0209122

[38] C. Duval, G.W. Gibbons, P.Horvathy, Celestial mechanics, conformal struc-
tures and gravitational waves Phys Rev D43(1991) 3907-3922

[39] W.-H. Huang, Chronology Protection in Generalized Gödel Spacetime Phys
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