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Abstract

A BIon may be defined as a finite energy solution of a non-linear

field theory with distributional sources. By contrast a soliton is usually

defined to have no sources. I show how harmonic coordinates map the ex-

teriors of the topologically and causally non-trivial spacetimes of extreme

p-branes to BIonic solutions of the Einstein equations in a topologically

trivial spacetime in which the combined gravitational and matter energy

momentum is located on distributional sources. As a consequence the

tension of BPS p-branes is classically unrenormalized. The result holds

equally for spacetimes with singularities and for those, like the M-5-brane,

which are everywhere singularity free.

One of the most striking aspects of the many recent applications of p-branes
to black holes in M-theory is the extent to which they admit two almost comple-
mentary aspects. On the one hand one may view a p-branes as a flat sheet-like
object of zero thickness moving in flat spacetime, described by a Dirac-Born-
Infeld action, and on the other hand they may be regarded as curved spacetimes
with non-trivial topology and causal structure which solve the Einstein equa-
tions [1, 4]. This second aspect has become especially prominent recently in the
many papers in which the AdSp+2×SdT−1 geometry near the throat has played
a vital role. In this paper I wish to begin to address the question of why a
description of p-branes based on flat space can be so effective. This is of course
part of a much wider puzzle; how is it that string theory and M-theory, based as
they are on objects moving in a fixed, and usually flat, background give rise to
theories like general relativity in which no particular background is preferred?

If we view the problem from the point of view of general relativity the answer
is perhaps not so hard to see. In general relativity and related theories no
particular coordinate system is preferred and indeed it may be impossible to
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find a single coordinate system which covers the entire spacetime manifold Mn.
However that does not prevent us fixing upon a particular set of coordinates xα

say and restricting our coordinate transformations to Poincaré transformations
of the xα. In other words we can always, locally at least, introduce an arbitrary
flat spacetime with inertial coordinates xα and metric ηµν and view gravity as
the manifestation of a a non-linear spin two field in flat space.

In fact precisely this procedure is often followed when one discusses the
definition of energy and its conservation in general relativity [11, 12]. One
assumes additionally that the coordinates xα are asymptotically Minkowskian
in the sense that at large spatial distances the curved spacetime metric gµν tends
to the flat metric ηµν . Because one has a variational principle one may construct
the conserved canonical Einstein energy momentum pseudo tensor Et

µ
ν such

that the conservation equation takes the form:

∂µ

(√−gT µ
ν +E tµ ν

)

= 0. (1)

The difficulty is of course that the pseudo-tensor E t
µ
ν depends in an essential

way on the chosen coordinates xα. To some extent this does not matter if one
wishes to calculate for example, in an E(p)-invariant (p + 1 + dT )-dimensional
spacetime spacetime a quantities like the tension

T = −
∫

ddT y(
√−gT 0

0 +E t0 0

)

(2)

because, as long as the coordinates cover the whole spacetime Mn, this is inde-
pendent of the choice of coordinates. However if the spacetime is not topolog-
ically trivial Mn 6≡ R

n or if one seeks some more localized idea of energy one
has problems.

One way out of this impasse is to fix the troublesome gauge freedom once and
for all and to decree that although all coordinates are equal some are more equal
than others. In other words, that, at least for some problems , a particular choice
of gauge is preferred. This does not mean giving up the equivalence principle or
the principle of general covariance, any more than using unitary gauge in Yang-
Mills theory means giving up Yang-Mills gauge invariance, it simply means that
in order to exploit to the full our flat space concepts we are going to pick the
most convenient coordinate system for that purpose.

This leads us to the question: what is the most convenient coordinate choice
for studying p-branes? The suggestion of this paper is that the answer is har-
monic coordinates for which:

(√−ggµν
)

,µ
= 0. (3)

Moreover I suggest that the most convenient choice of variables to describe
the gravitational field is

gµν =
√−ggµν , (4)
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in terms of which the harmonic gauge condition becomes

gµν ,µ = 0. (5)

Before discussing p-branes I will review some of the (largely well known)
properties of harmonic coordinates and the variables gµν . Firstly the name
harmonic means just that: the n-functions xα are solutions of the curved space
wave equation

∇2xα 1√−g
∂µ

(

gµνxα
,ν

)

= 0. (6)

Another way of saying the same thing is that the identity map is a harmonic
map from {Mn, gµν} to {Rn, ηµν}. In linear theory the harmonic condition
coincides with the De-Donder gauge frequently used in perturbation theory.
This is because if gµν = ηµν + hµν then to lowest order

gµν ≈ ηµ − hµν +
1

2
ηµνhα

α. (7)

Perhaps one of the most useful properties of the gothic variables gµν is that
they behave nicely under dimensional reduction. It is well known that if a metric
g is the metric on a product manifold :

g = g1 ⊕ g2 (8)

one must Weyl rescale the metrics g1 and g2 to put them in Einstein conformal
gauge. This is because the actions don’t add, in other words even though

Rµν(g) = Rµν(g1)⊕Rµν(g2) (9)

it is not true that

√−ggµνRµν(g) 6=
√−g1g

µν
1 Rµν(g1) +

√−g2g
µν
2 Rµν(g2) (10)

However for the gothic variables if the metric is a product and if in addition

gµν = g
µν
1

⊕ g
µν
2

(11)

then necessarily

gµνRµν(g) 6= gµνRµν(g1) + gµνRµν(g2). (12)

Of course √−g1g
µν
1 6= g1

µν . (13)

In string theory products of metrics correspond to tensor products of confor-
mal field theories so the moral seems to be that the use of the gothic variables
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better respects that tensor product structure. As a practical matter it is cer-
tainly easier to use (11) rather than to remember the formulae for the Weyl
rescaling.

It is of course standard that using the gothic variables gµν simplifies the
Lagrangian formulation. If Γα

β
γ = Γγ

β
α are the Christoffel symbols of the

metric gµν then one has the identity

√−ggµνRµν = gµν
(

Γµ
β

αΓν
α

β − Γµ
α

νΓα
β

β

)

−∂αW
α (14)

where
Wµ = gασΓσ

β
β − gµνΓµ

α
ν (15)

Now if we define

L =
1

16π
gµν

(

Γµ
β

αΓν
α

β − Γµ
α

νΓα
β

β

)

, (16)

then we find that that L contains no second derivatives of and is a homogeneous
function of degree −1 in gµν and a homogeneous function of degree 2 in gµν ,λ.
Moreover

Wα =
1

16π
gµν

∂L

∂gµν ,α

. (17)

It follows from (17) that the current density Wα has the interpretation of the
Noether current associated to dilations or homotheties. Rescaling the coor-
dinates xα is equivalent to rescaling the gothic variable gµν . The associated
Noether charge is of course closely related to the surface term in the gravita-
tional action. We shall not pursue that avenue here but instead remark that the
Einstein pseudo-tensor tµ ν which appears in (1) is just the canonical energy-
momentum tensor associated to L, i.e.

Et
µ
ν = δµνL− gαβ ,ν

∂L

∂gαβ ,µ

. (18)

Its conservation (1) may be ascribed to the invariance of the action associated
to the Lagrangian L under translations along the directions of the arbitrary
coordinate chart {xα}. Of course to obtain something like the conventional
idea of energy one chooses the chart {xα} to be asymptotically Minkowskian. If
the spacetime manifold Mn is not topologically trivial then one will not be able
to define the translations globally all over Mn. This is of course the problem
one faces if black holes or branes are present. In the case of extreme branes
however, and for the particular choice of harmonic coordinates, we shall see
that this problem is somewhat alleviated since the exterior region of the branes
is mapped to R

p+1 × (RdT \ {yi}) where {yi} are the positions of the branes.
The Einstein pseudo-tensor Et

µ
ν has a number of counter-intuitive proper-

ties. For example Schrödinger [13] has pointed out that if one calculates it for the
Schwarzschild solution using the coordinates xα = (t, r sin θ cosφ, r sin θ sinφ, r cos θ),
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where r is the usual Schwarzshild radial coordinate defined so that the area
of a sphere is 4πr2, one finds that it vanishes, at least away from the hori-
zon at r = 2M and the singularity r = 0 , where it is not defined. The
coordinates chosen by Schrödinger have the property that

√−gg = 1 but
they are not in fact harmonic. One obtains harmonic coordinates by taking
xα = (t, (r−M) sin θ cosφ, (r−M) sin θ sinφ, (r−M) cos θ). In fact this formulae
gives harmonic coordinates for the entire Reissner-Nordstrom family. For later
use we note that isotropic coordinates xα = (t, ρ sin θ cosφ, ρ sin θ sinφ, ρ cos θ)
where

r = ρ+M +
M2 − Z2

4ρ
(19)

and Z2 = q2 + p2 are harmonic if and only if

M = ±|Z|. (20)

Of course we usually take the plus sign to get a solution with a horizon rather
than one with a naked singularity but as with the condition for the existence of
Killing spinors either sign is actually allowed.

Another disadvantage of the Einstein pseudo-tensor is that it does not give
rise to simple expressions for the total angular momentum. This is because
if one raises an index with gµν it is not necessarily symmetric. Thus if one
introduces a flat metric ηµν and uses it to define a set of lorentz transformations
with respect to the chart {xα} one will not obtain directly form Et

µ
ν a set of

conserved currents. It is clear however by Noether’s theorem that such currents
can always be constructed. Indeed associated with any one parameter family
of diffeomorphisms there exists such a current. In fact these currents are not
unique. One possible choice is that of Landau and Lifshitz. They introduce a
symmetric ‘complex” LLt

µν =LL tνµ in terms of the the symmetric quantity

LLΘ
µν =

√
−g

(

Tµν + tµν
)

= ∂β∂α

( 1

16π

(

gµνgαβ − gµαgβν
)

)

It follows that
∂µLLΘ

µν = 0. (21)

One may therefore, with the same caveats as before, regard LLΘ
µν as giving

the distribution of energy and momentum for the combined gravitational and
matter fields. As with the Einstein-pseudo-tensor, so with the Landua-Lifshitz
complex, it is reallly only integral quantities for asymptotically flat spacetimes
which are invariant under change of the coordinate chart {xα}.

For static E(p, 1)-invariant asymptotically flat brane configurations multi-
plication of (21) by xα and integration by parts leads to some non-trivial Virial
relations for the integrals of the non-zero components of LLΘ

µν over the trans-
verse dimensions. Thus

∫

ddT yLLΘ
ij = 0, (22)
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and
∫

ddT yLLΘ
ab = ηabT, (23)

where i, j = i, . . . , dT and a, b = 0, . . . , p and T is the tension, i.e. the energy
per unit p-volume.

In harmonic coordinates the formula for LLΘ
µν simplifies

LLΘ
µν =

1

16π

(

gαβ∂α∂βg
µν − ∂αg

βν∂βg
µα

)

. (24)

The harmonic function rule for orthogonally ‘intersecting” or ‘overlapping ”
branes depending on a set of harmonic functions Hi(y) on E

dT states that

• the metric is diagonal,

• that while the transverse space is not flat nevertheless

gij = δij . (25)

• The time direction is common to all the branes and

g00 = −
∏

Hi (26)

• In a direction in one or more branes

gaa =
∏

a

Hi, (27)

where
∏

a denotes a product over all the harmonic functions associated
with branes sharing the direction a.

A simple calculation reveals that the coordinates xα = (xa, yi) are harmonic.
Moreover in the case of a single type of brane, with just one harmonic function,
corresponding to branes located at positions y = yi ∈ R

dT , the transverse
stresses vanish point-wise

LLΘ
ij = 0., (28)

while the energy-momentum is strictly localized on the branes

LLΘ
ab = −ηab

∑

i

Tiδ(yi). (29)

For more than one type of brane the property (28) that the stresses vanish
remains true but the distribution of energy-momentum is more complicated
than (29). This is presumably not unrelated to the fact while the single branes
cary no entropy, sytems of intersecting branes can.

These results apply in particular to the both the ‘elementary” M-2-brane
and the ‘solitonic” M-5-brane. This is quite surprising. Both have a non-trivial
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topological and causal structure [1, 4, 2]. The former has Reissner-Nordstrom
like geometry with a singularity inside an event horizon, the latter is everywhere
non singular [4]. Harmonic coordinates map the exteriors of both to R

11 with
distributional sources, a fact first noted for the M-2-brane by Duff and Stelle [3].
As they observed, double-dimensional reduction yields the fundamental string
in 10 dimensions [7, 8] which is truly singular but has a distributional source.
As noted in [7] and [8] the string tension is not renormalized. This is of course
consistent with the present analysis and gibes with some recent work on cosmic
strings [9, 10]. These papers consider time-dependent cosmic strings in first
order perturbation theory. In the present paper I have considered static branes
in the exact theory. They find that self-interactions do not result in a classi-
cal renormalization of the string tension and that in four spacetime dimensions
gravitational self-interactions vanish. At the linear level this cancellation is a
direct consequence of the BPS condition and is closely related to the antigrav-
itating properties of the solutions, since the sum of the relevant propagators
vanishes as a consequence the antigravity condition cf [14]. Similar observations
may be found in the old literature on self-energies [15]. The present paper es-
tablishes the classical non-renormalization property for general p in the fully
non-linear theory.

In addition to branes, one frequently considers waves in R
2 × R

dT with
coordinates x+, x−,y. Suppose that the wave moves along the x− direction
then

gij = δij (30)

g+− = 1 (31)

g++ = −F (x−,y). (32)

Evidently the coordinates {x+, x−,y} are harmonic irrespective of the precise
form of the function F (x−,y) as is the vanishing stress condition (28). In fact
the only non-vanishing component of LLΘ

µν is

LLΘ
++ =

1

16π
∇2F . (33)

For a non-singular pure gravitational wave, the function F (x−,y) is everywhere
non-singular and the right hand side of (33) vanishes. This does not invalidate
the idea of using non-tensorial measures of energy and momentum because a
plane wave spacetime is not asymptotically flat but it does illustrate the poten-
tial hazards. For the singular waves that give rise on dimensional reduction to
0-branes, or indeed higher dimensional branes, one choses F to be independent
of x− and finds that there is is a distributional source just as in (29).

One may how the results of this paper are altered if one chooses a different
expression for the local density of energy and momentum. The present obser-
vations were in fact stimulated by reading a paper of Papapetrou [11] who also
used harmonic coordinates and who explicitly introduced a flat metric ηαβ . His
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expression, call it PΘ
µν , for the local density of energy and momentum reduces

in harmonic coordinates to

PΘ
µν = ✷gµν , (34)

where ✷ = ηαβ∂α∂β is the flat space D’Alembertian operator. In his later
textbook [12] he abandons his earlier approach and instead treats the Landau-
Lifshitz formalism. Applied to M-branes one gets the same results with either
formalism.

In a recent paper on Born-Infeld theory [6] the concept of a BIon was intro-
duced. This is a finite energy solution of a non-linear theory with a distribu-
tional source. In the case of the standard Born-Infeld theory, there is a source
of electric charge and the analogue of (29) is

J0 =
1

4π
divD =

∑

i

eiδ(yi), (35)

where the zeroth componet of the current J0 is the analogue of LLΘ
00. In a sense

the results of the present paper may be paraphrased by saying that harmonic
coordinates map extreme p-branes into a special kind of BIon associated to
a non-linear spin two field. In the case of the non-linear theory of spin one,
Gauss’s theorem says that despite the polarization of the vacuum, the electric
charge of a BIon is not classically renormalized. In the case of the gravity the
tension is not classically renormalized.
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