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Abstract

We give a general derivation of the gravitational hamiltonian starting from the
Einstein-Hilbert action, keeping track of all surface terms. The surface term that arises in
the hamiltonian can be taken as the definition of the ‘total energy’, even for spacetimes
that are not asymptotically flat. (In the asymptotically flat case, it agrees with the usual
ADM energy.) We also discuss the relation between the euclidean action and the hamil-
tonian when there are horizons of infinite area (e.g. acceleration horizons) as well as the
usual finite area black hole horizons. Acceleration horizons seem to be more analogous to
extreme than nonextreme black holes, since we find evidence that their horizon area is not
related to the total entropy.
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1. Introduction

Traditionally, the gravitational hamiltonian has been studied in the context of either
spatially closed universes or asymptotically flat spacetimes (see e.g. [[]). In the latter case,
the effect of black hole horizons has been investigated [B]. However in recent years, there has
been interest in more general boundary conditions. One example involves the possibility of
a negative cosmological constant, resulting in spacetimes which asymptotically approach
anti-de Sitter space. Perhaps of greater interest is the study of the pair creation of black
holes in a background magnetic field [B]. This involves spacetimes such as the Ernst
solution [A] which asymptotically approach the Melvin metric [[], and have a noncompact
acceleration horizon as well as the familiar black hole horizons. We will give a general
derivation of the gravitational hamiltonian which can be applied to all spacetimes regardless
of their asymptotic behavior or type of horizons.

In most field theories, the hamiltonian can be derived from the covariant action in a
straightforward way. In general relativity the situation is complicated by the fact that the
Einstein-Hilbert action includes a surface term. In most derivations of the gravitational
hamiltonian, the surface term is ignored. This results in a hamiltonian which is just a
multiple of a constraint. One must then add to this constraint appropriate surface terms
so that its variation is well defined [l]. We will show that the boundary terms in H come
directly from the boundary terms in the action, and do not need to be added “by hand”.

Since the value of the hamiltonian on a solution is the total energy, we obtain a
definition of the total energy for spacetimes with general asymptotic behavior. We will
show that this definition agrees with previous definitions in special cases where they are
defined. In particular, for asymptotically flat spacetimes, the energy agrees with the usual
ADM definition [f], and for asymptotically anti-de Sitter spacetimes it agrees with the
definition proposed by Abbott and Deser [fi].

The relation between the action and the hamiltonian is of special interest in the
euclidean context where it is related to thermodynamic properties of the spacetime. For
an ordinary field theory, the euclidean action for a static configuration whose imaginary
time is identified with period 3 is simply I = BH. It is well known that in general relativity,
if there is a (nonextreme) black hole horizon present, this relation is modified to include
a factor of one quarter of the area of the horizon on the right hand side. It is clear that
an acceleration horizon must enter this formula differently, since its area is infinite. We
will derive the general relation between the euclidean action and the hamiltonian which
applies to acceleration horizons as well as black hole horizons.

The fact that the naive relation I = SH can be modified by black holes leads to a
simple argument that the entropy of nonextremal black holes is S = A/4, where A is the
horizon area [f. It has recently been shown [J] that a similar argument applied directly
to extreme Reissner-Nordstrom black holes yields S = 0, even though the horizon area is
nonzero (see also [L4,[[1]). We will argue that acceleration horizons are similar to extreme
horizons in that they also do not contribute to the total entropy, although for a different
reason.

We begin in section 2 by deriving the canonical hamiltonian from the covariant
Einstein-Hilbert action, keeping track of all surface terms. This discussion applies to
spacetimes that can be foliated by complete, nonintersecting spacelike surfaces. Thus,
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there are no inner boundaries, and horizons play no special role at this point. In section
3 we show that the surface term that arises in the hamiltonian is a reasonable definition
of the total energy for a general spacetime: It agrees with previous definitions when they
are defined. In section 4 we consider the effect of horizons, and derive the general relation
between the hamiltonian and the euclidean action. We then discuss the entropy, and point
out the differences between horizons of finite and infinite area.

2. Derivation of the Hamiltonian: No inner boundaries
2.1. The action

We start with the covariant Lorentzian action for a metric g and generic matter fields

&
Ie.o)= [ [5 t Lo, ¢>>} + L4 K (2.1)

167 8T Jom

where R is the scalar curvature of g, L,, is the matter lagrangian, and K is the trace of the
extrinsic curvature of the boundary. The surface term is required so that the action yields
the correct equations of motion subject only to the condition that the induced three metric
and matter fields on the boundary are held fixed. (We assume that L,, includes at most
first order derivatives.) The action (B.]]) is well defined for spatially compact geometries,
but diverges for noncompact ones. To define the the action for noncompact geometries,
one must choose a reference background gg, ¢g. We require that this background be a
static solution to the field equations. The physical action is then the difference

Ip(g,9) = 1(9, ) — L(go, Po) , (2.2)

so the physical action of the reference background is defined to be zero. Ip is finite for a
class of fields g, ¢ which asymptotically approach gg, ¢g in the following sense. We fix a
boundarﬁ near infinity 3°°, and require that g, ¢ induce the same fields on this boundary
as go, ¢o"-

For asymptotically flat spacetimes, the appropriate background is flat space with zero
matter fields, and (B.3) reduces to the familiar form of the gravitational action

(00 = [ |t L] b g f (K (2.3

where K| is the trace of the extrinsic curvature of the boundary embedded in flat spacetime.
However, when matter (or a cosmological constant) is included, one may wish to consider
spacetimes which are not asymptotically flat. In this case one cannot use flat space as the
background, and one must use the more general form of the action (2-3).

I This condition can be weakened so that the induced fields agree to sufficient order so that

their difference does not contribute to the action in the limit that ¥°° recedes to infinity.
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2.2. The hamiltonian

Since the physical action is given by (B.3), the physical hamiltonian is the difference
between the hamiltonian computed from (B.1]) and the one computed for the background.
To cast the action (B.J]) into hamiltonian form we follow the discussion in [[] except that
all surface terms are retained. To begin, we introduce a family of spacelike surfaces ¥
labeled by ¢, and a timelike vector field ¢# satisfying t#V,t = 1. In terms of the unit
normal n* to the surfaces, we can decompose t* into the usual lapse function and shift
vector t* = Nn* 4+ N*. In this section we assume that there are no inner boundaries, so
the surfaces ¥; do not intersect and are complete. This does not rule out the existence of
horizons, but it implies that if horizons form, one continues to evolve the spacetime inside
the horizon as well as outside. It is convenient to choose the surfaces ¥; so that they meet
the boundary near infinity ¥°° orthogonally. (This is not essential, but it simplifies the
analysis. Notice that we do not require that t* be tangent to 3°°.) Thus the boundary
OM consists of an initial and final surface with unit normal n*, and a surface near infinity
>°° on which n* is tangent.

The four dimensional scalar curvature can be related to the three dimensional one R
and the extrinsic curvature K, of the surfaces 3, by writing

R =2(G, — Ru)ntn” . (2.4)
From the usual initial value constraints, the first term can be expressed
2G,n'n” =R — K, KM + K? . (2.5)

The second term can be evaluated by commuting covariant derivatives on n* with the
result
Rn'n” = K* — K, K" — V,(n"*V,n") + V,(n"V ,n") (2.6)

When substituted into the action (R.]), the two total derivative terms in (R.6) give rise
to boundary contributions. The first is proportional to n* and hence contributes only on
the initial and final boundary. It completely cancels the ¢ K term on these surfaces. The
second term is orthogonal to n* and only contributes to the surface integral near infinity.
If r# is the unit normal to »X°°, then the integral over this surface becomes

1 1

Vurt +r,ntV,n" = (g"" —ntn")V 1, (2.7)

87 100 8 oo

This surface integral has a simple geometric interpretation. The surface %*° is foliated by
a family of two surfaces S{° coming from its intersection with ;. The integrand in (B-7)
is simply the trace of the two dimensional extrinsic curvature 2K of Sf° in ;. Thus the
action (R.0]) takes the form

™

1 1
I= /th — V3g(R+ K, K" — K? +167L,,) + —/ ’K (2.8)

where 3¢ is the induced metric on ;.



We now introduce the canonical momenta p*¥, p conjugate to 3 9uv, @ and rewrite the
action in hamiltonian form. We first consider the case when the matter does not contain
gauge fields. Since the extrinsic curvature K, is related to the time derivative of the three
metric 3¢, by

3.
Ky = ﬁ[ Jpv — 2D(qu)] (2.9)
where D,, is the covariant derivative associated with 3g,,, when we write the action in a
form that does not contain derivatives of the shift vector, we obtain another surface term
-2 fsoo N#p,,r?. So the action takes the form
t

) : 1
t t
where H is the Hamiltonian constraint, and H, is the momentum constraint. Both of
these constraints contain contributions from the matter as well as the gravitational field.
The hamiltonian is thus
1

H= | (NH+N"H,) - — / (N 2K — Np ) . (2.11)
DN 8T Jspe

This expression for the hamiltonian diverges in general, but recall that physically we
are not interested in the action (R.1) but in (R.2). We must therefore derive the hamiltonian
for the reference background. Since this background is a stationary solution to the field
equations, when we repeat the above analysis using the stationary slices we find that the
momenta ph”, pp vanish and the constraints vanish. If we label the static slices so that
Ny = N on X°°, the reference hamiltonian is simply

1

Hy=—— N 2K, 2.12
0 87T Sfo 0 ( )

The physical Hamiltonian is the difference

1
Hp=H - Hy = / (NH + N*H,,) — = [NCK —*Ko) — N'pur”] (2.13)

DM T Jspe

Given a solution, one can define its total energy associated with the time translation
t* = Nn* 4+ N* to be simply the value of the physical hamiltonianE

1

E=——
87T Stoo

[N<2K - 2KO) - Nuppwry] (214)

2 Choosing N = 1 and N* = 0, our expression is similar to the one proposed in [[[J for a
quasilocal energy. However, the choice of reference background seems highly ambiguous for a
general finite two sphere, while it is fixed in our approach from the beginning by the asymptotic
behavior of the fields.



Notice that the energy of the reference background is automatically zero. In the next
section we will show that (R.I4)) agrees with previous definitions of the energy in special
cases where they have been defined.

There is a well known generalization of the above discussion to the case where the
matter lagrangian contains gauge fields. For example, suppose we start with the Maxwell
lagrangian Lj; = —ﬁFz where ' = dA is the Maxwell field. Then the canonical vari-
ables are the spatial components of A, and their conjugate momenta E*, while the time
component A; acts like a Lagrange multiplier. Using the fact that the inverse spacetime
metric can be written gt = 3gH — nHn? with n* = (t* — N#)/N one can rewrite the
Maxwell action in Hamiltonian form. The usual energy density %(E2 + B?) is multiplied
by the lapse N and contributes to the Hamiltonian constraint H. The usual momentum
density ﬁewpgn”EpB" is multiplied by the shift N* and contributes to the momentum
constraint H,,. The net result is that the Hamiltonian for the combined Einstein-Maxwell
theory again takes the form (BT except for an additional term ;- E*D,, A, in the volume
integral. This can be integrated by parts to yield —A;/4m times the Gauss constraint,
D,E" = 0, and another surface term ﬁ fstoo A EFr,. This term vanishes for asymptot-

ically flat spacetimes without horizons and for any purely magnetic field configuration,
but it may be nonzero in general. We shall ignore it in this paper but it is important in
electrically charged black holes [[[].

3. Agreement with previous expressions for the total energy
3.1. Asymptotically flat spacetimes

In this section we show that the expression for the total energy obtained directly from
the action in the previous section (B.14) agrees with earlier expressions whenever they are
defined. We first consider asymptotically flat spacetimes. Here, the ADM energy is given
by

Eapy = % ]é (Dihi; — D;h)r (3.1)
where the indices 7, j run over the three spatial dimensions, h;; = 3g;; — 3g0i; (>goi; being
the background three-metric H), D; is the background covariant derivative, and r® is the
unit normal to the large sphere S. The energy obtained from the action (2.14]) depends
on a choice of lapse and shift. Taking N =1 and N* = 0 (which is appropriate for a unit
time translation) yields

1

E=——
87T S

K —2Ky) (3:2)

Both (B-2) and (B-]) are coordinate invariant but depend on a choice of reference back-
ground. We want to show that they are equal whenever the induced metrics on S agree.

3 For asymptotically flat spacetimes, the background three-metric is usually chosen to be flat,
but for later applications it is convenient to keep the notation general.
4 This was also noted in [[f].



To this end, it is convenient to choose a particular set of coordinates. Given a large sphere
S in the original spacetime, one can choose coordinates in a neighborhood of S so that the
metric 3¢ is

ds* = dr® + qupdz®da® (3.3)
where a, b run over the two angular variables, » = 0 on S, and the two dimensional metric

Qap 18 a function of r and z®. Similarly, for the background metric we can choose coordinates
in a neighborhood of S so that the metric 3gq is

ds? = dp?® + qoapdy®dy® (3.4)

We now choose a diffeomorphism from the original spacetime to the background so that

r = p,x® = y®. This identification insures that the unit normal to S in the two metrics

agree. Since we are assuming the intrinsic metric also agrees, hqp = gap — Goap = 0 On S.
In these coordinates, we have

§ 2K =5 4 ¢l (35

1
(QK_QKO):_

871 Js 167 J
In the ADM expression (B-]), the first term can be written r/ D*h;; = D*(r?h;;) — h;j D'r7.

The first term on the right is zero since h;; is always orthogonal to rJ, and the second term
is zero since h;; vanishes on S. So

E = qab(hab,r> (36>

1 1
EADM - T h,= qab(hab,r> (37>

167 Jo " 167 Jg
where we have again used the fact that h;; vanishes on S. Comparing (B.§) and (B.7) we
see that the two expressions for the total energy are equal in this case.
For asymptotically flat spacetimes, one can also define a total momentum. By taking
constant lapse and shift in (P.I4) and considering how the energy changes under boosts of
t*, one can read off the momentum

Pile—% i 3.8
o Spj r (3.8)

which again agrees with the standard ADM result.

3.2. Asymptotically anti-de Sitter spacetimes

Abbott and Deser [[d] have given a definition of the total energy for spacetimes which
asymptotically approach a static solution to Einstein’s equation with negative cosmological
constant (see also [LG,L[7]). If go is the static background with timelike Killing vector &,
and h = g — go, then their definition of the energy is

1
Eap = g % dSan, |6, DgKHVP — KM@ Dge )] (3.9)
S
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where

Kuauﬁ = g(l;[ﬁHu]a _ ggl[BHu]u (310)

and )

H" = pH — §g(ﬁ”jhg (3.11)
We will again show that E4p agrees with the energy derived from the action (.14) when
the induced metrics on the surface S agree. Choosing synchronous gauge for both the
physical metric and the background insures that hg, = 0. In the spatial gauge described
above, h;; = 0 on S which implies K#*# =0 on 9, so the second term in (B.9) vanishes.
If we choose the surface near infinity so that £&# = Nn#, then the first term reduces to

1 . )
Eisp=—® N(D'h;; — D;h)r’ 3.12
AD 167 s ( J J )r ( )

In other words, it is identical to the usual ADM expression except that the background
metric is not flat and the lapse is not one. Since the above comparison between the ADM
expression and (2.14)) did not use any special properties of the flat background and did not
involve integration by parts on the two sphere, it can be repeated in the present context
to show that (B.13) agrees with (B.14) for general lapse N (and N* = 0). It also agrees
with the limit of the quasilocal mass considered in [[g].

3.3. Asymptotically conical spacetimes

As a final comparison of our formula for the energy we consider the energy per unit
length of a cosmic string.l Outside the string, the spacetime takes the form of Minkowski
space minus a wedge

ds? = —dt? 4+ dz* + dr® + a*r?dy? (3.13)

where ¢ has period 27 and the deficit angle is 27(1 — a). The reference background is flat
spacetime without a wedge removed

ds? = —dt* + dz2® + dp® + p*dy? (3.14)

Since we are interested in the energy per unit length, we consider a large cylinder at r = r,
in the cosmic string spacetime. To match the intrinsic geometry, the corresponding cylinder
in the background has p = p, where p, = ar,. The extrinsic curvatures are 2K = 1/r,
and 2Ky = 1/p,. Taking N =1 and N* = 0 in (Z.19) yields

1

F=——
8

CK-Ko) =L | [i - i] podp= (1 —a)  (315)

8 T o

where L is the length of the cylinder. So E/L = (1 —a)/4, which agrees with the standard
result that the energy per unit length is equal to the deficit angle divided by 8= [[9].

5 We thank J. Traschen and D. Kastor for suggesting this example.
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4. Horizons and the Euclidean Action

In section 2 we considered the case where the only boundary of the surfaces ¥»; was
at infinity. However one often has to deal with cases where the surfaces have an inner
boundary as well. We shall consider two situations:

1 . The surfaces ¥; all intersect on a two surface Sj,.
2 . The surfaces ¥; have an internal infinity. In this case one has to introduce another
asymptotic boundary surface > 7°°.

The first case arises in spacetimes containing a bifurcate Killing horizon, when the
surfaces Y; are adapted to the time translation symmetry. The second case arises both
for an extreme horizon, where the intersection between the past and future horizons has
receded to an internal infinity, or for spacetimes having more than one asymptotic region
(such as the maximally extended Schwarzschild solution). Since we are using a form of
the action that requires the metric and matter fields to be fixed on the boundary, we shall
take them to be fixed on S}, and > ~°°. i

We shall consider first case (1) where the surfaces of constant time all intersect on
a two surface Sj,. The lapse will be zero on S;, which will be an inner boundary to the
surfaces ;. We can also choose the shift vector to vanish on this boundary. One can
now repeat the derivation of the hamiltonian given in section 2. The only difference is
that the surface term % $§ N 2K will now appear on the inner boundary as well as at
infinity. However, this term vanishes since the lapse N goes to zero at Sj. If the reference
background also has a horizon, there will be an extra surface term Siﬂ f Ny 2K coming
from the inner boundary there. But this will also vanish since Ny vanishes at the horizon.
Thus the hamiltonian generating evolution outside a horizon S}, is again given by (B-17))
with only a surface term at infinity.

If the surfaces ¥; do not intersect but have an internal infinity, there will be a surface
term 8% f N 2K on ¥~°. For spacetimes like extreme Reissner-Nordstrom this will be
zero because 2K will go to zero as one goes down the throat, as will the lapse N cor-
responding to the time translation Killing vector. However in the case of the maximally
extended Schwarzschild solution, the surface term (including the background contribution)
is 8% ¢ N(*K — 2Ky) which can contribute to the value of the hamiltonian.

We now consider the euclidean action

_ 1 1
f=—— [ (R+167Lpn) - — ¢ K 4.1
Tor J,, Tt 107mEm) &J{W (4.1)

6 We do not require that the fields on S), agree with those in the background solution. Indeed
in many cases the background solution will not possess a two surface of intersection S. Similarly,
for an internal infinity with finite total action, e.g. resulting from the fact that the time difference
between the initial and final surface decreases to zero as one moves along an infinite throat (as
in extreme Reissner-Nordstrom), the background need not contain an analogous surface ¥~ °°.
However, in cases where the internal infinity has infinite action, the background solution must
also contain a surface 3~ °° on which the fields agree.

7 If one does not keep the metric on the boundary fixed, the hamiltonian picks up a surface

term proportional to the derivative of the lapse [J].
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In a static or stationary solution the time derivatives (3gW, gb) are zero. Thus the action
for a region between surfaces ¥; an imaginary time distance § apart is

[=pH (4.2)

If the stationary time surfaces ¥; do not intersect, then the imaginary time coordinate can
be periodically identified with any period 5. This is the case for the extreme Reissner-
Nordstrom black hole since the horizon is infinitely far away. For such periodically identi-
fied solutions, the total action will be given by (£.J). However when the stationary time
surfaces intersect at a horizon Sy, the periodicity 3 is fixed by regularity of the euclidean
solution at Sp,. The action of the region swept out by the surfaces ¥; between their inner
and outer boundaries is again I = BH. However this is not the action of the full four
dimensional solution [R0], but only of the solution with the two surface S removed. The
contribution to the action from a little tubular neighborhood surrounding the two surface
Sy, is just —A/4 (see also [RI]) where A is the area of S;. We thus obtain

F=pH-— iA (4.3)

As they stand, (f-2) and (f-3) are meaningless since we have not yet taken into account
the reference background. Consider first the case where the background does not contain
a two surface S;, on which the stationary time surfaces intersect. The background must
be identified with the same period in imaginary time at infinity as the solution under
consideration in order for the induced metrics on £ to agree. One thus obtains Iy = SH,
for the background which leads to the familiar result

~ 1
Ip = ﬂHp — ZAbh (44)
for the case of nonextreme black holes but
Ip = f(Hp (4.5)

in the extreme case.

As is now well known [§], the path integral over all euclidean metrics and matter
fields that are periodic with period ( at infinity gives the partition function at temperature
T=p3""1

2= 3 e = [ Dlgnlge ™ (16)

In the semiclassical approximation, the dominant contribution to the path integral will
come from the neighborhood of saddle points of the action, that is, of classical solutions.
The zeroth order contribution to log Z will be —Ip. All thermodynamic properties can be
deduced from the partition function. For instance, the expectation value of the energy is

(E) = —% log Z (4.7)
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By (£4) or (E.J) the zeroth order contribution to (E) will be Hp, as one might expect.
The entropy can be defined by

S:—anlogpn:— (ﬁ%—l) log Z (4.8)

where p,, = Z~'e #Fr is the probability of being in the nth state. If one applies this to
the expressions for the action (f.4) and ({.5), one sees that the zeroth order contribution
to the entropy of an extreme black hole is zero [g]. On the other hand, the entropy of a
nonextreme black hole is Ay, /4.

So far we have assumed implicitly that the horizon two surface S}, is compact so that
its area is finite. We now consider the case when the area of S} is infinite, such as for
acceleration horizons. The main difference between this case and the previous one comes
from the fact that the horizon now extends out to infinity. One could try to keep the
surface 3°° away from the horizon, but then the space between ¥ and the horizon would
still be noncompact, so the action would be ill-defined. If the spacetime has continuous
spacelike symmetries, one could compute all quantities per unit area. Alternatively, if the
spacetime has appropriate discrete symmetries, one could periodically identify to make
the action (and horizon area) finite. If either of these two options is adopted, then the
previous discussion applies essentially unchanged. However, in general, neither option is
available. One must then choose ¥ to intersect the horizon “at infinity”. Thus, instead
of the intersections of ¥ and the surfaces ¥; having topology S2, they will now have
topology D?. Since the metric induced on ¥*° from the background spacetime must agree
with that from the original spacetime, it follows that the background metric must also
have a horizon that intersects >°°.

As a simple example, consider Rindler space

ds®> = —€2dn? + d&? + dy® + d2? (4.9)

If one does not periodically identify y and z (or compute quantities per unit area), one
must take X°° to be given by fixing a large value of R? = £2 + y2 + 22, which intersects
the horizon ¢ = 0. The surfaces of constant 7 intersect ¥°° in a disk D? since £ > 0.

We now consider the euclidean version of solutions with acceleration horizons. The
argument above ([.3) can be applied to show that (f.3) holds in this case also. Since the
periodicity in imaginary time is determined by regularity of the euclidean spacetime on the
axis (which now extends out to infinity) the periodicity in the background [, must again
agree with that in the original spacetime 3. Repeating the argument above (f.3) one finds
that the background satisfies a similar relation

~ 1
Iy = BHy — ZAO (4.10)
Thus, the physical euclidean action is related to the physical hamiltonian by
~ 1
Ip =(Hp — ZAA (4.11)
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where AA is the difference between the area of Sj, in the original spacetime and its area
in the reference background. This general formula includes the familiar result ({.4) as a
special case, since for black hole horizons, one can choose a background which does not have
a horizon. If several horizons S;, are present, AA is the increase in area of the acceleration
horizon plus the area of any nonextreme black hole horizons. It does not however include
the area of extreme horizons because they do not meet at a two surface in the spacetime.

Since the area of an acceleration horizon is infinite, one might think that the difference
AA is ill-defined. However, it can be given a precise meaning by examining how it enters
into the above argument. The main point is that the surface near infinity 3°° intersects
the acceleration horizon at a large but finite circle C'. AA is defined to be the difference
between the (finite) area of the acceleration horizon inside C' in the original spacetime
and the area inside the analogous circle Cj in the reference background. Since the fields
induced on ¥ from the original spacetime agree with those induced from the reference
background, one can rephrase this prescription as follows: One fixes a large circle C' in the
acceleration horizon in the original spacetime and then chooses a circle Cj in the reference
background which has the same proper length and the same value of the matter fields.
AA is then the difference in area inside these two circles. This procedure was used in [[
to analyze the Ernst instanton.

If one naively substitutes the euclidean action (f.11]) into the expression for the en-
tropy (f.§) using the zeroth order contribution log Z ~ —Ip, one might conclude that
an acceleration horizon should have an entropy AA/4. However, the periodicity of the
imaginary time coordinate on the boundary is fixed by the requirement of regularity where
the acceleration horizon meets ¥°°. Thus one cannot take the derivative of the partition
function with respect to 8 and so cannot use ([L.§) to calculate the entropy. This differs
from the black hole case where (3 is not fixed by regularity at infinity. Instead, we shall
use a different argument. Physically, a key difference between acceleration and black hole
horizons is that the former are observer dependent. The information behind an acceler-
ation horizon can be recovered by observers who simply stop accelerating. Another way
to say this is that acceleration horizons are not associated with a change in the topology
of spacetime. For example, consider a spacetime like the Ernst solution where there are
both acceleration and black hole horizons. One could imagine replacing the black holes by
something like magnetic monopoles that have no horizons. One could make the monopole
solution away from the black hole horizons arbitrarily close to the solution with black
holes. The monopole solution would have the same R* topology as the Melvin reference
background. Thus one could choose a different family ¥} of time surfaces that cover the
region within a large three sphere without intersections or inner boundaries. One would
therefore expect the monopole solution to have a unitary hamiltonian evolution and zero
entropy.

However, the area of the acceleration horizon in the monopole solution will still be
different from that of the background. Since Hp = 0 [J], this difference AA,.. is directly
related to the euclidean action ([.1]]) and thus will correspond to the tunneling probability
to create a monopole-antimonopole pair (assuming there is only one species of monopole).
However the instanton representing the pair creation of nonextremal black holes will have
a lower action because there is an extra contribution to AA from the black hole horizon

11



area App. One can interpret the increased pair creation probability as corresponding to the
possibility of producing N = exp(Ay,/4) different species of black hole pairs. Thus pair
creation arguments confirm the connection between entropy and (nonextreme) black hole
horizon area, but suggest that there is no analogous connection with acceleration horizon
area.
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