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Abstract

Radiomics is an emerging field in quantitative imaging that uses advanced imaging features to 

objectively and quantitatively describe tumour phenotypes. Radiomic features have recently drawn 

considerable interest due to its potential predictive power for treatment outcomes and cancer 

genetics, which may have important applications in personalized medicine. In this technical 

review, we describe applications and challenges of the radiomic field. We will review radiomic 

application areas and technical issues, as well as proper practices for the designs of radiomic 

studies.

 1. Introduction

Non-invasive medical imaging, such as magnetic resonance (MR) imaging, computed 

tomography (CT), and positron emission tomography (PET), is routinely used for assessing 

tumour and anatomical tissue characteristics for cancer management (Buckler et al 2011, 

Kurland et al 2012). Furthermore, imaging can potentially provide valuable information for 

personalized medicine that aims to tailor treatment strategy based on the characteristics of 

individual patients and their tumours.

Molecular characterization using genomics, proteomics, and metabolomics information has 

been the main focus of personalized therapy. However, spatial and temporal intratumoural 

heterogeneity that arises from regional variations in metabolism, vasculature, oxygenation, 

and gene expression is a common feature of malignant tumours (Maley et al 2006, Marusyk 

et al 2012, Chicklore et al 2013, Fisher et al 2013). Random samples of tumour tissues 

acquired through invasive biopsy for molecular characterization may thus fail to accurately 

represent the landscape of the biological variation within tumours (Gerlinger et al 2012). On 

the other hand, the entire tumour can be sampled non-invasively and repeatedly with medical 

imaging.

In particular, studies have hypothesized that tumour characteristics at the cellular and genetic 

levels are reflected in the phenotypic patterns that can captured with medical images 

(Henriksson et al 2007, Diehn et al 2008, Basu et al 2011, Yang and Knopp 2011). Several 
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studies have shown these associations across imaging modalities. For example, in MR, 

growing brain tumours that cause a shift in midline structures due to normal tissue 

compression, known as the mass effect, are found to be strongly correlated with proliferation 

gene-expression (Diehn et al 2008). Yamamoto et al (2014) found that lung tumours with 

anaplastic lymphoma kinase (ALK) mutations appeared to have larger pleural effusion and 

no pleural tails on CT images (Yamamoto et al 2014). Contrast-enhanced CT images 

revealed that the mutation status of von Hippel-Lindau (VHL) in renal cell carcinoma is 

significantly correlated with the “gross appearance of intratumoural vascularity”, “well-

defined tumour boundaries”, and “enhancement of nodular tumour” (Karlo et al 2014). In 

PET imaging, [18F]FDG uptake is related to the number of viable cancer cells, tumour 

histopathology, and a number of biological processes that support the continuous growth of 

the tumour (Higashi et al 1993, Haberkorn et al 1994, Rajendran et al 2004, Fanchon et al 
2015). Studies have therefore proposed that tumour heterogeneity may be associated with 

the non-uniform distribution of [18F]FDG (Henriksson et al 2007, Tixier et al 2011, 

Chicklore et al 2013).

Despite the promise of medical imaging to assess tumour heterogeneity (or genetic), 

imaging features are often assessed visually and described qualitatively by radiologists or 

nuclear medicine physicians. Subjective descriptions of tumour imaging phenotypes (e.g. 

“large necrotic core”, “highly speculated”, and “moderate heterogeneity”). However, these 

visual assessments can suffer from a large intra and inter-observer variability (de Jong et al 
1995, Mussurakis et al 1996, Wetzel et al 2002, Davnall et al 2012, Tixier et al 2014c). 

Therefore, it is important to objectively and reproducibly quantify various imaging features 

that may reveal the underlying biology of tumours.

Radiomic uses the high-throughput extraction of advanced quantitative features to 

objectively and quantitatively describe tumour phenotypes (Figure 1). These features, termed 

radiomic features, are extracted from medical images using advanced mathematical 

algorithms to uncover tumour characteristics that may fail to be appreciated by the naked 

eye (Lambin et al 2012, Chicklore et al 2013, Aerts et al 2014, Cook et al 2014, Buvat et al 
2015, Rahmim et al 2016). Radiomic may thus provide great potential to capture important 

phenotypic information, such as intra-tumour heterogeneity, subsequently providing 

valuable information for personalized therapy. In this review, we will review radiomic 

applications and technical limitations, as well as proper practices for the designs of radiomic 

studies.

 2. Potential applications of radiomic

Numerous radiomic features, such as size and shape based–features, descriptors of the image 

intensity histogram, descriptors of the relationships between image voxels (e.g. gray-level 

co-occurrence matrix (GLCM), run length matrix (RLM), size zone matrix (SZM), and 

neighborhood gray tone difference matrix (NGTDM) derived textures), textures extracted 

from wavelet and Laplacian of Gaussian filtered images, and fractal features, can be 

extracted from the medical images (Haralick et al 1973, Galloway 1975, Pentland 1984, 

Amadasun and King 1989, Davnall et al 2012, Thibault et al 2013, Aerts et al 2014, Rahmim 

et al 2016).
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Radiomic features not only provide an objective and quantitative way to assess tumour 

phenotype, they have also found a wide-range of potential applications in oncology. For 

example, radiomic features have shown promise in the prediction of treatment response, 

differentiating benign and malignant tumours, and assessing cancer genetics in many cancer 

types. We will review the potential application of the radiomic features.

 2.1. Prediction of treatment response and outcomes

MR studies have shown that intensity histogram-based radiomic features are potentially 

useful for predicting cancer response to treatment (Johansen et al 2009, Baek et al 2012, 

Shukla-Dave et al 2012, King et al 2013, Peng et al 2013). In pre-clinical model, (Foroutan 

et al 2013) observed that mice with sarcomas treated with combinations of MK1775, a cell 

cycle checkpoint inhibitor, and gemcitabine showed a substantial change in the (apparent 

diffusion coefficient) ADC histogram skewness, kurtosis, entropy, and average ADC shortly 

after treatment compared to the untreated control group. In human patients with head-and-

neck cancer, tumours that responded poorly to chemoradiotherapy demonstrated a 

significantly greater increase in average ADC and higher values in kurtosis and skewness on 

mid-treatment diffusion weighted MR (DW-MR) than tumours with a better therapeutic 

response (King et al 2013). K-trans is a measure derived from dynamic contrast-enhanced 

MR images and measures the diffusion of an intravascular contrast agent into the 

extracellular space. The skewness of K-trans was found to be a promising predictor of 

progression free survival and overall survival of patients with stage IV head-and-neck cancer 

(Shukla-Dave et al 2012). The findings of these aforementioned studies may support the 

notion that therapy induced changes in tumour microenvironment and composition can be 

potentially described by changes in the intensity-histogram shape.

In PET imaging, standardized uptake value (SUV) measures, such as the maximum SUV 

(SUVmax) and mean SUV obtained within a tumour (SUVmean), are commonly used for 

tumour characteristic quantification. High baseline SUV uptake is often thought to be 

associated with aggressive tumour behavior and poor prognosis (Rizk et al 2006, Zhang et al 
2011, Higgins et al 2012). However, as previously mentioned, SUVmax and SUVmean are 

inadequate for describing the heterogeneous distribution of [18F]FDG uptake (van Velden et 
al 2011, Marusyk et al 2012, Cheng et al 2013b).

Recently, radiomic textural features have drawn considerable interest due to their potential to 

describe distinctive tumour phenotype (“appearance”) that may be driven by underlying 

genetic and biological variability. In particular, they were demonstrated to outperform 

simple SUV measures, such as SUVmax and SUVmean, in treatment outcome prediction 

(Eary et al 2008, El Naqa et al 2009, Tixier et al 2011, Yang et al 2013). For example, Cook 

et al (2013) compared the predictive power of maximum and mean SUV and four NGTDM 

derived textures in fifty-three non-small cell lung cancer (NSCLC) patients (Cook et al 
2013). They found that NGTDM derived coarseness, busyness, and contrast could better 

differentiate between responders and nonresponders to chemoradiotherapy than the 

aforementioned SUV measures. Furthermore, coarseness was found to be an independent 

predictor of patient overall survival. (Zhang et al 2014) built several multivariate models to 

predict pathologic response to preoperative chemoradiotherapy in twenty esophageal cancer 
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patients. They found that models constructed with combined radiomic features significantly 

improved the pathologic response prediction compared to models built with maximum SUV, 

metabolically active tumour volume and longest diameter.

For CT imaging, Aerts et al (2014) assessed the prognostic values of 440 shape- and 

intensity-based and textural features. They identified features that were predictive of 

patients’ survival on a discovery dataset consisting of >420 lung cancer patients. The 

prognostic value of features were then validated on three independent datasets, including one 

lung cancer (225 patients) and two head-and-neck cancer (231 patients) cohorts. Their 

results not only confirmed the potential use of radiomic features in outcome prediction and 

describing intratumoural heterogeneity, but also showed that prognostic ability may be 

transferred from one disease type to another (i.e. from lung to head-and-neck cancer). On the 

other hand, Parmar et al (2015) observed that not all radiomic features that significantly 

predicted lung cancer patients’ survival also predicted survival in head-and-neck cancer 

patients and vice versa (Parmar et al 2015b). Their results thus suggested that some radiomic 

features may be cancer-specific.

Studies have found a strong association between contrast-enhanced CT (CE-CT) and 

heterogeneity of the tumour vasculature (Tateishi et al 2002, Kim et al 2005). (Tixier et al 
2014a) observed that tumour blood flow measured on CE-CT was significantly correlated 

with the metabolically active tumour volume.CE-CT radiomic therefore provides great 

potential for quantifying complex tumour phenotype arising from angiogenesis in cancer. 

For example, Hayano et al (2014) hypothesized that if the fractal dimension extracted from 

CE-CT is useful in describing tumour heterogeneity, then the measure may also be useful for 

predicting patient survival in hepatocellular carcinoma (Hayano et al 2014). They found that 

the patients with longer survival often had lower fractal dimensional on the arterial phase 

CE-CT image.

Furthermore, radiomic features can be potentially applied to assess the metastatic potential 

of tumours. Coroller et al (2015) identified thirty-five CT radiomic features to be significant 

predictors of distant metastasis and six features to be predictors of survival in 182 lung 

cancer patients (Coroller et al 2015). They concluded that the radiomic features they 

identified may be useful for early indication of cancer patients that will have a high risk of 

developing distant metastasis, thus allowing physicians to better adapt treatment plans for 

individual patients. Recently, Vallieres et al (2015) showed that the combination of MR and 

[18F]FDG-PET textural features can better predict the risk of lung metastases in soft-tissue 

sarcomas than the features acquired from a single modality (Vallieres et al 2015).

 2.2. Tumour staging

Many radiomic features were shown to be able to significantly differentiate between early 

and advanced stage diseases. For example, in a PET radiomic study by (Dong et al 2013), 

forty esophageal cancer patients were staged according to the American Joint Committee on 

Cancer (7th edition). SUVmax, GLCM-entropy, and GLCM-energy were found to be 

significantly correlated with T and N stage. In particular, a GLCM-entropy value > 4.70 

could accurately identify tumours with stages above stage IIb (Dong et al 2013). In a recent 

study, Mu et al (2015) classified forty-two cervical cancer patients into early stage (stage I 
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and II) and advanced stage (stage III and IV) using PET-based radiomic features (Mu et al 
2015). RLM-run percentage texture was found to be most associated with cervical tumour 

stage. Moreover, CT-based fine textures derived from Laplacian of Gaussian (LoG) filtered 

CT images were found to predict lung tumour stages above stage II (Ganeshan et al 2010). 

Early identification of tumour stage using radiomic features may assist physician to better 

stratify patients, subsequently selecting the best treatment for individual patients.

 2.3. Tissue identification

Radiomic features have also been shown to be useful in discriminating between malignant 

and other tissues in many disease types. In the 1990s, GLCM textures derived from a 2D 

slice of T1- and T2-weighted MR images were first reported to be potentially useful for 

tissue differentiation, with the ability to differentiate brain tumour tissue, edema, 

cerebrospinal fluid (CSF), white matter, and gray matter, in patients with brain cancer 

(Lerski et al 1993, Kjær et al 1995). Mahmoud-Ghoneim et al (2003) demonstrated that 

GLCM textures computed within a 3D volume of the MR images outperformed 2D textures 

in separating necrosis and edema from solid tumours (Mahmoud-Ghoneim et al 2003). 

Besides brain tumours, Nie et al (2008) showed that combining shape-based, volume-based, 

and GLCM textural features of MR using an artificial neural network (ANN) may be used to 

differentiate malignant from benign tumours in breast cancer (AUC≥0.80) (Nie et al 2008). 

Furthermore, they also observed that benign tumours had smoother boundaries, rounder 

shape, and lower image intensity than malignant tumours.

CT-based radiomic features have been used to classify a pulmonary nodule as benign or 

malignant (McNitt-Gray et al 1999, Kido et al 2002, Petkovska et al 2006, Way et al 2006). 

Pulmonary nodules could be due to other diseases (e.g. tuberculosis and fungal infection) 

than cancer. Kido et al (2002) showed that the fractal dimensions for bronchogenic 

carcinomas were significantly smaller than pneumonias and tuberculomas (p<0.0001). 

Petkovska et al (2006) showed that GLCM textures extracted from contrast-enhanced CT 

can accurately identify malignant from benign nodules, while visual inspection by three 

experienced radiologists performed worse in malignant-benign nodule differentiation. 

Combining shape-, size, and histogram-based features has been show to improve the 

differentiation between malignant and benign nodules (Way et al 2006).

Furthermore, a study by (Xu et al 2014) developed a computer aided diagnosis method with 

combined CT- and PET-based textures for differentiating malignant and benign lesion in 

various tumour sites. [18F]FDG uptake of malignant lesions were observed to be more 

heterogeneous than the benign tissues. Compared with the histological diagnosis of the 

lesions, the classification results of their texture-based diagnosis method achieved 

sensitivity, specification, and accuracy >75% (Xu et al 2014). (Yu et al 2009) assessed the 

ability of 14 PET and 13 CT-based textures in delineating primary and nodal tumours from 

normal tissues. The sensitivity, specificity, and accuracy of the delineation results based on 

the radiomic textural features were >95% comparing to the tumour contours manually 

segmented by three radiation oncologists (Yu et al 2009).
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 2.4. Assessment of cancer genetics

Many studies have shown that there is a strong relationship between imaging features and 

the underlying tumour genetics, which may provide a biological basis for the clinical 

applications of radiomic. MR-based volumetric features are often observed to be associated 

with somatic mutations and genetic expression of brain tumours (Diehn et al 2008, Ellingson 

et al 2013, Naeini et al 2013, Gutman et al 2015). For instance, Ellingson et al (2013) 

observed that MGMT unmethylated glioblastoma (GBM) usually had smaller volumes of 

TI-contrast enhanced and T2-FLAIR hyperintensity than methylated GBM. In a recent study 

by Gutman et al (2015), volumetric measures, such as contrast enhancing volume, necrosis 

volume, and total tumour volume, were found to significantly predict GBM mutations, 

including TP53, NF1, EGFR, RB1, and PDGFRA.

In CT imaging, Aerts et al (2014) found that radiomic features related to shape and wavelet 

features describing the heterogeneous phenotype of lung tumours were found to be 

significantly associated with cell cycle pathway, suggesting that highly proliferative tumours 

demonstrate complex imaging patterns. Moreover, various biological mechanisms may be 

described by different radiomic features as the features were found to be related with 

different biological gene sets, including DNA recombination and regulation of DNA 

metabolic processes (Aerts et al 2014).

Nair et al (2012, 2014) investigated the association between PET-SUV histogram radiomic 

features and various NSCLC genes and gene expressions in cohorts consisting of >300 

patients (Nair et al 2012, Nair et al 2014). Features such as skewness, SUVmax, SUVmean, 

median of the SUV histogram were strongly correlated with several gene signatures and 

expressions (e.g. NF-κB) that are related to patient survival (Nair et al 2012, Nair et al 
2014).

As numerous radiomic features can be extracted from medical images, the studies mentioned 

in this section play an important role in identifying only a subset of features that might be 

most relevant to the underlying tumor biology and genetics. However, how the tumor patho-

physiological processes give rise to imaging phenotypes that can be quantified by radiomic 

features remain unclear. Future studies would need to investigate these associations to 

further elucidate the biological meaning of the radiomic features.

 3. Factors that affect radiomic features quantification

 3.1. Acquisition modes, reconstruction parameters, smoothing, and segmentation 
thresholds

Despite the wide range of potential applications, radiomic feature quantification may be 

sensitive to a number of technical factors. For example, Galavis et al (2010) assessed the 

variability of 50 PET radiomic features due to different acquisition modes, matrix sizes, 

post-filtering widths, reconstruction algorithms and iteration numbers (Galavis et al 2010). 

Of these features, forty were shown to have substantial variability with a relative difference 

of >30%. Only four features, including intensity-histogram derived entropy and energy, 

GLCM-maximal correlation coefficient, RLM-low gray level run emphasis, were found to 

have variability <5%. The textures that are sensitive to acquisition modes and reconstruction 
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parameters are thus not recommended for radiomic applications, such as malignant and 

benign tissue differentiation (Galavis et al 2010). Yan et al (2015) identified features, 

including histogram-based entropy, normalized GLCM-inverse difference moment and 

inverse difference, RLM-low gray run emphasis and high gray run emphasis, and SZM-low 

gray zone emphasis, were robust to different PET image reconstruction settings (Yan et al 
2015). These features may thus be useful for radiomic studies. However, (Galavis et al 2010) 

and (Yan et al 2015) did not investigate or elaborate on why certain radiomic features were 

more sensitive to the others. This may need to be further investigated.

On the other hand, (Doumou et al 2015) investigated the effect of PET image post-filtering 

width (noise smoothing) on feature quantification. They found that the radiomic features 

were generally insensitive to variations in filter width.

Accurate delineation of tumour volumes is crucial for the computation of radiomic features. 

Manual delineation of tumour volume is not only time-consuming, but can also be affected 

by inter-observer variability. Radiomic studies often recommend using automatic and semi-

automatic methods for tumour volume delineation over manual contouring (Hatt et al 2009, 

Velazquez et al 2013, Parmar et al 2014, Yip et al 2016). For example, Velazquez et al 
(2013) compared the accuracy of manual and semiautomatic region growing tumour 

contouring methods on CT images. They found that the semiautomatic contouring method 

was better associated with gold-standard tumour sizes that were measured by surgical 

resection. Moreover, Parmar et al (2014) found that CT-based radiomic features were more 

stable when computed from a semiautomatic contouring method than from manual contours 

(Parmar et al 2014). A recent study investigated metabolic tumour volume auto-

segmentation thresholds (45–60% of the maximum SUV) on the precision of PET-based 

radiomic texture quantification (Doumou et al 2015). The authors concluded that the 

variation in image segmentation thresholds only have small effects on the quantification, 

suggesting metabolic tumour volume may be precisely defined by thresholding.

(Hatt et al 2011) and (Cheebsumon et al 2012) found that lung tumour size computed with 

PET-based tumor delineation methods, such as fixed and adaptive thresholds, are in better 

agreement with surgical resection while manual contouring on CT images significantly 

overestimated the pathological tumour size. However, more advanced delineation 

algorithms, such as fuzzy locally adaptive Bayesian (FLAB), are recommended for larger 

lung tumors as simple threshold-based methods may result in underestimation of the 

metabolically active tumor region (Hatt et al 2011).

 3.2. Reproducibility of radiomic features

While tumour heterogeneity can be potentially quantified using numerous radiomic features 

extracted from medical images, many features are often found to be unstable between 

imaging scans acquired within weeks–even minutes of each other (Tixier et al 2012, 

Leijenaar et al 2013, Balagurunathan et al 2014a, Balagurunathan et al 2014b, van Velden et 
al 2014). Balagurunathan et al (2014a and 2014b) assessed the intra-class correlation 

coefficient (ICC) of 219 radiomic features extracted from a test and retest CT scan in lung 

cancer patients which were acquired 15 minutes apart. Of these features, only 66 of them 

were found to have ICC≥0.90 across the test and retest scans, suggesting that a large number 
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of features may be unreliable. Tixier et al (2012) studied the reproducibility of 25 radiomic 

features between repeated PET scans acquired within 4 days of each other. GLCM-entropy 

and homogeneity, SZM-zone and intensity variability were not only found to be significant 

predictors of treatment response (Tixier et al 2011), but also exhibited the highest 

reproducibility (Tixier et al 2012). Leijenaar et al (2013) studied the stability of nearly 100 

radiomic features to repeated PET images (1 day apart) and inter-observer variability in 

tumour delineation in lung cancer patients. They found that the PET-based features that are 

stable between repeated scans were also more robust to inter-observer variability, suggesting 

that features with poor reproducibility may also be sensitive to other factors and are thus not 

recommended.

However, to our knowledge, the repeatability of MR-based radiomic features has not been 

investigated. Understanding the stability of MR-based radiomic features between test and re-

test scans can help identifying reliable features for radiomic applications, and thus would be 

a valuable future study.

 3.3. Image discretization (resampling) schemes

Prior to radiomic feature computation, voxel intensities within tumour volumes need to be 

discretized to a limited range of intensity values in order to efficiently and practically 

compute the radiomic features (Cheng et al 2013b, Leijenaar et al 2013). For instance, an 

image with 1024 discrete intensity values will yield a 21024 × 21024 × 21024 GLCM (Haralick 

et al 1973), which can be computationally intensive. The range of intensity values of an 

image thus needs to be reduced and limited for efficient radiomic feature computation. In 

PET radiomic studies, the most commonly used discretization scheme is to first normalize 

the medical image by the relative difference of the maximum and minimum intensity values 

within tumours, and then resample the voxel intensities to 2N values (i.e. 2N number of 

bins), where N ranges from 3 to 8 in literature (Orlhac et al 2014, Tixier et al 2014b, 

Doumou et al 2015, Mu et al 2015). Studies have shown that both the quantity and 

prognostic value of radiomic features, particularly GLCM-entropy, SZM-size zone high gray 

emphasis and SZM-size zone non-uniformity derived from PET images, can be substantially 

influenced by the number of discrete values (2N) (Cheng et al 2013a, Orlhac et al 2014, 

Doumou et al 2015). At least 25=32 discrete values is recommended to properly quantify 

tumour heterogeneity with PET-based radiomic features (Orlhac et al 2014). However, the 

Spearman correlation coefficient of tumour volume and GLCM-entropy was observed to be 

>0.85 for resampling values over 64, suggesting that textural features computed with 

resampling values over 64 may not provide additional prognostic information compared with 

the tumour volume (Hatt et al 2015). Therefore, Hatt et al (2015) limited the number of 

discrete bins to 64 for PET-based texture computation.

Alternatively, the voxel intensity range can be discretized into equally spaced bins with a 

fixed bin width (Leijenaar et al 2013, Leijenaar et al 2015b). For instance, Leijenaar et al 
(2015) compared two resampling strategies (i.e. fixed number of bins and fixed bin width) 

and found that quantification of radiomic features were more robust to a change in bin size 

than to a change in the number of bins (Leijenaar et al 2015b). They concluded that the 

resampled PET image voxel intensity (or SUV) using a fixed bin width may be more 
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appropriate for clinical case studies. This is because resampled PET voxel intensity using the 

alternative (i.e. a fixed number of bins) implicitly assumes that the tumour images of all 

patients have the same SUV range, which is usually not the case.

Another resampling strategy is to determine the bin size for each tumour image according to 

the Freedman–Diaconis rule (bin size= 2•IQR/N−1/3), where IQR is the interquartile SUV 

range and N is total number of voxels that the tumours are composed of (Brooks and 

Grigsby 2014). Comparison of different resampling strategies may be important to 

understand their effect on radiomic features in treatment outcome prediction.

 3.4. Computation of radiomic features

The computations of radiomic features, even with the same features names, may be 

implemented differently in radiomic studies. For example, GLCM can be calculated either 

by averaging the values of the matrices computed for 13 distinct directions or a single matrix 

that accounts for tumour co-occurrence information in all 13 directions (Hatt et al 2015). 

Textural features can be extracted from the largest cross-sectional (axial) slice of the tumour 

boundary (2D textures) or extracted from the entire tumour volume (3D textures) (Ng et al 
2013, Fave et al 2015). The impact of different feature implementation/computation methods 

on the predictive values of radiomic features needs to be carefully studied.

 3.5. Respiratory motion

The accurate quantification of radiomic features can be hindered by respiratory motion in 

lung cancer patients (Yip et al 2014). Lung motion can lead to a reduction in the measured 

activity in tumor and other tissues due to insufficient data acquisition and limited 

reconstruction techniques in static PET images (3D PET) (Nehmeh et al 2002, 

Aristophanous et al 2012, Huang and Wang 2013). 4D PET imaging gates PET image 

acquisition with respiratory motion to improve PET image quality (Nehmeh et al 2002, 

García Vicente et al 2010, Didierlaurent et al 2012). Yip et al (2014) investigated the 

influence of the lung tumour motion on radiomic textures (Yip et al 2014). They observed 

that the radiomic textural features, blurred out by respiratory motion during 3D-PET 

acquisition, can be better resolved by 4D-PET imaging. 4D-PET textures may have better 

prognostic value as they are less susceptible to tumour motion although the hypothesis needs 

to be investigated in the future.

 3.6. Tumour size and intratumoural heterogeneity

Intratumoural heterogeneity for small tumour volumes may not be accurately quantified due 

to the partial volume effect resulting from limited PET resolution (Soret et al 2007, Hatt et al 
2013). Therefore, many studies often exclude tumours with volumes <3–5cm3 from 

radiomic analysis (Orlhac et al 2014, Hatt et al 2015). To estimate the minimum tumour 

volume needed for texture computation, Brooks and Grigsby (2014) extracted GLCM-

entropy from PET images in 70 cervical cancer tumours (Brooks and Grigsby 2014). Using 

probability theory, they found that GLCM-entropy computed for tumours <45cm3 were 

strongly correlated with tumour size, and therefore may not accurately measure 

intratumoural heterogeneity. However, their conclusion was based on theoretical analysis, 

one radiomic texture, and a single tumour type.
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Hatt et al (2015) computed four prognostic radiomic textures features on 555 PET images 

acquired from multiple cancer centers consisting of breast, cervical, NSCLC, esophageal, 

and head-and-neck tumours (Hatt et al 2015). The added prognostic value of the textures and 

their correlation to tumour volume were investigated. Both radiomic textures and tumour 

volume were observed to be independent predictors of survival for patients with bigger 

tumours, whereas the added value of textures in predicting survival was minimal for small 

tumours. They observed a strong correlation between textural features and tumour size for 

tumours with volumes less than 10 cm3. The results of Hatt et al (2015)’s study suggest that 

radiomic textures have no added value in outcome prediction for tumours <10cm3. However, 

instead of excluding tumours with volume <10cm3 in the future radiomic studies, they 

recommended that the correlation of the radiomic features and tumour volume should be 

always reported to highlight if the features provide independent or redundant information 

(Hatt et al 2015).

 3.7. The silver lining and the need for standardization

Besides the aforementioned factors, there are other factors, such as metal artifacts in CT 

images (Leijenaar et al 2015a), CT x-ray tube peak voltage and current (Fave et al 2015), 

that may also affect radiomic feature quantification. As CT images are often employed for 

attenuation correction of PET and SPECT images, factors that affect the quality of the CT 

images can also impact the quantification of features extracted from the PET and SPECT 

images. Despite the potential impact of these factors on quantification, strong prognostic 

signals of the features could still be found (Cheng et al 2013a, Cook et al 2013, Aerts et al 
2014, Cheng et al 2014, Coroller et al 2015, Leijenaar et al 2015a, Parmar et al 2015b). 

While harmonization and standardization for imaging acquisition and feature computation 

may lead to more consistent findings in radiomic studies across institutions, the technical 

factors that affect the radiomic feature quantification may not be reduced (Boellaard 2011, 

Nyflot et al 2015). For example, in harmonization, as some PET systems fail to fully resolve 

small objects due to limited resolution (partial volume effect), additional smoothing steps 

are thus required for images acquired by certain PET systems, even with high resolution and 

sensitivity (Boellaard et al 2015). Thus, the impact of harmonization and standardization on 

the quantification and predictive values of radiomic features would be an important topic of 

future investigations for the field of radiomics. Of equal importance, standardization for 

proper statistical practice and study designs for current radiomic studies also need to be 

considered.

 4. False positive discovery rate and proper study design

Many studies examined the prognostic value of radiomic features based on retrospective 

analysis of small patient datasets (<50 patients) (Tixier et al 2011, Dong et al 2013, Tan et al 
2013, Bundschuh et al 2014, Zhang et al 2014). These retrospective studies are important for 

providing rationale (or proof-of-concept) for further investigation of radiomic features as 

imaging biomarkers and surrogates for intratumoural heterogeneity. However, it is not 

uncommon that the number of examined radiomic features is much greater than the number 

of patients, which can lead to feature selection bias and false positive results (Alic et al 
2014, Chalkidou et al 2015). To demonstrate this bias, Chalkidou et al (2015) randomly 
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generated 100 features and assessed the association between the features and survival data 

extracted from a study by Ganeshan et al (2012) consisted of only 21 esophageal cancer 

patients (Ganeshan et al 2012). Ten random features were found to accurately identify 

patients surviving a follow-up period of over 2 years with the area under the receiver-

operating-characteristics curves (AUC) of 0.68–0.80.

Ideally, an external validation dataset is required to confirm the prognostic value of the 

radiomic features to avoid optimism based on false positive results (Steyerberg et al 2010, 

Lambin et al 2013, Aerts et al 2014, Chalkidou et al 2015). However, acquiring a validation 

dataset is not always feasible due to high cost, requirement of excessive effort, differences in 

data collection practice and privacy issues between institutes (Lambin et al 2013).

As a rule of thumb, to reduce the false discovery rate, 10–15 patients are needed for each 

examined radiomic feature (Chalkidou et al 2015). As many of the radiomic features are 

highly correlated, radiomic studies should avoid including strongly correlated features that 

may provide redundant information about tumour characteristics (Orlhac et al 2014, Mu et al 
2015). For analyses where large numbers of radiomic features are studied, the significant 

values (p-values) should be corrected for multiple hypotheses testing using the Holm-

Bonferroni method or a false-discovery rate (FDR) controlling procedure, such as the 

Benjamini-Hochberg method (Alic et al 2014, Chalkidou et al 2015). For example, the 

Benjamini-Hochberg procedure has been used for multiple testing correction in the work of 

(Aerts et al 2014), (Hatt et al 2015), and (Yip et al 2016).

The optimal cutoff values of radiomic features are often used to stratify patients into two risk 

groups for Kaplan-Meier survival analysis (Cheng et al 2013a, Cook et al 2013). However, 

searching for the optimal cutoff values through testing multiple cutoffs can increase the 

likelihood of obtaining spurious significant results (Hilsenbeck et al 1992). Moreover, as the 

optimal cutoff value can vary in different datasets, the results may not be reproducible in 

different studies. Selection of an optimal cutoff for survival analysis is not recommended or 

must be accompanied by properly corrected significant values (p-values) (Altman et al 1994, 

Chalkidou et al 2015).

Numerous methods can be applied to reduce the number of radiomic features (Guyon et al 
2003). The selected features can then be combined using various multivariate (classification) 

models to predict treatment outcome, tumour genetics, prognosis, metastatic potential, etc. 

In a study, Parmar et al (2014) investigated the prognostic values of 440 radiomic features 

using fourteen feature selection methods and twelve classification models in >460 lung 

cancer patients (Parmar et al 2015a). They found that the choice of the classification model 

could lead to variations in the predictive values of the radiomic features up to >30%, while 

choosing different feature selection methods only led to variations of about 6%. 

Furthermore, they identified feature selection methods and classification models that were 

stable to data perturbation while maintaining a decent performance for prediction of 

outcomes.

Yip and Aerts Page 11

Phys Med Biol. Author manuscript; available in PMC 2017 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 5. Summary

Here, we have reviewed applications and challenges of radiomics. Researchers have 

proposed to use radiomic features, which aim to quantify various tumour phenotypes on 

medical images, to describe this heterogeneity and furthermore, utilize these features as 

predictors of genetics and clinical outcomes. Despite the promising clinical potential of 

radiomics, there are precautions that must be taken in designing radiomics studies. For 

example, not all radiomics features are recommended for use due to their sensitivity to 

acquisition modes and reconstruction parameters. To examine the prognostic power of 

radiomic features, datasets consisting of ten to fifteen patients per feature evaluated has been 

recommended. Furthermore, the correlation of tumour volume and radiomic features should 

be reported to indicate the potential complementary value of the measures. Ideally, 

independent validation datasets are needed to confirm the prognostic value of the same 

radiomic features.
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Figure 1. 
Radiomic workflow. (Top) Various radiomic features, such as shape/size-based, Histogram-

based, filtered-based, and textural features, can be extracted from the medical images within 

the tumours. (Bottom) The radiomic features are then compared with the clinical and 

genomics data.
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