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I. INTRODUCTION

Breast cancer is the most common cancer and the second leading cause of cancer death in

women in Western countries [1]. Imaging is a crucial part of a patient’s workup, and

dynamic contrast-enhanced MRI (DCE-MRI) of the breast is a promising modality due to its

ability to characterize the kinetic and morphological behavior of breast lesions [2–7].

However, interpretation of breast DCE-MRI exams may be hindered by inter- and intra-

observer variability, time-demanding methods, and limited clinical reading guidelines [8–

11]. Computer-aided diagnosis (CADx) aims to improve the assessment of breast lesions by

generating quantitative markers to characterize lesions, in particular diagnostic

characterization in differentiating malignant and benign lesions [12–19]. In addition to

determining whether the breast lesion is malignant or benign, clinicians aim to assess the

prognostic nature of malignant lesion during their decision making process for

recommending a specific therapeutic protocol. One of the important prognostic markers is

the histological grade of a malignant breast tumor. Tumors are graded on a scale of 1 to 3

based on gland formation, nuclear atypia, and mitotic activity of the malignant cells

according to the Scarff-Bloom-Richardson (SBR) system. High grade cancerous tissue

exhibits limited to no tubule formation, markedly enlarged cell nuclei that are at least 3

times larger than normal cell nuclei, and numerous mitotic bodies indicative of high mitotic

activity. The higher the numeric grade, the more ‘poorly differentiated’ are the cells within

the tumor and the worse the prognosis [20–23]. Tabar reported that in a dataset of 1973

breast tumors, the 14-year survival rate for ductal Grade 1 was 87% compared to 58% for

ductal Grade 3 [20].
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Bayesian artificial neural networks (BANN) are a well-known estimation tool used in breast

MRI CADx for feature selection [24] and classification [25, 26]. A BANN adequately

estimates a mapping function from an input space to a set of a posteriori class membership

probabilities. These probabilities are one-to-one transformations of the likelihood ratios

which are the optimal decision variables used by the so-called ideal observer [27, 28].

Computerized prognostic characterization with respect to invasion and lymph node status

using two-class BANNs has been investigated [29]. Since tumor grade consists of three

classes, it follows that distinguishing grades 1, 2, and 3 is a three-way classification task.

Thus, three-class BANNs may be applicable. Studies of N-class classification have been

done with malignant, benign, and false-positive computer detections in mammography [30,

31].

To our knowledge, previous research has not explored breast MRI CADx as a biomarker for

tumor grade. Thus, our study is novel in exploring computer-extracted morphological and

kinetic features from DCE-MRI in their ability to distinguish between invasive ductal

carcinoma (IDC) lesions of Grade 1, Grade 2, and Grade 3. Additionally we evaluated the

performance of three-class BANN feature selection and classification method in

automatically distinguishing these three tumor grades. Our overall purpose was to determine

whether our CADx algorithm could be extended from diagnosis to prognosis with the

ultimate goal of generating MRI-based prognostic markers for breast lesions.

II MATERIALS AND METHODS

A. Image Database

The study was an IRB-approved, HIPAA-compliant study in which the requirement for

informed consent was waived. In a review of 600 consecutive MR examinations conducted

at the University of Chicago Medical Center (UCMC) between April 2002 and October

2005, a total of 170 malignant lesions were found including 26 IDC Grade 1 lesions, 86 IDC

Grade 2 lesions, 58 IDC Grade 3 lesions in 158 female patients (mean age, 56.8 yrs ± 12.9;

range, 29–88 years). Lesions of mixed histological type (e.g. IDC and DCIS) or different

histological type (e.g. invasive lobular carcinoma (ILC), mucinous carcinoma) were

excluded. Each lesion was analyzed and reported by experienced pathologists, and evaluated

at a multidisciplinary breast cancer management conference.

The patients were scanned in prone position using a standard double breast coil. Images

were acquired using a T1-weighted 3D spoiled gradient recalled (SPGR) sequence with no

fat suppression (7.7/4.2 [repetition time msec/echo time msec], 30° flip angle) on a 1.5T

whole-body MRI system (GE Medical Systems, Milwaukee, WI). After precontrast series

was taken, a fixed 20cc dose of gadolinium-diethylenetriamine penta-acetic acid (Gd-

DTPA) contrast agent was given intravenously followed by a 20mL saline flush. Three to

five postcontrast series were acquired at 68-second intervals. Each series had 60 coronal

slices, and slice thickness ranged 2–5mm depending on breast size. Each slice was a matrix

of 256 × 256 pixels with in-plane resolution of 1.4×1.4 mm2.
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B. Methods of Analyses

Our computerized analysis, outlined in Figure 1, was performed on the breast DCE-MRI

exams. The identification of lesion location was the only manual step; lesion segmentation,

feature extraction, and classification were performed automatically in real-time. In the 3-D

segmentation of each lesion, a fuzzy c-means clustering method (FCM) used the contrast

enhancement of the lesion over time to generate a membership map that categorized each

image voxel as lesion or non-lesion. Additional processing steps including connected-

component labeling and hole-filling were employed to generate the final lesion segmentation

[32].

Several categories of features were then extracted. Kinetic features describe the degree of

uptake and washout of contrast over time. FCM was utilized to cluster the different kinetic

time course curves within the lesion, and the FCM-category kinetic curve with highest initial

enhancement (i.e., the characteristic kinetic curve) was used to generate the kinetic features

[33]. Enhancement-variance kinetic features, which track the change in the spatial variance

of enhancement within the lesion over time, were also generated [34].

Mathematical texture descriptors were calculated using the 3-D gray-level co-occurrence

matrix (GLCM) method. The GLCM is based on second-order statistics and summarizes

how often one gray level will appear in a specified spatial relationship to another gray level

in the image. The GLCM-based features quantified different texture characteristics of the

lesion including heterogeneity, ‘smoothness’, and correlation [35, 36].

Geometric features (size or volume, sphericity, and irregularity) were based on the lesion

segmentation outline. Sphericity describes the compliance of the lesion to a sphere while

irregularity quantifies the roughness of the lesion surface [37]. The final feature category,

spiculation, consisted of margin sharpness, variance of margin sharpness, and radial gradient

index (RGI) [37]. RGI assesses how well the image structures in a lesion radiate from the

lesion center [37]. Detailed descriptions of lesion features can be found in the references

[33–37].

The following discrimination tasks of breast lesions were evaluated: Grade 1 vs. Grade 3

lesions, Grade 2 vs. Grade 3, and Grade 1 vs. Grade 2. Since the prognostic task of

distinguishing Grade 1 from higher-grade lesions is also important, we evaluated the Grade

1 vs. Grades 2 and 3 lesions task.

For the next steps in our automatic analysis, feature selection and classification, BANN were

utilized. A review of the derivation of the three-class BANN decision variables can be found

in the Appendix.

Feature selection is necessary to eliminate redundant or weak features. In stepwise feature

selection, features are iteratively added or removed from a group of selected features based

on the Wilks lambda criterion [38]. The Wilks lambda criterion [39] was modified to the

three-class problem by using:
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(1)

where uj, vj, and wj are the output from the BANN for the Grade 1 lesions, Grade 2 lesions,

and Grade 3 lesions, respectively, and u̅, v̅, w̅, and a are the mean output for Grade 1 lesions,

Grade 2 lesions, Grade 3 lesions, and all lesions, respectively. The number of Grade 1

lesions, Grade 2 lesions, and Grade 3 lesions are Nu, Nv, and Nw, respectively. The end result

of the stepwise feature selection was a feature histogram showing the frequency at which

each feature was selected during the iterations. A cut-off threshold was set empirically at

50% of the highest feature frequency, and features whose frequencies were larger than the

threshold were chosen for the Grade 3 vs. Grade 2 vs. Grade 1 classification task.

The selected lesion features were then merged by a BANN classifier to yield the probability

of being a Grade 3 and probability of being a Grade 2 lesion. The leave-one-lesion-out

(LOLO) cross-validation method was used in the performance evaluation. In this method,

one lesion was removed from the dataset as the test case, the BANN was trained on the

remaining cases (i.e., the training dataset), and the test case was run through the trained

BANN. This process was repeated for all lesions. Since a fully general three-class ROC

analysis is still under investigation, we used two-class ROC analysis with the ROCKIT

software package [40–42]. The index of performance was the area under the maximum

likelihood-fitted binormal ROC curve (AUC), and the standard error and 95% confidence

intervals were calculated.

III. RESULTS

Figure 2 shows the segmentation, characteristic kinetic curves, and normalized feature

values of example Grade 1, Grade 2, and Grade 3 lesions from the study database. From

Figure 2c, it is apparent that the certain features ascend or descend from Grade 1 to Grade 3,

appearing to follow the ordered nature of the tumor grades.

Figures 3–5 show several kinetic and morphological features for the different grades of

lesions. Irregularity describes the deviation of the 3D lesion surface from a sphere surface

and is usually large for malignant lesions since they are known to have spiculated surfaces.

The radial gradient index indicates how well the enhancement structures in a volume extend

in a radial pattern originating from the center of the volume, and it is usually small for

malignant lesions. As Figure 3 shows, the Grade 3 lesions tend to have higher irregularity

values and lower radial gradient index values than the Grade 1 lesions, reflecting the more

aggressive nature of Grade 3 lesions.

With respect to kinetics, time to peak is the postcontrast timepoint at which maximum

enhancement occurs. Malignant lesions tend to peak early while benign lesions exhibit

persistent enhancement with time to peak at the last postcontrast timepoint [6]. As expected,

Figure 4 shows that the majority of Grade 2 and Grade 3 lesions peak at the 1st or 2nd

postcontrast timepoint. However, Grade 1 lesions seemed to peak at the 5th postcontrast
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timepoint (39%) compared to the 1st postcontrast timepoint (19%) or the 2nd postcontrast

timepoint (35%).

Figure 5 illustrates the relationship of correlation and sum entropy. Both features are

morphological features; correlation is a measure of linear structures within the lesion while

sum entropy is a measure of the randomness of the sum of gray-levels of neighboring

voxels. Both features typically have large values for malignant lesions. Figure 5 shows that

Grade 3 lesions are more likely to have higher correlation and sum entropy values than

Grade 1 lesions.

The histogram from three-class BANN feature selection is shown in Figure 6. We achieved

AUC values of 0.80±0.05, 0.78±0.05, and 0.62±0.05 for Grade 1 vs. Grade 3, Grade 1 vs.

Grade 2, and Grade 2 vs. Grade 3 classification tasks, respectively (Table 1). The

corresponding ROC curves are depicted in Figure 7. Varying the threshold used in the

feature selection from 40% to 80% had minimal effect on the classification performance.

Additionally, we obtained an AUC value of 0.78±0.05 for the Grade 1 vs. Grades 2 and 3

classification task. The average BANN output of probability of being Grade 3 lesion (Eq. 8

in Appendix) was 0.67±0.24, 0.82±0.12, and 0.89±0.10 for Grade 1, Grade 2, and Grade 3

lesions, respectively (Figure 8); however we failed to show any statistical significant

difference.

IV. DISCUSSION

We achieved similar AUC values ranging from 0.78±0.05 to 0.80±0.05 for the Grade 1 vs.

Grade 3, Grade 1 vs. Grade 2 and Grade 1 vs. Grades 2 and 3 classification tasks. The

performances are comparable to earlier studies assessing the diagnostic [33, 34, 36] and

prognostic [29] performances of DCE-MRI CADx, indicating that automatic analysis can

characterize of low grade and high grade lesions on DCE-MRI. The Grade 2 vs. Grade 3

classification task performed at a substantially lower level with an AUC value of 0.62±0.05,

signifying that perhaps there is less of a difference in terms of morphology and kinetics

between these two types of lesions as compared to Grade 1 lesions.

Since Grade 2 is an intermediate grade between Grade 1 and Grade 3, we assessed whether

BANN classifiers could adhere to the ordered nature of the tumor grade characteristic. As

seen in Figure 8, the average BANN output of probability of being Grade 3 lesion for Grade

2 lesions fell between that of Grade 1 and Grade 3 lesions, indicating that the BANN may be

capable of capturing the ordered nature of specific lesion characteristics. The feature values

in Figure 2c appear to corroborate this observation.

Angiogenesis, as measured by microvessel counts and density, is strongly associated with

tumor grade [43–45]. Since contrast enhancement patterns are associated with angiogenesis,

studies have found a strong relationship between MRI contrast enhancement and tumor

grades [46, 47]. Thus, it is reasonable that global kinetic features such as time to peak were

selected for tumor grade differentiation. Rim enhancement is also frequently found in high

grade tumors [48–50] as seen in the example Grade 3 lesion in Figure 2a. Rim enhancement

can be described by texture features such as sum average as well as enhancement-variance
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kinetics features which offer detailed kinetic characterization by tracking how the spatial

variance in the lesion changes over time. From an examination of the corresponding BI-

RADS descriptors [51] of the lesions, Grade 3 indeed showed a greater tendency to exhibit

rim enhancement (28% of Grade 3 vs. 11% of Grade 1 lesions). Szabo et al. also found a

strong association between heterogeneous internal enhancement and tumor grade [48].

Looking at the corresponding BIRADS descriptors, more Grade 3 lesions showed

heterogeneous enhancement (40% compared to 29% for Grade 1) while more Grade 1

lesions showed homogeneous enhancement (50% compared to 29% for Grade 3). Thus, it is

understandable that features such as sum average, maximum enhancement-variance, and

increasing rate of enhancement-variance features were selected.

Although some tasks used in clinical radiology such as, send to biopsy or not, are related to

binary classification tasks, i.e., malignant vs. benign, radiologists also perform multi-class

classification tasks such as assessing DCIS, papillomas, and atypical ductal hyperplasia.

Therefore, extending two-class to three-class BANNs in CADx and quantitative image

analysis schemes could be applied to such classification tasks with the goal of potentially

improving DCE-MRI CADx performance.

As mentioned earlier, we have already investigated the computerized characterization of two

other important prognostic markers – invasion and lymph node metastasis – as MRI-based

markers [29]. For future research, we hope to merge these prognostic factors with the tumor

grade markers to generate an overall MRI-based prognostic index for describing overall

lesion aggressiveness. In addition, by combining prognostic markers with therapy response,

we can potentially generate predictive MRI-based markers for therapy assessment.

It is important to note that the size of the lesion is a well-established prognostic factor for

tumors [52]. The single AUC value for lesion volume for the Grade 1 vs. Grade 3 task was

0.69±0.05. However, size was not selected during feature selection, demonstrating that the

computer-extracted kinetic and morphological lesion features from MR images may provide

more useful discriminatory information than size alone. Many prognostic studies seem to

use only 2-D measurements of tumor sizes [20, 21, 23] whereas our workstation outputs

lesion size as a 3-D volume. DCE-MRI may be more useful in giving a more complete

assessment of tumor size and thus, more robust prognostic output.

Selected features such as radial gradient index and enhancement-variance increasing rate

might be difficult or time-consuming for a radiologist to assess visually; however, a

computer can calculate these feature values efficiently using established mathematical

equations and software. Hence one of the motivations of automated analysis is to provide the

radiologist with objective indices for interpreting images in a timely manner.

Although our preliminary results are promising, there are several limitations to the study. It

is important to note that although N-class BANN classifiers have been developed and are

available to implement, a general three-class ROC analysis is still under investigation. We

were limited to using two-class ROC analysis to evaluate the performance of the three-class

BANN. Thus, the AUC values obtained may not truly reflect the classification performance

of the three-class BANN.
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Feature selection was stable across the LOLO iterations for features selection and

classification with minimal bias. Yet, we note that validation on an independent data set is

necessary for an unbiased evaluation. We did not include cases from outside institutions, and

we focused only on IDC lesions and did not investigate grades of other types of breast

lesions such as ductal carcinoma in situ (DCIS) and invasive lobular carcinomas (ILC)

lesions due to an insufficient number of cases. These are topics of ongoing research.

In conclusion, we believe this study shows the potential for (1) applying three-class BANN

feature selection and classification to DCE-MRI quantitative image analysis (CADx) and (2)

expanding the role of DCE-MRI CADx from diagnostic classification tasks (i.e.,

differentiating malignant and benign lesions) to the prognostic classification task of

distinguishing different grades of malignant lesions. Quantitative image analysis shows

promise in aiding radiologists in characterizing the prognostic nature of breast lesions.
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Appendix: Three-class Bayesian artificial neural networks

Previous studies have shown that a BANN can adequately estimate the ideal observer

decision function [27, 28]. It is assumed that data comes from a distribution of the following

form:

(2)

Where p(x⃗|πi) is the conditional probability density of an observation x⃗ being drawn from

the ith class, N is the number of classes, and p(πi) is the a priori class probability of the ith

class; boldface type denotes random variables. The BANN estimates the a posteriori class

probabilities p (πi|x⃗), which are related to the likelihood ratios (LRi):

(3)

where i is in the range of [1, N-1].

In the N=3 case [30, 31], i.e., Grade 1 (G1) vs. Grade 2 (G2) vs. Grade 3 (G3) lesions

discrimination task in which the Nth class is the Grade 1 lesions, the a posteriori

probabilities are related to the likelihood ratios:

(4)
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(5)

(6)

We can then use the three-class BANN output for the task of separating Grade 3 and Grade

1 lesions. The a posteriori probability of being a Grade 3 lesion given that we are only

considering Grade 3 and Grade 1 lesions is given by:

(7)

The output of the three-class BANN has two components, w⃗ and v⃗, which are estimates of

p(πG3| x⃗) (Eq. 4) and p(πG2| x⃗) (Eq. 5), respectively. The estimate of p(πG1| x⃗) u⃗, can be

estimated by (1-w ⃗-v⃗) as given in Eq. 6. The estimated decision variable for the specific task

of distinguishing Grade 3 from Grade 1 lesions, y, can then be constructed:

(8)

The same method can be used for the Grade 2 vs. Grade 3 and Grade 1 vs. Grade 2 tasks.

For the Grade 1 vs. Grades 2 and 3 classification task, the following equation holds since the

classes were mutually exclusive:

(9)

For the BANN implementation, the error function is an information-based distance metric

and the regularization term is a multivariate normal function.53
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Figure 1.
Scheme of automated analysis of breast lesions using DCE-MRI; BANN=Bayesian artificial

neural network, LOLO=leave-one-lesion-out
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Figure 2.
(a) Segmentation, (b) kinetic curves, and (c) kinetic and morphologic feature values for an

example Grade 3 lesion, Grade 2 lesion, and Grade 1 lesion. Detailed descriptions of lesion

features can be found in the references [33–37].
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Figure 3.
Relationship between irregularity and radial gradient index for Grade 3 lesions, Grade 2

lesions, and Grade 1 lesions.
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Figure 4.
Distribution of time to peak for Grade 3 lesions, Grade 2 lesions, and Grade 1 lesions.
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Figure 5.
Relationship between sum entropy and correlation for Grade 3 lesions, Grade 2 lesions, and

Grade 1 lesions.
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Figure 6.
Computer-selected lesion features from stepwise three-class BANN feature selection using

three-class Wilks cost function for differentiating Grade 3, Grade 2, and Grade 1 lesions

(N=170 lesions). The cut-off threshold is set at 50% of the most selected feature (time to

peak) as indicated by the vertical bold line. Detailed descriptions of lesion features can be

found in the references [33–37].
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Figure 7.
ROC curves illustrating the three-class BANN performance levels in the Grade 1 vs. Grade

3, Grade 1 vs. Grade 2, and Grade 2 vs. Grade 3 classification tasks.
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Figure 8.
Average output of probability of being Grade 3 lesion from three-class BANN for Grade 1,

Grade 2, and Grade 3 lesions.
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Table 1

Performance of three-class BANN feature selection and classification for the Grade 1 vs. Grade 3, Grade 1 vs.

Grade 2, and Grade 2 vs. Grade 3 classification tasks in terms of AUC ± SE (standard error) and confidence

intervals (C.I.).

Classification Task AUC ± SE 95% C.I.

Grade 1 vs. Grade 3 0.80±0.05 [0.70, 0.90]

Grade 1 vs. Grade 2 0.78±0.05 [0.68, 0.88]

Grade 2 vs. Grade 3 0.62±0.05 [0.52, 0.72]
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