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Abstract
Microbubble contrast agents and the associated imaging systems have developed over the past
twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection.
Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in
microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small
gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation
and increasingly sophisticated imaging strategies. Early studies recognized that echoes from
microbubbles contained frequencies that are multiples of the microbubble resonance frequency.
Although individual microbubble contrast agents cannot be resolved—given that their diameter is
on the order of microns—nonlinear echoes from these agents are used to map regions of perfused
tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental
limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are
insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical
phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can
enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the
microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and
local shear stress that alter biological membranes and facilitate transport. In this review, we focus
on the physical aspects of these agents, exploring microbubble imaging modes, models for
microbubble oscillation and the interaction of the microbubble with the endothelium.

1. Introduction
The engineering of ultrasound contrast agents, co-optimized with systems for imaging their
local distribution and enhancing their use in local drug delivery, is a rich, multidisciplinary
undertaking. Ultrasound contrast agents are small gas bubbles encapsulated by a stabilizing
shell, with a typical diameter on the order of microns (Table 1). These microbubbles are injected
intravenously and remain within the blood pool, with early agents shown to circulate in a
manner similar to red blood cells (Jayaweera et al., 1994). Ultrasound pulses are typically
applied with a frequency near the resonance frequency of the gas bubble and the bubbles
increase and decrease in diameter, producing strong echoes from regions of perfused tissue
(Dejong et al., 1994b;Dayton et al., 1999b). Trains of ultrasound pulses with varied frequency,
phase and amplitude are designed to separate bubble and tissue echoes under well-characterized
conditions and we review these pulse trains here. Optimized pulse trains for quantitative
imaging of blood vessel density and perfusion and enhanced drug delivery continue to evolve.

Several generations of the microbubble agents have also been developed, where early agents
contained an air core and were stabilized by a coating of albumin, starting with Albunex®.
Agents with a fluorinated gas core were then developed, including Optison™ (GE Healthcare
Systems) with a protein shell and perfluoropropane gas core and Definity® (Bristol-Myers
Squibb) with a phospholipid shell and perfluoropropane core (Definity-Prescribing-
Information,; Optison-Prescribing-Information). Microbubbles are typically manufactured by
mechanical agitation, although microfluidic methods to engineer precise size distributions are
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in development (Talu et al., 2006). An excellent history of microbubble agents was recently
provided (Kaul, 2008), the biophysics of the agents and their shells was detailed in (Ferrara et
al., 2007) and the chemistries of the agents were described in greater detail in (Klibanov,
2005). Within this review, we focus on the engineering and physical principles behind the
imaging systems that employ microbubbles, models that have been developed to describe
microbubble response to an ultrasound pulse and the impact of microbubble oscillation on
small blood vessels.

2. Experimental studies of oscillation, echoes and spectra
In response to an ultrasonic pressure wave, microbubbles expand and contract with each cycle
of pressure. Optical imaging methods to visualize the increasing and decreasing diameter have
been developed (Klibanov et al., 1998; Dayton et al., 1999b; Chomas et al., 2000; Postema et
al., 2005; Garbin et al., 2007), where two-dimensional images of the microbubble can be
acquired with shutter speeds on the order of nanoseconds. Alternatively, images of a single
line through the center of a bubble are recorded, where these recordings, known as “streak”
images, can be updated with nanoseconds or picoseconds between recordings (Chomas et
al., 2000). For a typical microbubble with a diameter of ~2 μm, the streak image acquired
during insonation with a 2.25-MHz center frequency pulse at a low peak rarefactional pressure
(PRP) (~100 kPa) demonstrates the increasing and decreasing bubble diameter (Figure 1a).
For a low transmitted PRP, the microbubble oscillation corresponds to the rarefaction and
compression of the ultrasound wave, with a frequency close to the incident ultrasound
frequency (Figure 1a,c). Within Figure 1c, predictions for the expansion ratio (defined as the
instantaneous radius normalized by the initial radius) are illustrated for two transmitted PRP
amplitudes of 30 and 60 kPa. For these very low values, oscillation is nearly sinusoidal with
the expansion scaling nearly linearly (2-fold) between these values.

With a higher PRP, the magnitude of the expansion and the speed of microbubble collapse
each increase substantially, and the oscillation of the microbubble has a nonlinear relationship
to the driving pressure (Figure 1b,d) (Morgan et al., 2000). The nonlinear nature of microbubble
oscillation is again illustrated by the predicted expansion ratios, where doubling of the
transmitted PRP from 150 to 300 kPa increases the peak expansion ratio by more than 2.5 fold
(Figure 1d). Also, for these higher values of transmitted PRP, microbubble expansion is no
longer sinusoidal; instead, expansion is followed by a comparatively faster collapse. As a result,
the frequency spectra of echoes produced by the microbubble contain multiples and in some
cases a sub-multiple of the transmitted frequency (Schrope and Newhouse, 1993; Dejong et
al., 1994b; Chomas et al., 2002). These harmonic echo components are used to detect the
presence and concentration of microbubbles throughout the body, as described in the Section
4. The rate of microbubble expansion and collapse depends upon the sound field as well as the
diameter of the microbubble (as compared with the transmitted pulse) and nearby boundaries.

Raising the PRP to 300 kPa (with all other parameters held constant) also results in the
destruction of the microbubble during the pulse, where asymmetries and fragments are
visualized (Figure 1b). The mechanisms of microbubble destruction are described in detail in
(Chomas et al., 2001a; Chomas et al., 2001b) including diffusion of the gas from the
microbubble core in the absence of ultrasound, enhanced diffusion of the gas from the
microbubble core in the presence of ultrasound and the fragmentation of the microbubble
during oscillation (Figure 2a). Recordings of the echoes that result from oscillation and
microbubble destruction demonstrate an increased center frequency as the diameter decreases
and decreased echo amplitude with microbubble fragmentation (Figure 2b).

Expansion and fragmentation of lipid-shelled microbubbles are determined primarily by the
resting microbubble diameter, frequency, phase and amplitude of the ultrasound pulse (Figure
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3). Increasing PRP, decreasing frequency, and decreasing resting diameter increase the
normalized expansion and likelihood of microbubble fragmentation. For a lipid-shelled
microbubble, the lipid molecules self assemble as a coating on the gas-liquid interface (Kim
et al., 2000;Lee et al., 2001;Borden and Longo, 2002;Borden et al., 2005a;Borden et al.,
2006a;Borden et al., 2005b). The thin, lipid shell buckles into a bilayer during compression
and leaves unprotected regions of the interface during expansion. Alternatively, polymer and
albumin shells can rupture during oscillation with discrete defects visualized (Bloch et al.,
2005;Bloch et al., 2004;Patel et al., 2004).

Although harmonic echoes are often associated with microbubbles, tissue echoes also contain
harmonic multiples of the initial transmitted center frequency, resulting from the nonlinear
propagation of the transmitted ultrasound pressure wave. The speed of sound is higher for the
higher pressure components of an ultrasound wave traveling within tissue and therefore the
pulse distorts during propagation. Tissue echoes from the distorted pressure wave also contain
harmonic frequencies (Schoelgens, 1998).

With a bubble oscillating near a boundary, asymmetric collapse occurs and fluid jets can
impinge on and damage a gel surface (Figure 4a) (Kodama and Tomita, 2000). Although the
cavitating bubbles in Figure 4a are large (diameter of 2 mm) compared to microbubbles, jet-
like formations have been observed with microbubbles driven at low ultrasonic transmission
frequencies (~1 MHz) (Prentice et al., 2005). Fluid jets produced by oscillating microbubbles
are predicted to be spatially smaller (than those of larger gas bubbles) and achieve velocities
as high as 1.4 km/sec during a shockwave pulse (Fong et al., 2008). In vitro, high-speed images
(shown in Figure 4b) and atomic force microscopy demonstrated that microbubble-associated
fluid jets resulted in a 16-μm wide pit in the surface of cells (Prentice et al., 2005).

Within ex vivo tissues, the asymmetric oscillation of bubbles oscillating near boundaries
demonstrated a toroidal morphology suggesting the presence of fluid jets (Figure 4c) (Caskey
et al., 2007). With a large number of microbubbles located within a distance of tens of microns,
the bubbles attract one another and fuse into a single bubble following a train of pulses (Figure
4d).

The effect of bubble oscillation on tissue has also been examined in vivo by Stieger et al
(Stieger et al., 2007). In these experiments, a chorioallantoic membrane was optically imaged
using a fluorescently-labeled model drug during insonation with 1 and 2.25-MHz acoustic
pulses at varied PRP. A sequence of images showed extravasation of the model drug during
1-MHz insonation. Electron microscopy images demonstrated disrupted vascular endothelium
in a chicken embryo perfused with contrast agents, where endothelial cells with vacuoles, blebs,
and filipodia can be seen in the electron microscopy images acquired after applying ultrasound
at transmission frequencies of 1 and 2.25 MHz (Stieger et al., 2007).

In addition, the ultrasound pressure displaces the microbubble along the axis of the ultrasound
propagation—an effect known as primary radiation force or a primary Bjerknes force—shown
in Figure 1a as a downward displacement of the microbubble with each acoustic cycle (Dayton
et al., 1997; Dayton et al., 1999a; Dayton et al., 2002; Lum et al., 2006; Borden et al.,
2006b). Increasing the acoustic pressure increases the radiation force and therefore increases
the translational displacement. A bubble with a resting diameter equivalent to the resonant
diameter for a given frequency is displaced by the greatest distance (Dayton et al., 2002).

3. Models for microbubble dynamics
Since 1917, researchers have developed a variety of theoretical models to study gas bubble
dynamics in liquids, many of which are summarized in Table 2. We structure this section (and
Table 2) by starting with the simplest case—that of the free microbubble driven by a low
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amplitude sound field in an infinite fluid. Clearly, there are many levels of assumptions required
to apply this model to the real application—that of encapsulated bubbles traveling within small
blood vessels which contain a high concentration of red blood cells and driven by high
amplitude sound fields. In order to accurately model the behavior of contrast microbubbles in
vivo, a series of increasingly complex models have been developed, still typically including a
number of assumptions and simplifications in each case. For example, recent treatments of the
behavior of bubbles within a bubble cloud have begun with the unshelled bubble (Hamilton
et al., 2005), while simultaneously others address the behavior of a single micro-bubble non-
spherically oscillating within a small vessel (Qin and Ferrara, 2006).

The fundamental equations of bubble dynamics were developed by Rayleigh and Plesset
(Rayleigh, 1917; Vokurka, 1985; Plesset and Prosperetti, 1977; Plesset, 1949) (Table 2a),
neglecting liquid compressibility effects and assuming that the gas pressure in the bubble is
uniform and obeys the polytropic law, which is given by:

(1)

where R0 is the bubble radius at equilibrium, Ṙ and R̈ represent respectively the first- and
second-order time derivatives of the bubble radius R, p0 is the hydrostatic pressure, pi(t) is the
incident ultrasound pressure in the liquid at an infinite distance, pg (t) is the uniform gas
pressure within the bubble and ρ,σ and η are the density, surface tension and viscosity of the
bulk fluid, respectively. A historical review of the development of this equation was given by
Plesset and Prosperetti (Plesset and Prosperetti, 1977). The gas pressure within the bubble
depends on the volumetric change with respect to its equilibrium state and heat diffusion across
the bubble wall (Prosperetti et al., 1988). The polytropic law neglects heat diffusion and relates
gas pressure and bubble volume as given by:

(2)

where κ is the polytropic exponent, R0 is bubble equilibrium radius. If the thermal diffusion
length in the gas is greater than the bubble radius, the bubble will behave isothermally (i.e. κ
≈ 1). However, if the thermal diffusion length in the gas is much smaller than the bubble radius
and bubble radius is much less than the wavelength of sound in the bubble the bubble will
behavior adiabatically (ie., κ ≈ γ, the specific heat ratio of the gas within the bubble) (Prosperetti,
1982a).

Using a small-amplitude oscillation assumption, the Rayleigh-Plesset equation has been widely
applied to study many aspects of bubble dynamics such as bubble natural frequency, acoustic
scattering characteristics, thermal damping effects (Devin, 1959; Fanelli et al., 1981; Vokurka,
1985; Dejong et al., 1994b; Dejong et al., 1992; Prosperetti, 1975; Miller, 1981; Strasberg,
1956; Gaunaurd and Uberall, 1978; Sage et al., 1979; Allen et al., 2001; Hu et al., 2004;
Tsamopoulos and Brown, 1983, 1984; Feng and Leal, 1994) (Table 2b and c). Taking into
account of the effect of the surface tension, the Minnaert expression for bubble resonance
frequency can be given by (Minnaert, 1933; Miller, 1981):

(3)
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The emitted ultrasound pressure at distance r from the bubble center is

(4)

As verified by numerous experiments, the Rayleigh-Plesset equation works well when the
Mach number (the ratio of the velocity of the bubble wall to the sound speed in the liquid, Ṙ/
c) is small (Putterman et al., 2001). However, when the incident pressure amplitude increases,
the Mach number approaches unity and sound radiation and liquid compressibility become
important. For higher pressure amplitudes and larger radial oscillation, extensions of the
Rayleigh-Plesset equation have been proposed, including the Keller equation, the Herring
equation and the Gilmore equation (Prosperetti and Lezzi, 1986; Prosperetti, 1987; Lezzi and
Prosperetti, 1987; Keller and Kolodner, 1956; Keller and Miksis, 1980; Prosperetti et al.,
1988; Trilling, 1952; Brenner, 1995; Gilmore, 1952; Barber et al., 1997; Lofstedt et al.,
1995) (Table 2d). Prosperetti et al (Prosperetti et al., 1988; Prosperetti and Lezzi, 1986)
demonstrated that there is a one-parameter family of equations to describe bubble oscillation
in unbounded liquids, namely:

(5)

where λ is an arbitrary parameter that preserves the first order of accuracy of the equation and
pB (t) is the liquid pressure on the external side of the bubble wall, which depends on the internal
bubble gas pressure on the wall:

(6)

Setting the parameter λ equal to 0 recovers the Keller equation (Keller and Kolodner, 1956;
Keller and Miksis, 1980), and λ equal to 1 results in the Herring and Trilling equation (Trilling,
1952). The effects of other factors such as non-uniform pressure within the bubble and heat
and gas transfer between the bubble and liquid have also been extensively examined (Table
2e, f and g). The Keller-like equation written in terms of the enthalpy has been verified by
extensive experimental results and demonstrated to yield results that are in agreement with full
partial differential equation numerical simulations (Prosperetti and Lezzi, 1986; Lezzi and
Prosperetti, 1987; Lin et al., 2002).

Ultrasound contrast agents typically have a shell with a thickness from ten to hundred
nanometers, motivating studies of the effects of bubble shell viscosity and elasticity (Table
2h). Roy and his co-workers first treated the bubble shell as a simple viscous liquid and found
good agreement between model predictions and in vitro experimental measurements of the
cavitation threshold (Roy et al., 1990). De Jong and his co-workers later (Dejong et al.,
1994a,b;Dejong and Hoff, 1993;Dejong et al., 1992) modeled bubble shells as layers of elastic
solids and studied acoustic attenuation and backscatter and nonlinear oscillation, validated by
experimental results.

Models that include shell properties using classical mechanical principals have been developed.
Church (Church, 1995) derived a Rayleigh-Plesset-based equation describing the dynamics of
encapsulated gas bubbles, assuming that that coating material is a layer of an incompressible,
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viscous-elastic solid. Hoff et al (Hoff et al., 2000) then developed a model using viscous and
elastic properties of the shell to describe polymeric microbubble behavior. Modified Rayleigh-
Plesset equations have been developed for thin and thick viscoelastic-shelled agents, examining
shell viscosity and elasticity effects (Allen et al., 2002; Morgan et al., 2000). These equations
were validated by direct comparison of the predicted bubble radius with optically-measured
streak images (Allen et al., 2002; Morgan et al., 2000). For a gas bubble encapsulated by a
layer of viscous-elastic solid shell or viscous liquid shell, the Rayleigh-Plesset-based equations
derived by (Church, 1995; Allen et al., 2002) can be written in a simple formula as:

(7)

where R1 is the inner radius of the agent; R2 is its outer radius; R10 is its inner radius at
equilibrium status; σ1 is the surface tension at the inner radius, σ2 is the surface tension at the
outer radius, ρs is the shell density. Gs equals the Lame constant (the modulus of rigidity) if
the agent is a elastic solid shell (Church, 1995) and Gs equals 0 for a viscous liquid shell (Allen
et al., 2002).

While the above discussion demonstrates that substantial effort has been applied to the
development of models for shelled microbubbles, accurately representing the shell properties
before and after insonation continues to be a challenging problem. Given the small thickness
of the shell (typically nanometers) and small diameter of the bubble (typically microns),
evaluating the mechanical properties of the shell material in situ is challenging. Moveover, the
molecular scale properties of lipid membranes cannot be simply incorporated within models
that describe only the radial component of oscillation. Lipid molecules self-assemble at the
gas-liquid interface. When the lipid membrane is compressed (as might be expected during the
compressional half-cycle), the monolayer can reversibly buckle or shed lipid into solution
(Ridsdale et al., 2001). During rarefaction, the lipid membrane expands, potentially leaving
patches of uncoated gas-liquid interface. Application of the classical mechanic theory for these
scenarios is very limited. Therefore specialized approaches for each shell material are required.
Further, in order to translate these models to a blood and tissue environment, investigations of
the effect of tissue elasticity and non-uniform blood viscosity on oscillations of ultrasound
contrast agents have been undertaken and efforts have also been made to develop theoretical
models for radial oscillations of gas bubbles in non-Newtonian liquids (Table 2i).

After intravenous bolus injection, low amplitude ultrasound pulses can be administered to
deflect the drug-coated bubbles toward the blood vessel wall and facilitate imaging or drug
delivery. A model was developed to predict the radial oscillation and simultaneous translational
displacement of an encapsulated gas bubble after insonation by clinically-applicable
megaHertz ultrasound pulses (Dayton et al., 2002; Zhao et al., 2004) (Table 2j). As with the
free bubble, the translational displacement of the shelled bubble was shown to be determined
by the combination of the driving force, the translational added mass, the oscillatory added
mass and the quasistatic drag force.

Oscillations of ultrasound contrast agents within the blood pool are constrained by blood
vessels, and this effect is greatest within small vessels. The boundary can be simplified and
image theory or boundary integral methods then applied in order to calculate bubble oscillations
(Table 2k). This simplification works well when the ratio of bubble diameter to the tube
diameter is small. Alternatively, a bubble oscillating within a small tube has been described
by analytical approximations (Hu et al., 2005;Yuan et al., 1999) or by numerical computations
(Ory et al., 2000;Qin and Ferrara, 2006;Qin et al., 2006;Ye and Bull, 2006;Qin and Ferrara,
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2007), (Table 2l). Our investigation has demonstrated that oscillations of a bubble within a
small vessel depend on the vessel and bubble diameter and mechanical properties of vessel and
connecting tissues (Qin and Ferrara, 2006,2007). The natural frequency of the bubble within
a small rigid vessel is substantially decreased with decreasing vessel size. However, for the
same sized vessels, the natural frequency of a bubble increases with decreasing vessel rigidity
(Qin and Ferrara, 2007). For a bubble constrained in a small vessel, the non-radial component
of oscillation is significant (Hu et al., 2005;Qin and Ferrara, 2006) (Figure 4) and should be
included as the effect of the oscillation on the vessel wall is evaluated. With a transmitted PRP
of 0.5 MPa and a center frequency of 1 MHz, the expansion of a microbubble (with an initial
diameter of 3 μm) within a compliant vessel (of diameter 8 μm) can dilate the vessel wall by
a distance as large as a few microns (Qin and Ferrara, 2006) (Figure 5).

In drug delivery, the ultrasound pressure (PRP > 0.5 MPa) can be substantially larger than the
pressure used in traditional imaging (PRP ~50 kPa). When insonified by a high ultrasound
pressure, bubbles become unstable, rapidly collapse and fragment; thus, models for stability
and mode analysis are summarized in Table 2m-3n. Further, given that drug delivery studies
often use high microbubble concentrations, models of bubble-bubble interaction, bubble-
bubble-vessel interaction and bubble cloud/density effects have been developed (Table 2o-3p),
often requiring substantial computational resources to solve partial differential equations. In
limited cases, solutions have been obtained assuming a uniform formulation or using image
theory.

In summary, understanding and accurately predicting microbubble oscillation in vivo is a
challenging problem. While a great deal of progress has been made in accurately representing
the radial oscillation of the shelled microbubble in an infinite fluid, still refinements and
improvements of such models continue, e.g. (Doinikov and Dayton, 2006). Moreover,
modeling of nonlinear and aspherical oscillation, modeling of bubble clouds and modeling of
bubble interaction with neighboring cells and vessel walls require additional development.
Therefore, gaining a perspective on the hierarchy of approaches to this problem (as in Table
2) can be of value.

4. Microbubble-based imaging techniques
Echoes from microbubbles change in response to the frequency, amplitude or phase of the
ultrasound pulse as a result of changes in wall velocity and acceleration, as well as microbubble
destruction. Design of microbubble imaging strategies (Table 3 and Figure 6) includes the
choice of the center frequency, bandwidth, pressure and phase of each individual pulse, but
also involves the design of a pulse train incorporating multiple pulses for which these
parameters are altered between pulses, in order to facilitate the discrimination of microbubble
and tissue echoes.

Early contrast agent imaging techniques were based on the detection of the harmonics returned
from each pulse (Schrope and Newhouse, 1993; Villanueva, 1995). With single pulse detection
techniques, each echo is filtered as it is received in order to remove frequency components
outside the desired harmonic or subharmonic band (Shankar et al., 1998; Shi et al., 1999;
Chomas et al., 2002; Forsberg et al., 2000; Cheung et al., 2008). Such filtering of the
radiofrequency pulse is also known as fast time processing, as each pulse is processed as it is
received (Figure 6). For harmonic and subharmonic strategies, a narrowband pulse is typically
transmitted in order to minimize the spectral overlap between the transmitted and received
pulses. Subharmonic strategies can employ the transmission of a pulse centered at the resonance
frequency of the microbubble or at a multiple of the resonance frequency (Chomas et al.,
2002). Transmission of a pulse centered at twice the resonance frequency results in resonant
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oscillation of the microbubble (and thus an apparent subharmonic), even with a low
transmission pressure.

Alternatively, transmission of a short (single cycle) pulse, with a sufficiently high pressure
(>250 kPa) and with rarefaction preceding compression, results in a rapid microbubble collapse
and wideband echo and can be used for single-cycle “transient” contrast imaging (Kruse and
Ferrara, 2005). Coded pulse transmissions involving linear or nonlinear frequency modulation
have also been explored, where the differences in the received echoes resulting from
microbubbles and tissue are exploited to further improve the signal to noise ratio (Borsboom
et al., 2004; Borsboom et al., 2005; Borsboom et al., 2003; Gong et al., 2007; Sun et al.,
2007). Mixing low frequency and high frequency transmission to modulate the diameter of the
microbubble has also been explored (Bouakaz et al., 2007; Chen et al., 2006b; Masoy et al.,
2008; Cherin et al., 2008).

When multiple pulses are transmitted and received, each pulse can be filtered to tailor the
receive bandwidth, again removing frequency components that correspond to frequencies
within the transmitted pulse. In addition, pulse to pulse filtering is applied to the echoes
corresponding to a fixed depth, in order to further improve the discrimination of tissue and
bubble echoes. This filter is typically called a slow-time filter. Following the transmission of
a train of identical pulses, a high-pass pulse-to-pulse filter can reject echoes from fixed tissue
and increase the sensitivity to moving microbubbles; such processing is typically known as
power Doppler processing. Combining fast-time and slow-time high pass filters produces
harmonic power Doppler processing, frequently used for perfusion imaging (Senior et al.,
2000; Simpson et al., 2001; Bauer et al., 1999; Chang et al., 1995). Disadvantages of this
technique include limitations on the detection of capillary perfusion due to the very slow
capillary flow.

Low-amplitude pulse trains used in contrast imaging involve the transmission of pulses with
altered phase (Graubner et al., 1997; Burns et al., 2000; Harvey et al., 2000a; Harvey et al.,
2000b; Morgan et al., 1998), amplitude (Porter et al., 2003; Brock-Fisher and Prater, 2006) or
both phase and amplitude (Phillips and Gardner, 2004; Solbiati et al., 2004; Stieger et al.,
2008). Summation of the returned echoes cancels the return from stationary tissue, while again
preserving sensitivity to microbubble echoes. An advantage of the use of such pulse trains is
the elimination of the requirement for the radiofrequency (fast-time) filter. Given the limited
bandwidth of current transducers, elimination of this requirement can potentially increase the
signal-to-noise ratio of the measurement (effectively using the entire received bandwidth). An
example of the gray-scale image of a murine tumor is presented in Figure 7a, where the tumor
is circled in red, with a hypoechoic gray scale. An image of the contrast agent echoes, estimated
with the Contrast Pulse Sequence (CPS) developed by Siemens Medical Solutions
(MountainView, CA) can then be overlaid on the gray-scale image (Figure 7b). The spatial
variation in contrast agent density in such images correlates with the tumor morphology and
density of viable tumor cells, as estimated during histology using hematoxylin and eosin
(Chomas et al., 2003; Broumas et al., 2005).

The blood flow rate is estimated in contrast ultrasound by combining high-amplitude pulse
transmissions, designed to destroy the contrast agent, with pulses designed to estimate the
replenishment of microbubbles into the region of interest (Wei et al., 1998; Wei et al.,
2001a; Wei et al., 2001b; Chomas et al., 2003; Krix et al., 2004; Potdevin et al., 2004; Dijkmans
et al., 2004). A parametric image of the time required for contrast replenishment within a region
can then be created, noting that the flow rate will vary across the image (Chomas et al.,
2003). Each color-encoded pixel represents an estimate of the contrast replenishment rate for
a small region. Depending on the center frequency of the ultrasound imaging pulses, the spatial
resolution of each estimate is on the order of hundreds of microns to millimeters. Within
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cancerous tumors, the flow of the contrast agent is not always continuous. Therefore, estimating
the variations in flow rate with time can be of value (Chomas et al., 2003). Chomas et al color-
coded regions that did not maintain a consistent flow rate over time with a distinct color marker
(red).

4.1 Imaging applications
Microbubble contrast imaging has found many applications in cardiology, including the
assessment of wall motion abnormalities and perfusion defects, with the clinical aspects
described recently (Kaufmann et al., 2007; Kaul, 2008). Radiology applications focus on
cancer and peripheral vascular disease, where the estimation of microvascular density and flow
rate are particularly important. Ultrasound is an ideal technique to use in serial studies of drug
therapies, e.g. anti-angiogenic treatment (Tang et al., 2003). Although contrast-enhanced grey
scale imaging techniques (such as pulse inversion, power modulation and CPS) are widely
used and the use of ultrasound to monitor drug therapies is important (Lucidarme et al.,
2004; Forsberg et al., 2002), quantitative measures are not yet validated for clinical studies but
are currently of great interest. The development of an accepted ultrasound measurement of
vascularity or flow rate would be of great value for basic science and clinical studies.

4.2. Targeted, lipid-shelled microbubbles and their detection
Lipid-shelled microbubble stability is enhanced by polymer-grafter lipids, with concentrations
of 5–9 molar percent of polyethylene glycol typically used. Targeting ligands are then attached
to the distal end of a polymer either before or after microbubble generation. Large proteins are
typically attached after the contrast agent is formed due to the increased temperature and
agitation used in the formation of the microbubble; peptides and other small molecules can be
attached beforehand. A large number of ligands are typically required to insure adequate
coverage, given the large (micron-diameter) size of the microbubble. A biotin-streptavidin
linkage is used most commonly to attach the targeting ligand to the lipid shell (Klibanov,
2005; Lanza and Wickline, 2001).

Klibanov et al. originally demonstrated the in vitro use of targeted microbubbles by studying
microbubbles adherent to avidin-coated petri dishes (Klibanov et al., 1997; Klibanov et al.,
1998). More recently, targeted agents have been shown to successfully detect inflammation,
transplant rejection, and atherosclerosis (Nakashima et al., 1998; Jian-Guo et al., 2004; Lindner
et al., 2001; Weller et al., 2003). Angiogenesis has been the most common application for
targeted contrast agents with peptide and antibody-based strategies, as well as dual imaging
techniques reported (Ellegala et al., 2003; Stieger et al., 2008; Weller et al., 2005; Lee et al.,
2008; Willmann et al., 2008).

Most reports of imaging with targeted microbubbles have involved observation of the entrance
of the microbubbles to the field of view followed by an assessment of the image intensity over
time, culminating with a destructive pulse. The signal amplitude following the destructive pulse
is assumed to represent circulating agents and that before the destructive pulse is assumed to
include circulating plus bound agents (Ellegala et al., 2003; Lindner et al., 2001; Stieger et
al., 2008). The development of new techniques to detect targeted agents is an area of intense
study where radiation force and changes in spectral characteristics can enhance the detection
of bound bubbles.

5. Effect of contrast agents on tissue/vasculature
The mechanism for the vascular permeability enhancement observed with ultrasound contrast
agents is a subject of active research by multidisciplinary groups, including physicists,
engineers and biologists. Here, common acoustic parameters and bubble properties known to
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enhance permeability are examined while considering the in vivo environment of the bubble.
Changes in microbubble oscillation due to insonation frequency, PRP, pulse duration, pulse
repetition frequency, contrast agent dosage, size, and shell properties are each considered.

5.1 Targets and Barriers for Delivery with Ultrasound Contrast
Regardless of function, a drug must overcome many of the body’s natural barriers in order to
be effective. Ultrasound contrast agents circulate for an interval that is typically on the order
of minutes. Once bubbles have reached the target site, ultrasound can be applied to locally
increase permeability. Therefore, sufficient contrast agent density and an acoustic window
from the transducer to the target site are two requirements for drug delivery with ultrasound
contrast agents. The brain, heart, pancreas and many thrombi and cancerous tumors meet these
requirements and have been targets of ultrasound-enhanced delivery strategies (Choi et al.,
2007; Bekeredjian et al., 2003; Chen et al., 2006a; Tsutsui et al., 2006; Tartis et al., 2006).

In an idealized vascular network, blood flows successively through large arteries, small
arteries, arterioles, capillaries, post-capillary venules, venules, small veins, and large veins
(Berne, 2004). Exchange of molecules from the blood to organs generally occurs in the
capillaries and post-capillary venules (diameters of approximately 4–8 μm). Once in these
small vessels, a molecule must move beyond the vascular endothelium into the interstitial space
for successful delivery to the organ of interest (illustrated in Figure 8). Capillaries can be
grouped into three types in the human body: continous capillaries, fenestrated capillaries, and
sinusoids. A continuous capillary has immediately adjacent endothelial cells that create a
continuous and uniform barrier overlaid on the basement membrane. These are typically found
in skin, connective tissues, striated and smooth muscle, lung and brain. Fenestrated
capillaries are found in the renal glomeruli, the intestinal villi, endocrine glands, and the
pancreas. The cytoplasm of cells on each side of the nuclear region is thin (40–60 nm) and is
perforated at intervals by a system of ‘pores’ which vary greatly in number and size (their
diameters may range from 30 to 100 nm). It is possible that the presence of pores in fenestrated
capillaries may make endocrine glands and kidneys more susceptible to mechanical effects of
contrast agents, whereas continuous capillaries surrounded by connective tissue may present
a more robust boundary. The sinusoids are found in tissues such as bone marrow, spleen, liver,
suprarenal/parathyroid glands, carotid and coccygela bodies. Sinusoids tend to be larger (often
larger than 10 μm), have a wider, irregular lumen and very thin wall and can be continuous or
fenestrated (Strandring, 2005). The diameter and composition of the surrounding vessel affects
microbubble oscillation amplitude and frequency (where oscillation was described in Section
3 of this review) and therefore the differences between capillary types are expected to alter the
threshold for biological effects.

Another important variable for delivery is the composition of the interstitial space in the organ.
Fung et al. have suggested that capillaries derive their structure from the surrounding organ,
so that the capillaries can be viewed as a tunnel in a gel (Fung, 1993). Considering the wide
variation of Young’s modulus values in tissues, one might expect tissues with higher elastic
modulus, such as muscles, to present a more rigid boundary beyond the endothelial cells than
an organ with a lower Young’s modulus, such as the kidneys. In vitro studies support this
hypothesis-- rigid PMMA tubes with a diameter of 12 μm significantly constrain microbubble
oscillation, while oscillation is less constrained in ex vivo vessels with a smaller rigidity than
PMMA tubes (Caskey et al., 2006; Caskey et al., 2007).

5.2 Important parameters and their impact on delivery and biological effects
Transmission Frequency and PRP—Mechanical index (MI), a commonly displayed
parameter on ultrasound systems, is defined as the derated PRP in megaPascals (at the point
of the maximum pulse intensity integral) divided by the square root of the ultrasonic center
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frequency in megaHertz. The upper limit for MI was chosen to be consistent with the acoustic
output produced by ultrasound systems prior to 1976, where a guideline for MI in the absence
of a microbubble contrast agents is 1.9 (Meltzer, 1996). However, MI was created prior to the
widespread use of microbubble contrast agents and therefore did not envelope the full
parameter space and mechanisms of biological effects associated with these agents.

The threshold for cavitation has long been known to be substantially reduced in the presence
of gas bodies; the mechanical index threshold for hemorrhage in mouse lung was observed to
be 0.4 (Frizzell et al., 1994). More recently, Church and O’Brien proposed a new index for
acoustic output for imaging near the lungs, including pulse duration and pulse repetition
frequency, in addition to the parameters described in the traditional MI (Church and O’Brien,
2007).

Defining a relationship between acoustic pressure and center frequency that is predictive of
biological effects in the presence of contrast agents is under study, with several recent papers
proposing the ratio of acoustic pressure and center frequency (Qin and Ferrara, 2006; Miller
et al., 2008). A limited number of studies have used clinical ultrasound systems or relevant
parameters together with a clinically-relevant ultrasound dose. One such recent paper by Miller
et al. examined the dependence of frequency and PRP on the occurrence of glomerular capillary
hemorrhage (GCH), demonstrating that constant values of the ratio of PRP to the transmitted
center frequency yielded a consistent effect. A threshold of 0.5 (for PRP/frequency) was
predictive of hemorrhage in the rat kidney (Figure 9a and 9b) (Miller et al., 2008). Using 1 and
2.25 MHz, Stieger et al. reported that the occurrence of extravasation of FITC-labeled dye in
the chorioallantoic membrane model demonstrated a similar dependence (on PRP/frequency),
with an apparent threshold of approximately 0.6 (Stieger et al., 2007). These observations are
supported by theoretical simulations that indicate that the frequency dependence of
circumferential stress on a small compliant vessel scales with the ratio of PRP to center
frequency, rather than mechanical index (Qin and Ferrara, 2006). The absolute threshold value
(for the PRP/frequency ratio) may be greater in human studies due to microbubble-filled
intervening tissue and species and tissue-dependent microvascular characteristics. However,
the relationship between pressure, frequency and circumferential stress is generally applicable.

Surveying the microbubble-induced bioeffects and gene delivery literature, without regard to
injected dose and pulse length, yields a broader range of the dependence of observed biological
effects on PRP and center frequency (Figure 9c). Many of the studies summarized in Figure
9c used high dosages of the contrast agent Optison and high pulse duty cycles and therefore
one must carefully assess the dosage and ultrasound parameters used in each study. Here,
subsequent sections discuss pulsing parameters and dosage and contrast agent type.

Pulse Duration/Duty Cycle—The threshold for microbubble fragmentation has been
described by Chomas et al (Chomas et al., 2001b; Stieger et al., 2008). However, secondary
radiation forces produced by the ultrasound wave facilitate fusion of the fragmented
microbubble during continuous insonation. Thus, the microbubble can repeatedly fragment
and re-combine during a pulse and is more likely to remain as a set of discrete fragments after
or between pulses. Therefore, pulse duration and duty cycle are important parameters for drug
delivery sequences and the induction of biological effects; however, these parameters cannot
typically be independently varied on a clinical ultrasound system.

B-mode imaging sequences use short pulses (on the order of microseconds) and a PRF in the
kiloHertz range, while other modes, such as CW Doppler, emit a continuous pulse. Many
reports of biological effects or drug delivery have not fully reported all parameters (often
reporting only the time-averaged ultrasound intensity) and this uncertainty makes rigorous
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evaluation of these studies difficult. However, it is clear that successful, fully-documented,
drug delivery studies employing a long pulse (or high duty cycle) have been reported.

In studies designed to deliver drugs across the blood-brain barrier (BBB), with a 1.5-MHz
center frequency, pulse durations of 10 μsec (with a PRF of 1 kHz) and 10 msec (with a PRF
of 10 Hz) were compared (achieving a similar time-averaged acoustic intensity) (Treat et al.,
2007; Hynynen et al., 2003). The PRP threshold for the 10 μsec pulse was found to be
approximately 6.3 MPa, compared to 1.1 MPa for the longer acoustic pulse (Treat et al.,
2007; Hynynen et al., 2003); therefore, a longer pulse had a greater effect even with an identical
duty cycle. These studies were performed in two different species (rat and rabbit); however,
the threshold for BBB disruption has previously been reported to be similar between these two
species [(Hynynen et al., 2001; Treat et al., 2007)]. Furthermore, McDannold et al. have shown
that the threshold for BBB disruption decreases from 0.7 to 0.4 MPa when increasing pulse
length from 0.1 to 10 msec (Mcdannold et al., 2008) (Figure 10a).

A similar effect has been noted in our laboratory (unpublished data) where the threshold for
disruption of a gel boundary decreased from 2.5 MPa to 1.2 MPa with pulse duration increasing
from 10 μsec to 10 msec. In these experiments, the PRF was modified so that the time-averaged
acoustic intensity was matched. Shorter pulses can also be efficacious; many studies have
shown successful permeability enhancement using pulses with lengths in the microsecond
range (Stieger et al., 2007; Wible et al., 2002; Miller and Gies, 1998). However, there are
advantages to longer pulses as lower acoustic pressures can be used for therapeutic effects,
avoiding potential issues associated with high PRPs, such as unintentional cavitation.

Time Between Destructive Pulses—Typically, the estimation of microvascular flow rate
uses high-amplitude destructive pulses separated by seconds, together with low-amplitude
imaging pulses separated by hundreds of microseconds. In order to accurately estimate flow
rate, time for microbubbles to re-fill the region of interest must be allowed between
“destructive” pulses.

Wible et al. showed that a 30 frame-per-second rate decreased renal hemorrhage as compared
with a 1 frame-per-second rate (transmitted center frequency of 1.8 MHz, MI of 1.6). At the
higher frame rate, microbubbles have insufficient time to reach the capillaries of the kidney
and instead are destroyed in larger vessels (Wible et al., 2002). Similarly, Miller and Quddus
found that 10 sec of continuous insonation yielded a similar number of petechial hemorrhages
as a 100 sec continuous insonation; however, hemorrhages increased when they performed 10
insonations with durations of 10 sec at a pulse repetition frequency of 0.1 Hz. Thus, although
the 10 × 10 sec insonation contained the same number of acoustic cycles as a 100 second
insonation, the effect on the surrounding tissue increased. The authors hypothesize that the 10-
sec delay between pulses allowed for the entry of fresh contrast agents (Miller and Quddus,
2000).

Contrast Agent Size Distribution and Shell Parameters—Increased resting
microbubble diameter is hypothesized to increase the interaction of microbubbles with the
endothelium (Caskey et al., 2007). The efficacy of microbubble-enhanced gene delivery has
been compared for two albumin-shelled agents, Optison and PESDA. PESDA has a greater
fraction of bubbles in the 6–10 μm range (90th percentile at 8.3±2.9 μm for PESDA vs. 6.7
±0.7 μm for Optison; P is not sig.), although these agents have similar mean resting radii and
shell properties. Using an insonation frequency of 1 MHz, PESDA enhanced gene delivery in
vitro and in vivo to a greater extent than Optison (Pislaru et al., 2003). Similarly, the threshold
for creating petechiae in the mouse intestine is reduced with PESDA compared to Optison; for
a center frequency of 2.3 MHz, the threshold for PESDA was1.8 MPa and the threshold for
Optison was 2.2 MPa (Miller and Gies, 2000). Hynynen et al. have compared the efficacy of
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Definity and Optison for delivering the MRI contrast agent Magnevist beyond the BBB. The
pressure threshold for delivery for both agents was 0.4 MPa at a transmission frequency of
0.69 MHz; however, damage to the parenchyma was more prevalent with Optison than Definity
using matched acoustic parameters (McDannold et al., 2007). Comparing Optison and Definity
(Table 1), Optison has a larger mean diameter; the difference in shell material is not expected
to significantly alter the oscillation characteristics. Lipid and albumin-shelled bubbles oscillate
with a similar peak expansion and wall velocity, since the shell is very thin and does not
constrain expansion for typical ultrasound parameters (Chomas et al., 2002). In our laboratory,
we have observed in ex vivo rat cecum that bubbles larger than 4 μm oscillate for 176+/−139
pulses on average, compared to 31+/−14 pulses for bubble smaller than 4 μm (for a transmitted
center frequency of 1 MHz, PRP of 800 kPa and 10 cycle pulses). Larger bubbles interacted
with the vessel wall for a longer period of time. Bubbles typically required tens to hundreds of
10-cycle pulses to traverse from the center of the lumen of a small vessel to the endothelium
wall. Bubbles smaller than 2 μm fragmented prior to reaching the endothelium and were not
observed to interact with the vessel wall (Caskey et al., 2007). We have also observed that
microbubbles with diameters of 9.3+/−3.4 μm are capable of producing tunnels in a gel flow
phantom using a transmission frequency of 2.25 MHz, while bubbles outside this size range
did not produce visible effects on the gel phantom (unpublished data). If differences due to
shell material for albumin and lipid-shelled bubbles are negligible, the studies reviewed here
indicate that larger microbubbles decrease the threshold for generating bioeffects.

Contrast Agent Dosage—An increasing propensity for biological effects with increasing
dose is expected since the number of bubbles near boundaries increases with increased
concentration. After insonation with a center frequency of 2 MHz, both lethal and reparable
sonoporation of lymphocytes have been reported in a suspension of cells and an albumin-
shelled microbubble at various concentrations (Ward et al., 2000). Sonoporation was observed
only for limited separation distances between bubbles and cells and cell lysis reported to
increase with decreasing distance between bubbles and cells (Ward et al., 2000).

In vivo and ex vivo studies of contrast-enhanced drug delivery and bioeffects utilize a very wide
range of injected contrast dose--spanning 50 μL/kg to 5 mL/kg (Miller and Quddus, 2000;
Mcdannold et al., 2008). The number of petechial hemorrhages were reported to be
approximately proportional to contrast dosage using Optison in mouse intestine and abdominal
muscle for a dosage above 1 mL/kg (Figure 10b) (Miller and Quddus, 2000). In the lower
dosage range of 50–250 μL/kg, varying the Optison dose was not reported to significantly
increase the MRI signal intensity in experiments designed to deliver gadolinium contrast to
the brain of a rabbit (Mcdannold et al., 2008). In an ex vivo rat cecum, the infusion of a high
concentration of microbubbles (>20 microbubbles per (200-μm)2 field) resulted in a small
distance between the injected bubbles (Caskey et al., 2007), as shown in Figure 4. In the
insonified cecum, the microbubbles then fused and the larger, fused microbubbles interacted
with the vessel wall. At lower concentrations, coalescence was not observed and the
microbubbles fragmented before extended interaction with the vascular endothelium (Caskey
et al., 2007).

6. Conclusion
The use of microbubble contrast agents to image blood vessel density and perfusion continues
to grow, with an increasing number of pulsing strategies having been identified. Combinations
of unique transmitted pulses with radiofrequency and pulse-to-pulse filtering result in high
target-to-background ratio images. Models for the oscillation and disruption of ultrasound
contrast agents have been extensively studied and have been shown to accurately describe the
oscillation of microbubble contrast agents for a varied range of parameters. Extensions to
accurately model new shell materials and microbubbles located near boundaries have been
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reported and are expected to be extended. In small animal models, the ratio of pressure to
frequency has shown promise to predict the likelihood of capillary hemorrhage; by controlling
contrast dose and imaging parameters such effects should be avoidable. However, the
interaction of microbubbles with tissue remains a subject of extensive theoretical and
experimental studies at the current time, particularly geared to optimize local drug delivery.
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Figure 1.
Observed and predicted microbubble oscillation. (a) and (b): experimental streak images of
1.4-μm lipid-shelled microbubbles insonified with a 2.25 MHz pulse with a PRP of ~100 (a)
or 300 kPa. (b). The streak image is an optical image acquired with an ~15 ns shutter showing
a single line through the center of the microbubble (shown as dashed line in cartoon) as it
expands and contracts during the ultrasound pulse. Momentum is transferred to the
microbubble from the ultrasound pulse resulting in a net displacement of the microbubble. At
the higher ultrasound pressure, the microbubble fragments and the resulting small
microbubbles can be visualized. (c) and (d): predicted microbubble expansion ratio versus time
for a bubble with an initial size of 2 μm during insonation with 1-MHz 5-cyle ultrasonic pulses
using the equation and parameters as in (Zhao et al., 2004). (c) For a low transmitted PRP,
microbubble oscillation is harmonic at a frequency close to the incident ultrasound frequency
and the bubble expansion ratio is nearly proportional to the transmitted PRP; (d) For a high
transmitted PRP, the oscillation nonlinearity increases and the expansion ratio increases more
rapidly than the transmitted PRP.
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Figure 2.
(a) Cartoon demonstrating the mechanisms of ultrasound contrast agent destruction, including
diffusion, acoustically-driven diffusion and fragmentation. (b) Recordings of the echoes from
single microbubbles during insonation with a train of 4.4-MHz pulses with a pulse duration of
1.5 cycles, pulse repetition frequency of 1 kHz and varied PRP.
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Figure 3.
(a) Relative expansion of microbubbles during insonation at 2.25 MHz with PRP ranging from
310 kPa to 1200 kPa. (b) Relative expansion of microbubbles for 1, 1.5, 2, and 3.5 MHz
transmitted center frequencies.
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Figure 4.
In vitro and ex vivo optical images of microbubbles oscillating near boundaries. (a) A cavitating
bubble collapsing and impinging on a gel surface, Reproduced with permission from (Kodama
and Tomita, 2000). (b) Microbubble at boundary of cultured cell with feature in center that
indicates jet formation. Reproduced with permission from (Prentice et al., 2005). (c)
Microbubble oscillation in a microvessel within the rat cecum undergoing asymmetric
oscillation with feature in center indicating toroidal microbubble shape. Reproduced with
permission from (Caskey et al., 2007). (d) Microbubble coalescence shown in ex vivo
microvessel with large bubble interacting with vessel wall. Reproduced with permission from
(Caskey et al., 2007).
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Figure 5.
A snapshot of the predicted pressure field induced by a microbubble with an initial diameter
of 3 μm as it oscillates in a microvessel with inner diameter of 8 μm in an ultrasound field with
a PRP of 0.5MPa and center frequency of 1MHz.
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Figure 6.
Diagram of the generation and processing of contrast agent echoes for the creation of images,
corresponding to the entries in Table 3. The detection of echoes from microbubble contrast
agents may be accomplished by processing the returned echo from a single pulse or the returned
echoes from a train of ultrasound pulses.
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Figure 7.
Examples of ultrasound contrast agent images of Met-1 murine tumor. (a) B-mode and (b)
corresponding Contrast Pulse Sequence (CPS) (gold color) image overlaid on B-mode (grey).
Region of low echogenicity in B-mode image (circled in red) is region of tumor, with vascular
density shown by the gold contrast agent overlay.
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Figure 8.
Hypothesized mechanisms of drug transport across endothelium. Illustration of (a) local shear
stress created on cell during microbubble oscillation, (b) fluid jet formation, and (c) intra-
cellular transport that are hypothesized to result from the stresses induced by microbubble
activity, including generation of gaps at tight junctions, expression of cell adhesion molecules
due to inflammatory process and the creation of vesicles for trans-cellular transport.
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Figure 9.
(a) Glomerular capillary hemorrhage vs the ratio of PRP to center frequency for a range of
transmitted ultrasound frequencies using a diagnostic ultrasound scanner to insonify the rat
kidney. Reproduced with permission from (Miller et al., 2008) (b) Glomerular capillary
hemorrhage vs PRP for a range of transmitted ultrasound frequencies using a diagnostic
ultrasound scanner to insonify the rat kidney. Reproduced with permission from (Miller et
al., 2008) (c) Survey of transmission frequencies and PRP observed in literature. Asterisk
indicates multiple studies using same parameter. a: (Lawrie et al., 2000), b: (Stieger et al.,
2007), c: (Endoh et al., 2002), d: (Miller and Gies 1998), e: (Chen et al., 2002), f*: (Shohet et
al., 2000; Vannan et al., 2002; Bekeredjian et al., 2003; Bekeredjian et al., 2005; Guo et al.,
2004), g*: (Frenkel et al., 2002; Chen et al., 2003), h: (Miller et al., 2005), i: (van Der Wouw
et al., 2000), j: (Li et al., 2004), k: (Li et al., 2003), l: (Chapman et al., 2005), m: (Pislaru et
al., 2003), n: (Kobayashi et al., 2003), o: (Christiansen et al., 2003), p*: (Kobayashi et al.,
2003; Kobayashi et al., 2002), q: (Wible et al., 2002), r: (Ay et al., 2001), s: (Teupe et al.,
2002), t: (Stieger et al., 2007), u: (Skyba et al., 1998), v: (Miller and Gies, 2000), w: (Miller
and Quddus, 2000), x: (Wible et al., 2002)

Qin et al. Page 35

Phys Med Biol. Author manuscript; available in PMC 2010 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Effect of burst length and contrast agent dose on threshold for biological effects. (a) Effect of
burst length on the threshold for blood brain barrier (BBB) disruption. Reproduced with
permission from (Mcdannold et al., 2008). (b) Occurrence of petechial hemorrhage as a
function of Optison dosage in the mouse intestine and muscle. Reproduced with permission
from (Miller and Quddus, 2000).
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Table 2

Summary of models of gas bubble dynamics

Assumptions Brief description Representative references

a: unshelled bubble in
incompressible
unbounded liquid

This is the classic
Rayleigh-Plesset
equation assuming
uniform gas pressure
within the bubble,
and where the gas
usually obeys the
polytropic law.

(Rayleigh, 1917; Plesset, 1949; Plesset and Prosperetti,
1977; Vokurka, 1985)

b: unconstrained small-
amplitude radial
oscillations

A linear
approximation is
applied to the
Rayleigh- Plesset
equation.

(Devin, 1959; Fanelli et al., 1981; Vokurka, 1985; Dejong et
al., 1994a; Dejong et al., 1992; Prosperetti, 1975; Miller,
1981; Allen et al., 2001)

c: unconstrained small-
amplitude non-spherical
oscillations

Based on a linear
approximation,
bubble shapes,
modes and scattering
characteristics are
investigated.

(Strasberg, 1956; Gaunaurd and Uberall, 1978; Sage et al.,
1979; Allen et al., 2001; Huet al., 2004; Tsamopoulos and
Brown, 1983, 1984; Feng and Leal, 1994)

Unconstrained nonlinear radial oscillations

d: liquid compressibility When the magnitude
of the bubble wall
velocity approaches
the speed of sound in
the liquid,
extensions of the
Rayleigh- Plesset
equation are
introduced that
include liquid
compressibility and
sound radiation
effects. The widely-
used Gilmore
equation, the Keller
equation and the
Herring equation fall
into this category.

(Gilmore, 1952; Trilling, 1952; Keller and Kolodner, 1956;
Biasi et al., 1972; Keller and Miksis, 1980; Prosperetti,
1982b; Prosperetti and Lezzi, 1986; Vokurka, 1986; Lezzi and
Prosperetti, 1987; Prosperetti, 1987; Brenner, 1995; Brujan,
1998; Prosperetti et al., 1988; Barber et al., 1997; Brujan,
1999; Putterman et al., 2001; Brujan, 2001; Brenner et al.,
2002)

e: thermal effects Heat transfer
between the bubble
and liquid is
included by coupling
the heat diffusion
equation to the
modified Rayleigh-
Plesset equation
without adiabatic or
isothermal
assumptions.

(Flynn, 1975a, b; Kamath and Prosperetti, 1989; Prosperetti,
1991; Kamath et al., 1992; Goldsztein, 2004)

f: gas diffusion For acoustically-
driven bubble
diffusion (Chomas et
al., 2001a), bubble
equilibrium size is
determined by the
gas diffusion
equation.

(Payvar, 1987; Fyrillas and Szeri, 1994, 1995; Lofstedt et al.,
1995)

g: spatial distribution of
gas pressure

Gas pressure spatial
distribution is
coupled to bubble
radial equation.

(Lin et al., 2002; Prosperetti et al., 1988)
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Assumptions Brief description Representative references

h: shell viscosity and
elasticity

The bubble shell is
simplified as a layer
of incompressible
liquid or elastic
solid. Stress and
velocity continuity
are met at the shell
inner and outer
surfaces.

(Hoff et al., 2000; Postema and Schmitz, 2007; Dejong et
al., 1994a; Glazman, 1983; Frinking and de Jong, 1998;
Church, 1995; Borden and Longo, 2002; Marmottant et al.,
2005; Morgan et al., 2000; Dayton et al., 2001; Allen et al.,
2002)

i: non- Newtonian liquid A non-Newtonian
liquid model is used
to describe blood
flow in vessels due
to the non-uniform
viscosity
distribution across
the blood vessel
cross section.

(Brujan, 2001; Favelukis and Albalak, 1996; Brujan, 2000;
Alekseev and Rybak, 1999; Allen and Roy, 2000b, a)

j: translational
displacement due to
radiation force

Due the pressure
gradient in the
liquid, a net
radiation force is
generated upon
oscillating bubbles.

(Dayton et al., 2002; Zhao et al., 2004; Pelekasis et al.,
2004; Doinikov and Dayton, 2006)

Constrained nonlinear oscillations

k: near a surface Both analytical
solutions and
numerical
simulations have
been developed.
Image theory and
boundary integral
methods are utilized.

(Oguz and Prosperetti, 1990a, b, 1993; Takahira, 1997; Yuan
and Prosperetti, 1997; Zeff et al., 2000; Brujan et al., 2001;
Brujan et al., 2002; Brujan et al., 2004; Fong et al., 2006; Cui
et al., 2006; Krasovitski and Kimmel, 2004; Nyborg, 1958;
Sato et al., 1994; Afanasiev and Grigorieva, 2006; Blake et
al., 1999; Bremond et al., 2006)

l: within a tube During insonation,
ultrasound contrast
microbubbles
oscillate within
blood vessels. To
study bubble
oscillation within a
small vessel, the
vessel can be
simplified as a rigid
or compliant tube.

(Yuan et al., 1999; Ory et al., 2000; Hu et al., 2005; Qin and
Ferrara, 2006; Qin et al., 2006; Ye and Bull, 2006; Qin and
Ferrara, 2007)

(Unconstrained nonlinear and constrained linear) nonspherical oscillation

m: unconstrained
nonlinear non- spherical
oscillations

The assumption of
the spherical
morphology of the
bubble-liquid
interface is removed.
The bubble- liquid
interface shape is
determined either by
gas- liquid
interaction or by a
predetermined shape
profile.

(Crum, 1979; Klaseboer et al., 2006; Yang et al., 1993;
Gordillo and Fontelos, 2007; Eggers et al., 2007)

n: constrained small-
amplitude non-spherical
oscillations

Linear
approximation is
used and the
boundary conditions
are enforced.

(Sassaroli and Hynynen, 2004, 2005; Oguz and Prosperetti,
1998; Cui et al., 2006)

Bubble-bubble interaction
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Assumptions Brief description Representative references

o: unconstrained bubble
cloud or bubble-bubble
interaction dynamics

The bubbly liquid is
described by the
average governing
equations.

(Lu et al., 1990; Pelekasis et al., 2004; Yoon et al., 1991;
Commander and Prosperetti, 1989; Allen et al., 2003; Leroy
et al., 2005; Druzhinin et al., 1996; Karpov et al., 2003; Sarkar
and Prosperetti, 1993)

p: constrained bubble
cloud or bubble-bubble
interaction dynamics

Image theory is
utilized to solve the
modified Rayleigh-
Plesset equations.

(Payne et al., 2005; Bremond et al., 2006; Hamilton et al.,
2005)
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Table 3

Microbubble contrast agent imaging strategies

Transmitted pulse Radiofrequency (fast-time) filter
Pulse-to- pulse
(slow- time) filter Reference

Single pulse strategies

Harmonic (Narrowband) Multicyle pulse with
a center frequency
near the microbubble
resonance and low
amplitude

High pass N/A (Villanueva, 1995)

Transient (Wideband) Single cycle pulse
with a center
frequency of ~ 2MHz
and PRP of ~200-
500kPa

High pass N/A (Kruse and
Ferrara, 2005)

Subharmonic Multicyle pulse with
a center frequency
either near the
microbubble
resonance or a
multiple of
resonance

Low pass N/A (Cheung et al.,
2008; Chomas et
al., 2002; Forsberg
et al., 2000;
Shankar et al.,
1998; Shi et al.,
1999)

Coded excitation Many possible codes Many possible filtering methods Can be extended
to multi-pulse
strategy

(Borsboom et al.,
2004; Borsboom et
al., 2005; Gong et
al., 2007; Sun et
al., 2007)

Low power multipulse strategies

Harmonic Power Doppler Sequential pulses as
in the harmonics
above

High pass High pass
(difference
between returns)

(Senior et al.,
2000; Simpson et
al., 2001; Bauer et
al., 1999; Chang et
al., 1995)

Phase Inversion Sequential harmonic
or transient pulses
with phase shift
between
transmission

Often high pass but not required Low pass (sum of
returned echoes)

(Graubner et al.,
1997; Burns et al.,
2000; Harvey et
al., 2000a; Harvey
et al., 2000b;
Morgan et al.,
1998)

Dual frequency- radial
modulation

Sequential or
simultaneous
transmission of
harmonic pulses with
varied center
frequency

Low pass (Chen et al.,
2006b; Masoy et
al., 2008; Cherin et
al., 2008)

Power modulation Sequential pulses
differing in pressure
amplitude

Not required Scale and subtract (Porter et al.,
2003; Brock-
Fisher and Prater,
2006)

CPS Sequential pulses
differing in pressure
and phase

Not required Low pass (sum of
returned echoes)

(Phillips and
Gardner, 2004;
Solbiati et al.,
2004; Stieger et
al., 2008).

High power multipulse strategies
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Transmitted pulse Radiofrequency (fast-time) filter
Pulse-to- pulse
(slow- time) filter Reference

Destruction- reperfusion Train of similar
pulses is transmitted

Varied Loss of
correlation or
changes in echo
amplitude are
assessed

(Wei et al., 1998;
Wei et al., 2001a;
Wei et al., 2001b;
Chomas et al.,
2003; Krix et al.,
2004; Potdevin et
al., 2004;
Dijkmans et al.,
2004)
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