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Abstract 
Viscoelastic models can be used to better understand arterial wall mechanics 
in physiological and pathological conditions. The arterial wall reveals very 
slow time-dependent decays in uniaxial stress-relaxation experiments, coherent 
with weak power-law functions. Quasi-linear viscoelastic (QLV) theory was 
successfully applied to modeling such responses, but an accurate estimation 
of the reduced relaxation function parameters can be very difficult. In this 
work, an alternative relaxation function based on fractional calculus theory is 
proposed to describe stress relaxation experiments in strips cut from healthy 
human aortas. Stress relaxation (1 h) was registered at three incremental stress 
levels. The novel relaxation function with three parameters was integrated 
into the QLV theory to fit experimental data. It was based in a modified Voigt 
model, including a fractional element of order a, called spring-pot. The stress-
relaxation prediction was accurate and fast. Sensitivity plots for each parameter 
presented a minimum near their optimal values. Least-squares errors remained 
below 2%. Values of order a = 0.1-0.3 confirmed a predominant elastic 
behavior. The other two parameters of the model can be associated to elastic 
and viscous constants that explain the time course of the observed relaxation 
function. The fractional-order model integrated into the QLV theory proved to 
capture the essential features of the arterial wall mechanical response. 

1. Introduction 

Understanding the changes in the viscoelastic parameters of arteries and their relationships 
with material properties and structure can provide valuable insight into the functional behavior 
of the tissue (Armentano et al 2006). Recently, we demonstrated that in certain specific 
applications where cryografts/prosthesis implants are evaluated, information on viscoelastic 



properties becomes essential to improve patency (Bia et al 2007). Accordingly, biomechanical 
models are needed to classify vessels and grafts for transplant purposes, aiming to reduce the 
viscoelastic mismatch observed after the arterial replacement. 

To describe the mechanical response of artery walls in vitro, uniaxial tensile loading 
experiments can be conducted (Fung 1981). Typical tensile tests are employed to characterize 
static mechanical response whereas ramp-and-hold stress-relaxation tests are used to study 
time-dependent behavior. Cartilage, tendons and other biological soft tissues are relatively 
insensitive to the strain rate of the loading ramp phase and present a fast initial descent followed 
by a very slow relaxation (Kwan et al 1993, Jager 2005, Robinson et al 2004, Zatzman 
et al 1954). These results are coherent with the well-known dynamic experiments of Handung 
(1952) and Bergel (1961a, 1961b) that show the relatively wide flat frequency response of the 
complex elastic modulus in arteries. 

The quasi-linear viscoelastic (QLV) approach, introduced by Fung (1981), was 
successfully applied in soft tissues owing to their relative independence in the frequency 
responses (Abramowitch and Woo 2004, Funk et al 2000, Lynch et al 2003, Sarver et al 
2003, Toms et al 2002). QLV theory suggests that stress in a material can be explained as the 
convolution of a normalized relaxation function G(t) and a non-linear elastic function. Fung 
proposed a reduced relaxation function that is based on a continuous spectrum assumption 
with a nearly constant frequency response for a wide range of frequencies. However, the 
parameters of this reduced function can be difficult to estimate and show low sensitivity 
during the adaptation process (Abramowitch and Woo 2004, Doehring et al 2004, Kwan et al 
1993, Nigul and Nigul 1987). 

Mechanical properties of biomaterials are often represented by linear differential 
equations, developed from physical models, traditionally including ideal springs and dashpots. 
Specifically in arteries, Kelvin-Voigt models were unable to fit their particular time and 
frequency responses with a reduced number of elements (Orosz et al 1997, Westerhof and 
Noordergraaf 1970). The fractional calculus theory allows derivatives of non-integer order. 
Accordingly, a new type of element called spring-pot can be conceived. This spring-pot 
element intermediates between a spring and a dashpot using a fractional-order derivative. If in 
a pure elastic element, stress (a) and strain (e) are related by a constant E and in a pure viscous 
dashpot with a first-order derivative, a spring-pot introduces the possibility of gradually 
interpolating between both by varying the derivative order a (1 > a > 0). Fractional-order 
models (FOM) were traditionally restricted to studying viscoelastic properties in polymers 
(Bagley and Torvik 1983, Doi and Edwards 1986, Ferry 1969, Koeller 1984) but they were 
recently applied in tissue biomechanics (Djordjevic et al 2003, Kiss et al 2004, Suki et al 
1994). They proved to be very efficient in matching several orders of magnitude in frequency 
responses of different materials with a fewer number of elements. 

In a recent work, we used an FOM with two spring-pots to successfully describe the 
arterial wall frequency response in vivo (Craiem and Armentano 2007). The frequency 
response of arteries, as other soft tissues, shows certain frequency independence with power-
law shapes that naturally conform FOM predictions (Kiss et al 2004). The particular stress-
relaxation decay in arteries is coherent with this flat frequency spectrum. 

Merging these ideas, Doehring et al integrated a fractional-order relaxation function to 
QLV theory to successfully describe the aortic valve cusp biomechanics (Doehring et al 2005). 
To our knowledge, this methodology was not yet employed to describe arterial wall mechanics. 

In this work, we replace Fung's reduced relaxation function with an alternative G(t) based 
on fractional calculus. The three parameters of the proposed G(t) arebased on a modified Voigt 
structure with an ideal spring and a spring-pot. The QLV theory is then applied to describe 
1 h stress-relaxation responses at three incremental stress levels in human arteries based on 



Figure 1. Left: The arterial specimen (B) mounted with two steel fixtures (D) inside a controlled 
temperature chamber and the tensile testing machine. PBS solution input (C) and output (A). 
Right-top: human aorta T-bone strip of 2 mm width and 10 mm length. Right-bottom: elongation 
of the specimen during the stress-relaxation experiment. 

uniaxial loading experiments. Sensitivity and physical interpretation of the parameters were 
investigated. Since the novel G(t) is simple and conceptually associated with FOM that show 
very long relaxation responses with a steep initial decrease, we hypothesized that the QLV 
theory will straightforwardly fit experimental data in arteries. 

2. Materials and methods 

2.1. Experimental methods 

Ascending aortic segments were harvested from four human donors (three men and one 
woman aged 42-51) deceased from causes not related to atherosclerosis. All vessel samples 
were obtained after acquiring the permission required by current legislation and according 
to a protocol established and approved by the Ethics Committee of the Hospital Puerta de 
Hierro in Madrid. Segments were cut out, immediately frozen and stored at -80 °C. Tests 
were conducted between two and ten days after excision. Prior to mechanical testing, frozen 
samples were thawed at room temperature (20 °C). 

One representative specimen was extracted from each donor. Each specimen consisted 
of a circumferentially oriented T-bone strip of nominally 2 mm width and 10 mm length 
dissected using a custom-made steel cutting block (see figure 1). In vivo diameter ranged from 
24 to 35 mm and specimen thickness from 2.00 to 2.25 mm. Details of experimental devices 
are described elsewhere (Atienza et al 2007). Briefly, two stainless steel fixtures joined the 
arterial segments to the grips of an electromechanical tensile testing machine (Instron 4411) 
equipped with a 10 N load cell. Specimens were enclosed in a PMMA transparent chamber 
and submerged in PBS solution heated by a thermostatic bath (Unitronic 6320200). The 
vessel's temperature was 37 °C and controlled to 0.5 °C by a K-type thermocouple located in 
the chamber and close to the artery (<4 mm). The elongation was measured by the machine's 
transducer, which gives a precision of 0.001 mm. 



Stress-relaxation test 

Figure 2. Schematic protocol with three stress levels: low (0.025 MPa), med (0.05 MPa) 
and high (0.1 MPa). Relaxation time = 1 h. Loading rate during preconditioning ramps: 
0.03 mm s_1. 

Uniaxial stress-relaxation tests were conducted following the protocol with three stress 
levels outlined in figure 2. In all cases, three preconditioning cycles that preceded the 
1-h relaxation phases were matched to low (0.025 MPa), med (0.05 MPa) and high 
(0.1 MPa) stress levels. Stress levels were selected to match in vivo physiological ranges (80-
120 mmHg), assuming typical values of 25 mm and 2 mm for the aorta diameter and thickness, 
respectively, and maximal values were limited to ensure the integrity of the specimens. The 
loading and unloading rates were set at 0.03 mm s_1 in all cases. Data from ramps and 
1-h stress relaxation portions were acquired at a sampling rate of 10 Hz and reduced to 
0.5 Hz using a decimation function based on an eighth-order low-pass Chebyshev Type I filter 
(decimate Matlab® function). 

Zero-stress extension (L0) was defined as the length at which a test specimen first 
straightened and began to offer measurable tensile resistance. Tensile stretching was defined as 
an elongation over L0 as A.(0 = L(t)/L0. Strain was calculated as the incremental elongation 
with respect to zero-stress extension: 

L(t) - L0 
e(t) = . 

Assuming a constant volume, true stress was calculated in MPa as 
F 

a{t) = —X(t), 
Jo 

where F is the measured load and So the initial cross-sectional area of the specimen. 

2.2. Constitutive models and parameter estimation 

According to the QLV theory and assuming a zero initial stress state, stress relaxation in a 
tissue can be calculated as the convolution of a normalized relaxation function G(t) and the 
non-linear instantaneous elastic response ae (e) as 

a{e{t),t) = G{t)*ae{e)= / G(t - r)—-^ — 3r , ( )0 , (1) 

where e(t) is the time-dependent strain, * is the time convolution operator and G(f)is the 
relaxation function normalized by the stress at the time of the step input of strain, such that 
G(0+) = 1. 

Preserving Fung's approach, we propose the following three-parameter relaxation 
function: 

G(t) = C + Dra, (2) 



where the constant C determines the asymptotic response toward the equilibrium and the 
descending curve is governed by the constant D and the order a. This function was not 
arbitrarily chosen. In a spring with elastic constant E and in a dashpot with viscous constant 
r), stress and strain are related with integer-order derivatives, as described in the left-hand side 
of equation (3): 

dta r ( l -a) <lt Jo (t-0)a 

where r is the Euler gamma function. A spring-pot intermediate element can then be 
conceived as presented in the right-hand side of equation (3). If in a Voigt model with a spring 
(elastic constant E) and a dashpot, the latter is replaced with a spring-pot, stress-relaxation 
response to a step strain g{t)of this modified Voigt-FOM results (Magin 2004): 

g(t) = E+ n t-a. (4) 
r ( l -a) 

The parameters of the proposed relaxation function in equation (2) can be associated with the 
constants in equation (4) to help in the interpretation of the results. 

To complete the QLV convolution in equation (1), an elastic function must be selected. 
Considering other reports (Doehring et al 2004, 2005) and assuming arteries have non-linear 
exponential stress-strain responses, we propose: 

as(e) = A(eBs - 1), (5) 

where the parameters A and B must be determined with experimental data. 
Data from stress measurements in the experiments consist of two stages: a loading ramp 

followed by the actual stress relaxation when the strain is held constant. For estimation 
of the five parameters (A, B, C, D, a), we minimized the error between the model stress and 
the measured true stress data, including both stages. The curve-fitting problem was solved in 
the least-square sense using Matlab® Iqscurvefit function based on the Levenberg-Marquardt 
algorithm and the convolution in equation (1) using numerical integration with quad Matlab® 
function. As the relaxation function in equation (2) has a singularity at t = 0, we compute 
the convolution from the smallest positive time based on the sampling rate. Before each 
fitting process, initial values of A and B from the non-linear elastic function in equation (5) 
were estimated by fitting the ramping phase to each stress-strain curve. Preconditioning was 
ensured to eliminate hysteretic responses, mostly noticeable in the first or second loop. During 
the relaxation stage, when the parameters C, D and a were adjusted, A and B were initially 
allowed to vary only 10% from their initial values to accelerate the process of fitting. During 
the adaptation process, we verified that extreme values for A and B were not attained. If 
this occurred, the 10% constraint was widened in steps of 10% until a proper adaptation was 
achieved. 

Initial conditions for the three parameters of the relaxation function in equation (2) and 
its restraints during the fitting process are explained hereafter. Observing equation (2), the 
proposed G(t) cannot be normalized to its initial value so as to impose G(0+) = 1. Then, the 
relaxation function was normalized to the asymptotic stress at equilibrium. Initial values for 



C in equation (2) were estimated by dividing the stress averaged during the last 5 min of each 
relaxation by peak stress (CTMAX) registered just after the loading ramp. As no stress values 
can exceed CTMAX, constant C was restricted to remain below unity during the fitting process. 

In all cases, constant D was given an initial value of 0.5 and restricted to be positive 
because it is associated with a viscous constant (see equation (4)). The fractional order a was 
initiated at 0.5 and restricted to remain positive and below unity to represent a spring-pot that 
interpolated between a pure elastic/viscous element. 

To evaluate the quality of fitting, percentage least-squares errors (LSE) relative to the 
measured values were calculated as 

T o-i-- / 2-^i = l L^measured v' / ^model (»)] 
= I x™ r^2 

\ 2-^ti = 1 ^measured vU 

and root-mean-square errors (RMSE) were calculated as 

D A / r c c / 2^/i=l L^measured 1/) ^model (»)] 

tfMAX V n 

Finally, we analyzed the sensitivity of the three parameters in equation (2). To that end, we 
calculated the RMSE when two parameters were held constant, and the third parameter was 
varied around the optimal value. We repeated this methodology to reconstruct sensitivity plots 
for each parameter. 

2.3. Statistical analysis 

Mean and SD values were calculated for each viscoelastic parameter grouped in three stress 
levels. Comparisons between groups were addressed by ANOVA and multiple comparisons 
were performed with the Tukey-Kramer test (JMP software for the Apple Macintosh; SAS 
Institute, Cary, NC). 

3. Results 

True stress versus strain during the loading ramp and relaxation are shown in figure 3 for each 
specimen and during three stress levels described in the figure 2 protocol. In all cases, the 
stress-strain curves tended to describe a typical J-shape with pronounced non-linearity for 
higher distensions. 

A representative example of the model fitting accuracy is shown in figure 4. The predicted 
stress closely followed the measured data during the ramp and the relaxation portions of the 
curve. The algorithm was fast with a mean adaptation time of 20 s (<200 iterations). The 
point-wise difference error was also calculated and shown to be more significant during 
the last portion of the ramping part (see ERROR in figure 4). The five adjusted parameters of 
the model are presented in table 1 with calculated errors as defined by equations (6) and (7). 
For every specimen and all the stress levels, errors were below 2%. Error magnitude did not 
depend on stress levels. The parameters of the resulting relaxation function followed different 
behaviors with incremental stress levels (see table 1). The constant C tended to remain stable 
from low to med stress levels and to diminish during high stress (p < 0.05). The constant D 
tended to increase with stress (p < 0.05 for high with respect to low) whereas the fractional 
order a ranged between 0.1 and 0.3 (p = NS). The elastic function described in (5) has two 
parameters. The proportional constant A tended to decrease and the exponent constant B 
tended to increase with increasing stress levels, attaining significant differences only for high 
levels with respect to low (p < 0.05). 

(6) 



Figure 3. True stress versus strain responses to the stress-relaxation protocol for all specimens. 

Table 1. Estimated viscoelastic parameters. LOW, MED and HIGH are the stress levels defined 
as 0.025 MPa, 0.05 MPa and 0.1 MPa, respectively. 

Stress 

LOW 
MED 
HIGH 

A (KPa) 

6.30 ± 3.0 
3.22 ±2.1 
1.75 ± 1.0a 

B 

6.23 ± 1.2 
8.23 ± 1.7 
9.87 ± 1.8a 

C 

0.897 ± 0.02 
0.868 ± 0.03 
0.793 ± 0.04a'b 

D (s-a) 

0.309 ±0.11 
0.436 ± 0.09 
0.603 ±0.10a 

a 

0.205 ± 0.05 
0.124 ±0.03 
0.186 ±0.06 

LSE (10~3) 

8.6 ± 0.6 
9.8 ± 2.0 
1.4 ± 1.0 

RMSE (10~3) 

2.4 ± 0.2 
5.7 ± 1.1 
1.6 ± 1.3 

Parameters A and B from the elastic function are defined in equation (5) and parameters C, D and a from the relaxation 
function in equation (2). LSE and RMSE are fitting errors calculated with equations (6) and (7). aP < 0.05 with 
respect to LOW stress level. bP < 0.05 with respect to MED stress level (Tukey-Kramer HSD test). 

In the sensitivity analysis of the relaxation function parameters, minimum errors were 
clearly visible in every test, as shown in figure 5 for a representative case. All three parameters 
during every stress level found their optimal value, with a single minimum, in the least-squares 
sense. 

4. Discussion 

In this work, we applied the QLV theory to describe stress relaxation in human aorta in vitro, 
where the reduced relaxation function proposed by Fung was replaced with an alternative 
function formulated from a modified Voigt fractional-order model. Three main outcomes 
should be emphasized. (1) Using the proposed three-parameter relaxation function, the fitting 
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Figure 4. Ramp and stress relaxation example for specimen PH45 during stress level HIGH. 
Measured data in solid line and model fitting in dots. The difference (ERROR) between them is 
also drawn as a solid line. A zoomed area of the peak and relaxation portions is showed in the 
center of the figure. 

process resulted fast for «al800 stress values in each experimental data set. (2) The time 
course predicted by the model conformed power-law functions that properly followed stress 
relaxation during 1 h in three increasing true-stress levels. Least-squares errors remained 
below 2%. (iii) All parameters were sensitive in the least-squares sense. A unique minimum 
value was found around optimal values, (iv) The constants of the proposed relaxation function 
can help to identify arterial elastic and viscous behavior. 

In this study, we found that stress relaxation in human arteries presented a rapid initial 
decay of force, followed by decreasing rate of decay and asymptotic approach to G(oo). Our 
results are similar to others found in carotid dog arteries (Zatzman et al 1954), myocardium 
tissue (Miller et al 1997) and other organic materials (Jager 2005). There are no other studies 
to directly compare QLV results in human aorta of healthy donors, probably due to the arterial 
procurement complexity. Nevertheless, there is a general consent that supports the idea of 
non-exponential stress relaxation curves in arteries (Kalita and Schaefer 2008). 

Curve-fitting methods with Kelvin-Voigt models need several elements to accurately fit 
experimental data (Orosz et al 1997, Westerhof and Noordergraaf 1970). More important, 
unlike the linear viscoelastic modeling, QLV is able to capture the non-linearity in elasticity. 
The classic QLV reduced relaxation function has three parameters including a viscoelastic 
constant, a short and a long time constant. However, using Fung's relaxation function, 
parameters estimation and sensitivities remain difficult (Abramowitch and Woo 2004, 
Doehring et al 2005, Kwan et al 1993, Miller et al 1997). In this work, a simple relaxation 
function based on an FOM was proposed in equation (2) with three parameters, which 
showed accurate and fast adaptations for long (1 h) stress-relaxation tests (see the center of 
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Figure 5. Representative case for the sensitivity analysis in specimen PH76 during stress level = 
HIGH experiment. RMSE = root-mean-square error as defined in equation (7) with respect to the 
parameters C, D and a in the proposed relaxation function in equation (2). 

figure 4). Moreover, sensitivity plots for each parameter confirmed a proper optimum value 
after the fitting process (figure 5). This increase in parameter sensitivity using a fractional-
order function into QLV theory was also reported describing the aortic valve cusp with a similar 
methodology (Doehring et al 2005). It seems that the natural power-law decay, associated to 
fractional models, is partly responsible for sensitivity and matching improvement. 

With respect to the relaxation function parameters, the alternative of accounting with 
an elastic and a viscous constant associated with a fractional order should be discussed. In 
a previous complete mechanical model of arterial wall (Armentano et al 1995), a parallel 
elastic component was made of one spring, representing elastin, and a number of much stiffer 
springs of different lengths, associated to collagen. This model of collagen fibers was based 
on the disconnecting hook model. At very low transmural pressures, the wall stress is borne 
almost exclusively by elastin. As the fully relaxed vessel is stretched, increasing numbers 
of stiffer collagen fibers are recruited. Vascular smooth muscle can act as an active element 
that stretches fibers, modulating viscoelasticity within the arterial wall. We recently showed 
that this activation mechanism in vivo can be associated to an order modification of a spring 
pot in a fractional model with three parallel elements (Craiem and Armentano 2007). In 
the present work, we included a relaxation function derived from a modified Voigt model 
with one spring and one spring-pot. A second spring-pot was neglected because no active 
mechanisms are evidenced in vitro. In this sense, the constant C could be associated to a pure 
elastic response. Constant D in equation (2) could be associated to a pure viscous constant 
when the order a tends to unity. When the fractional order takes an intermediate value, a 
viscoelastic effect is attended. Since a resulted around «0.2 (table 1), a predominant elastic 
behavior is confirmed. Wall viscosity, represented in the spring-pot element, depends on the 
arterial structure, partly due to passive contribution of vascular smooth muscle (Armentano 
et al 2006). Viscosity modulates energy dissipation within the arterial wall and has a beneficial 



effect reducing vessel fatigue (Zhang et al 2007). Thus, each element of the three-parameter 
relaxation function is associated to specific aspects of the arterial wall: the constant C to pure 
elastic behavior and constants D and a to viscous energy dissipation. The non-linearity in 
stress-strain curves is mostly contemplated by the elastic function with constants A and B. 

With respect to fractional orders, we found values of a in the range 0.1-0.3 similar to the 
aortic valve tissue (Doehring et al 2005), canine liver tissue (Kiss et al 2004) and lung tissue 
(Suki et al 1994). These values support the idea of a fractal-like structure (Magin 2004). As 
other collagenous tissues, arteries are arranged hierarchically and fractional models seem to 
naturally adapt to this kind of structure (Doi and Edwards 1986, Ferry 1969, Schiessel and 
Blumen 1995). At the moment, mathematical demonstrations connecting fractional models 
with material structure have been reported in polymers (Bagley and Torvik 1983), although 
some hypothesis including biological tissues and cell rheology were presented (Djordjevic 
e? a/2003, Sukie? a/1994). 

We also found that for higher stress levels, the constant C decreased and the constant 
D increased. Constant C is related to the equilibrium stress relaxation that is reported to 
decrease with higher strains (Sarver et al 2003). With respect to the constant D increase, it 
might indicate an enhancement in energy dissipation due to stronger solicitations. It remains to 
be determined whether this relaxation response is intrinsically stress-dependent (Abramowitch 
and Woo 2004). Also, while the material stretched in each higher elongation, some structural 
molecular configurations could have changed, partially modifying viscoelastic parameters. 
Nevertheless, these changes were small, observing the superimposed stress-strain curves in 
figure 3. Evidently, higher elongations may produce alterations in the molecular structure of 
the tested materials with progressive stretching. In view of these results, further measurement 
protocols with alternative preconditioning phases should be tested to better understand stress-
dependence in arterial wall segments. 

This work also revealed some limitations. Regarding the fitting algorithm, some 
algorithmic concerns were expressed when fractional functions were included in parameter 
estimation (Doehring et al 2004, Miller et al 1997). However, all the parameters proved 
sensitive and clear minimums were found in a least-squares error sense (figure 5). Moreover, 
the simplicity of the relaxation function in equation (4) helped the algorithm to quickly 
converge to stable values even with very long relaxation experiments. The experiments in this 
work were conducted on four specimens harvested from human arteries. This is partly due 
to the complex process that involves working with fresh human arteries from healthy donors. 
Uniaxial experiments are simple and then broadly applied to describe soft tissue biomechanics, 
but arteries are known to be anisotropic. Multidimensional studies, which employ finite-
element models, partially overcome this limitation but usually increase computational effort 
(Holzapfel 2006). The presented framework aimed to prove that fractional models can be used 
to describe mechanical responses in arteries whereas new models should extend these ideas to 
multiple dimensions. 

5. Conclusion 

An alternative relaxation function based on a modified Voigt-FOM was integrated into the QLV 
theory to describe stress relaxation in human aorta. The model predicted a power-law decay 
that matched the time course of all stress relaxation experimental data. Using this simplified 
relaxation function, the adaptation algorithm resulted to be fast and accurate. In the Voigt-
FOM model, the spring can be associated with the asymptotic pure elastic response whereas the 
spring-pot with two parameters modulates the viscoelastic behavior, responsible for energy 



dissipation within the arterial wall. Further experiments in time and frequency domains should 
be scheduled to study stress relaxation during vascular smooth muscle activation. 
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