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Operator ordering and causality
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It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging
when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner,
Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the
amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.

PACS numbers: XXZ

Introduction.— Causality in photocounting is a long-
standing issue [1–5]. No one really doubts that field radi-
ation and detection is a causal process (cf, e.g., Refs. [5]),
but to identify universal causal quantities measured by
a macroscopic detector of arbitrary design remains an
open question. Such quantities naturally emerge in re-

sponse formulation of quantum electrodynamics (QED)
[6–10]. In this letter we consider causality properties of
these quantities and show that their use eliminates all
causality issues from the theory.
Referring the reader for details to the cited papers,

here we only outline the key points. In Glauber’s pho-
todetection theory [11–13], spectral properties of the
detected field are determined by the quantum average
〈

Ê(−)(x, t)Ê(+)(x, t′)
〉

, where Ê(±)(x, t) denote frequency-
positive or negative parts of the Heisenberg field operator
Ê(x, t) = Ê(+)(x, t) + Ê(−)(x, t), and x comprises all field
arguments except time. De Haan [2] and later Bykov and
Tatarskii [3] remarked that

〈

Ê(−)(x, t)Ê(+)(x′, t′)
〉

is not
a causal quantity, and suggested that the actual mea-
sured quantity should be the time-normal (TN) average

〈

T :Ê(x, t)Ê(x′, t′):
〉

. (1)

The symbol T : · · · : denotes the TN operator ordering of
Kelley and Kleiner (KK) [12, 13]. Quantity (1) differs
from 2Re

〈

Ê(−)(x, t)Ê(+)(x′, t′)
〉

by nonresonant terms.
However, Tatarskii [4] pointed out that quantity (1) may
also exhibit acausal behaviour. Here we show that the
idea of de Haan, Bykov and Tatarskii is basically correct.
The problem is with the KK definition of the TN order-
ing which needs generalisation beyond the rotating wave
approximation (RWA). By using the amended definition
of Ref. [7] all causality problems are eliminated.
Characteristic properties of the TN ordering.— If

quantities measured by a detector are universal, i.e., in-
dependent of the detector, they should be identifiable in
a QED theory of a field source. Let

Ê(x, t) =
∑

κ

√

~

2ωκ

uκ(x)e
−iωκtâκ +H.c. (2)

be a Hermitian field operator, described by the standard
bosonic creation and annihilation pairs â†κ, âκ, with uκ(x)

being complex mode functions. The field interacts with
a quantum source according to the Hamitonian,

Ĥint(t) = −

∫

dxĴ(x, t)Ê(x, t), (3)

The nature of the mode index κ, of the free current op-
erator Ĵ(x, t) and of the source Hamiltonian (occuring
implicitly) may be arbitrary. By definition, Ê(x, t) and
Ĵ(x, t) are the interaction-picture (free) operators; the
same operators in the Heisenberg picture are Ê(x, t) and
Ĵ (x, t). Free-field operators and the interaction Hamil-
tonian is all one needs to construct the standard nonsta-
tionary perturbation theory [14]. This makes the Heisen-
berg operators formally defined, at least in perturbative
terms.
We define the (generalised) TN operator ordering pos-

tulating that, 1) under the TN ordering, classical radi-

ation laws apply directly to Heisenberg operators . For-
mally, this is expressed by the relation between the TN
averages of the field and current operators,

〈

T :Ê(x1, t1) · · · Ê(xm, tm):
〉

=

∫

dx′1dt
′
1 · · · dx

′
mdt

′
m

×∆R(x1, x
′
1, t1 − t′1) · · ·∆R(xm, x

′
m, tm − t′m)

×
〈

T :Ĵ (x′1, t
′
1) · · · Ĵ (x′1, t

′
m):

〉

, (4)

where ∆R(x, x
′, t− t′) is Kubo’s linear response function

of the free field,

∆R(x, x
′, t− t′) =

i

~
θ(t− t′)

[

Ê(x, t), Ê(x′, t′)
]

= −2θ(t− t′)Im
∑

κ

uκ(x)u
∗
κ(x

′)e−iωκ(t−t′). (5)

The averaging in (4) is over the Heisenberg (initial) state
of the system. The latter is assumed to factorise into
the vacuum state of all oscillators (denoted |0〉) and an
arbitrary state of the quantum source. We retain the con-
ventional notation for the TN ordering, implying that the
KK definition is a resonance approximation to it (which
is indeed the case, see below).
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Linear response functions of free bosonic fields and of
the corresponding classical ones are identical [6]. Hence
eq. (4) exactly emulates a classical formula for stochas-
tic averages of a field radiated by a random current into
empty space (vacuum). Such formula is found from eq.
(4) by dropping hats and replacing TN averages by clas-
sical stochastic averages. Note that condition 1 warrants
explicit relativistic causality in radiation and propagation
of the field but says nothing about causality properties
of the TN ordering itself.
Furthermore, 2) for free electromagnetic operators, the

TN ordering coincides with the conventional normal or-

dering [13]. This is a consistency requirement: with
Ĵ (x, t) = 0 eq. (4) turns into,

〈

0
∣

∣T :Ê(x1, t1) · · · Ê(xm, tm):
∣

∣0
〉

= 0. (6)

This relation is enforced by condition 2.
Time-normal ordering beyond the RWA.— Character-

istic conditions 1 and 2 are supplemented by formal ones:
3) the operation T : · · · : is polylinear , 4) any commuting

factor may be taken out of the T : · · · : symbol , and 5)
T :1̂1: = 1̂1. The TN product of m arbitrary operators
Âk(t), k = 1, · · · ,m, obeying conditions 1–5 [22], is de-
fined as [7, 8],

T :Â1(t1) · · · Âm(tm):

=

∫

dt′1 · · · dt
′
mTC

m
∏

k=1

[

δ(+)(tk − t′k)Âk+(t
′
k)

+ δ(−)(tk − t′k)Âk−(t
′
k)
]

. (7)

The kernels δ(±) are the frequency-positive and negative
parts of the delta-function, (cf. Ref. [7], appendix 2)

δ(±)(t) = ±
1

2πi(t∓ i0+)
, (8)

and the TC , or closed-time-loop, ordering [15] is a way
of writing the double-time-ordered operator structure
(known, e.g., from the photodetection theory [12, 13]),

T̄ Â1(t1) · · · Âm(tm)T B̂1(t
′
1) · · · B̂n(t

′
n)

≡ TCÂ1−(t1) · · · Âm−(tm)B̂1+(t
′
1) · · · B̂n+(t

′
n), (9)

where T is the standard time ordering of operators and
T̄ is the “reverse” ordering. The ± indices serve only for
ordering purposes and otherwise should be disregarded.
Polylinearity of (7) (property 3) is inherited from the

TC-ordering. Property 4 is a consequence of the relation,

δ(+)(t) + δ(−)(t) = δ(t). (10)

Property 5 is a specification of (7) for m = 0. Property
2 is verified in Ref. [6]. The one most difficult to demon-
strate is property 1. Its formal proof [9, 10] employs
heavy-duty machinery of quantum field theory. However,

the basic idea is fairly simple. The starting point of the
proof is the wave quantisation formula [17],

[

Ê(x, t), Ê(x′, t′)
]

= −i~
[

∆R(x, x
′, t− t′)

−∆R(x
′, x, t′ − t)

]

. (11)

It is found inverting Kubo’s formula (5). Equation (11)
induces restructuring firstly of Wick’s theorem, and con-
sequently of the whole standard perturbative approach
of the quantum field theory. Equation (4) is a rigorous
form of eq. (74) in paper [10].
To extend (7) to fermionic operators one may assume

that they always occur multiplied by generators of an
auxiliary Grassmann algebra [8, 16, 18],

Âk(tk) = γkF̂k(tk). (12)

Such combinations behave under orderings as bosonic
operators [8]. Quantum fields are included by making
all field “labels” explicit. For instance, in spinor elec-
trodynamics, Âk(tk) = Âµk

(rk, tk), γkψ̂σk
(rk, tk), where

Âµ(r, t) is the 4-vector electromagnetic potential and

ψ̂σ(r, t) is the electron-positron field. Other quantum
fields may be included similarly. Equation (7) thus ex-
tends the KK definition in two ways: beyond the RWA
and to arbitrary quantised fields including fermions.
Time-normal ordering under the RWA.— Separation

of the frequency-positive and negative parts of a func-
tion, occuring in Kelley-Kleiner’s definition of the TN
ordering, may be written as an integral transformation,
(see, e.g., Ref. [7], appendix 2)

f (±)(t) =

∫ ∞

−∞

dt′δ(±)(t− t′)f(t′). (13)

In (7), the TC-ordering applies to entire operators, and
not to their frequency-positive and negative parts (i.e.,
TC first, (±) second). The KK definition emerges by
changing the order of operations ((±) first, TC second)
[7]. This results in a resonance approximation to (7):

T :Â1(t1) · · · Âm(tm):

≈ TC

m
∏

k=1

[

Â
(+)
k+ (tk) + Â

(−)
k− (tk)

]

, (14)

which indeed coincides with the KK definition.
Parametric oscillator.— The simplest example of a

system which exhibits a causality violation with defini-
tion (14) is the parametric oscillator,

Ĥ(t) =
p̂2(t)

2m
+
mω2(t)x̂2(t)

2
. (15)

Its frequency ω0 is reduced by half at t = 0 and restored
to its initial value at t = 2T0 = 4π/ω0:

ω(t) =

{ ω0

2
, 0 < t < 2T0,

ω0, t < 0 or t > 2T0.
(16)
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〈
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FIG. 1: The time-normal average
〈

0
∣

∣T :p̂(t)p̂(t):
∣

∣0
〉

(solid
line), the KK approximation to it (dashed line) and the aver-
age 〈0|p̂2(t)|0〉 (dash-dotted line) in units of ~mω0. The graph
of 〈0|p̂2(t)|0〉 is shifted vertically by ~mω0/4.

The initial (Heisenberg) state of the oscillator is vacuum
(defined with respect to ω0). For p̂(t) we have,

p̂(t) =







p̂ cos
ω0t

2
−
mω0x̂

2
sin

ω0t

2
, 0 < t < 2T0,

p̂ cosω0t−mω0x̂ sinω0t, t < 0 or t > 2T0.

(17)

The quantity
〈

0
∣

∣T :p̂(t)p̂(t′):
∣

∣0
〉

for t = t′ calculated using
eqs. (7) and (14) is drawn in Fig. 1 with solid and dashed
lines, respectively. The former is zero for t < 0, whereas
the latter is nonzero for all times. Using eq. (14) indeed
resulted in a causality violation.
Used here solely as an illustration, the parametric oscil-

lator appears to be of much interest by itself. The physi-
cal motivation for calculating

〈

0
∣

∣T :p̂(t)p̂(t′):
∣

∣0
〉

is that it
describes a continuous measurement of fluctuations of the

quantised momentum by means of electromagnetic inter-

action. The quantum current associated with the particle
is Ĵ (t) = ep̂(t)/m, where e is its charge. Radiation of
this current is observed by a remote detector. In essense,
Hamiltonian (15) is postulated as an effective one for the
Heisenberg current operator Ĵ (t) = ep̂(t)/m. Figure 1
demonstrates two things. Firstly, the time-normal or-
dering matters. For comparison, we also draw in Fig. 1
the quantity 〈0|p̂2(t)|0〉 (dash-dotted line) [23]. Clearly
the exact and the KK results for

〈

0
∣

∣T :p̂(t)p̂(t′):
∣

∣0
〉

are
much closer to each other than to 〈0|p̂2(t)|0〉. Secondly,
all differences are limited to short transients at t = 0
and t = 2T0. Up to a vertical shift, the beyond-the-RWA
〈

0
∣

∣T :p̂(t)p̂(t′):
∣

∣0
〉

and 〈0|p̂2(t)|0〉 quickly settle into the
same pattern; for T0/2 < t < 2T0 they are indistinguish-
able. Furthermore, the reader may be surprised — and
even disturbed — by the transient seen in Fig. 1 for times
beyond 2T0. It should not be overlooked that the oscil-
lator returns to its vacuum state at t = 2T0 [24]. As sug-
gested by A.Kaplan [19], this transient may be a toy case
of the Unruh effect [20]. Indeed, since 〈0|Ĵ (t)|0〉 = 0, ra-

diation of the current Ĵ (t) is spontaneous emission. The
transient reflects its non-instantaneity, which in turn is
due to the time-energy uncertainty relation. However, to
claim results in Fig. 1 as physical, one has to account for
the radiation friction and its fluctuations disregarded in
the effective Hamiltonian. We return to this discussion
elsewhere.
“No-peep-into-the-future” theorem.— We now show

that a TN product depends on the operators it comprises

only for times not later than its latest time argument .
The question of causality of TN products thus reduces to
that for quantum equations of motion.
Proof of this theorem is a simplified version of the proof

of causality of quantum response functions in Ref. [7].
We break the integration in (7) into m domains, labelled
by k = 1, · · · ,m, such that,

t′1, · · · , t
′
k−1, t

′
k+1, · · · , t

′
n < t′k. (18)

Within the kth domain, the kth factor in the product in
(7) is transformed as follows, (cf. eq. (10))

∫ ∞

−∞

dt′k
[

δ(−)(tk − t′k)Â−(t
′
k) + δ(+)(tk − t′k)Â+(t

′
k)
]

=

∫ ∞

−∞

dt′kÂ+(t
′
k)
[

δ(−)(tk − t′k) + δ(+)(tk − t′k)
]

= Â+(tk). (19)

Indeed, the latest operator in eq. (9) is positioned be-
tween the T̄ and T -ordered products irrespective of its

C-contour index (cf. eq. (110) in Ref. [7]). The integra-
tion over remaining variables is restricted to,

t′1, · · · , t
′
k−1, t

′
k+1, · · · , t

′
n < tk, (20)

making the “no-peep-into-the-future” theorem evident.
Relativistic causality.— As a comparatively simple ex-

ample, consider the pair time-normal product,

T :Â1(r1, t1)Â2(r2, t2): =

∫ ∞

−∞

dt′1

∫ ∞

−∞

dt′2TC

×
[

δ(+)(t1 − t′1)Â1+(r1, t
′
1) + δ(−)(t1 − t′1)Â1−(r1, t

′
1)
]

×
[

δ(+)(t2− t′2)Â2+(r2, t
′
2)+ δ(−)(t2− t′2)Â2−(r2, t

′
2)
]

.
(21)

Hereinafter we assume that t1 > t2. In the spirit of
the above proof, we break the integration into the two
domains, t′1 > t′2 and t′2 > t′1. In both domains, time
ordering is performed explicitly. Rearranging the terms
and using (10) we find,

T :Â1(r1, t1)Â2(r2, t2):

=

∫ t1

−∞

dt′2
[

δ(+)(t2 − t′2)Â1(r1, t1)Â2(r2, t
′
2)

+ δ(−)(t2 − t′2)Â2(r2, t
′
2)Â1(r1, t1)

]

+ {1 ↔ 2}. (22)
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t1
t2

r1

t~

r2 r

t

FIG. 2: Space-time geometry of the integral in eq. (21).
Points r1, t1 and r2, t2 are shown as bold dots, and their past
light cones as slanted lines. The thick vertical line represents
the “integration path” r2, t

′

2, −∞ < t′2 < t1. It consists of
two sections, positioned inside (−∞ < t′2 < t̃, solid) and out-
side (t̃ < t′2 < t1, dashed) of the past light cone of r1, t1.
Other lines guide the eye.

The integral here is illustrated in Fig. 2, where the space-
time points r1, t1 and r2, t2 are drawn as bold dots, and
the domain r1, t

′
1,−∞ < t′1 < t2 (“integration path”) as

a thick vertical line with solid and dashed sections.
Now, what kind of “no-peep-into-the-future” theorem

would one expect in relativity? Assuming that the depen-
dence of operators on various perturbations is relativis-
tically causal, it is sufficient to assume that space-time

arguments of the operators which a time-normal product

comprises are confined to the union of the past light cones

of its arguments. Without assumptions about quantum
dynamics, eq. (22) explicitly violates this condition. So,
in Fig. 2, the integration path extends into the future be-
yond the point r2, t2. The minimal dynamical assump-
tion one has to make is that two operators commute if
their arguments are separated by a space-like interval (it
is one of Wightman’s axioms [21]). Such commutativ-
ity holds for Â1(r1, t1) and Â2(r2, t

′
2) with t̃ < t′2 < t1,

where t̃ is the time when the integration path exits the
past light cone of r1, t1 (Fig. 2). With this observation,
the contribution from the dashed section of the integra-
tion path in Fig. 2 reduces to, (cf. eq. (10))

∫ t1

t̃

dt′2
[

δ(+)(t2−t
′
2)+δ

(−)(t2−t
′
2)
]

Â2(r2, t
′
2)Â1(r1, t1)

= θ(t2 − t̃)Â2(r2, t2)Â1(r1, t1). (23)

The offending contribution from t′2 > t2 cancelled. Simi-
lar arguments apply to the second term in (22) [25].
Conclusion.— We have demonstrated, both by exam-

ple and by a formal proof, that causality violations, oc-
curing if Kelley-Kleiner’s definition of the time-normal
operator ordering is taken outside the rotating wave ap-
proximation, are eliminated by putting the amended def-
inition of Refs. [7, 8] to use. Relativistic causality was

verified for a time-normal average of two operators, while
extention to more than two operators and, much more
importantly, to renormalised theories remains subject to
further work.
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