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Abstract. This article reviews progress in the theoretical modelling of the electronic

structure of rotationally faulted multilayer graphenes. In these systems the

crystallographic axes of neighboring layers are misaligned so that the layer stacking

does not occur in the Bernal structure observed in three dimensional graphite

and frequently found in exfoliated bilayer graphene. Notably, rotationally faulted

graphenes are commonly found in other forms of multilayer graphene including

epitaxial graphenes thermally grown on SiC (0001̄), graphenes grown by chemical vapor

deposition, folded mechanically exfoliated graphenes, and graphene flakes deposited on

graphite. Rotational faults are experimentally associated with a strong reduction of

the energy scale for coherent single particle interlayer motion. The microscopic basis

for this reduction and its consequences have attracted significant theoretical attention

from several groups that are highlighted in this review.
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1. Introduction

Coherent interlayer motion in multilayer graphenes play a crucial role in determining

their low energy electronic properties. In single layer graphene the absence of the layer

degree of freedom cleanly exposes the geometrical structure of its low energy electronic

physics. This is controlled by single particle spectra containing linearly dispersing bands

around singular points at its inequivalent zone corners, described by a pair of valley-

polarized two dimensional massless Dirac Hamiltonians [1, 2]. The physics is very

different for graphene bilayers that are stacked in the Bernal geometry with the “A”

sublattice of one layer eclipsed with the “B” sublattice of its neighbor (AB stacking).

Here the effects of coherent interlayer coupling are quite strong and the low energy sector

is described instead by a different class layer-coherent chiral fermions with a quadratic

dispersion and a Berry’s phase of 2π for reciprocal space orbits that encircle the point

of degeneracy [3]. This physics is readily understood from the experimentally known

strength of the interlayer tunneling amplitude at eclipsed sites and it can be generalized

to describe the low energy physics of multi-layer graphenes where the crystallographic

axes of neighboring layers are rotated by special angles θ = nπ/3 [4, 5, 6, 7].

Surprisingly, experimental work over the last five years has revealed a family of

multilayer graphenes that show only weak (if any) effects of their interlayer coupling.

This family includes graphenes that are grown epitaxially on the SiC (0001̄) surface

[8, 9, 10], CVD grown graphenes [11] and some forms of exfoliated graphene [12, 13, 14].

A common structural attribute of these systems is a rotational misorientation (a twist)

of their neighboring layers at angles of θ 6= nπ/3. The layer decoupling has been

inferred from the measurements of the magnetotransport [8, 9], of the Landau level

spectra observed in scanning tunneling spectroscopy [14, 15] and perhaps most clearly

in angle-resolved photoemission spectra [16].

These experimental observations are attracting significant theoretical attention.

The layer decoupling in twisted multilayers is frequently attributed to a kinematical

effect whereby the layer projections of the zone corner crystal momenta are misaligned

by the rotation, preventing momentum-conserving interlayer motion at sufficiently low

energy [17]. In this scenario the low energy theory is described by four separate valley-

and layer- polarized Dirac cones. These fermions are then re-coupled at a crossover

energy scale where the individual Dirac cones merge and hybridize thus changing the

band topology [18]. The simplest version of this theory predicts that the residual low

energy effect of the twist is to reduce the Fermi velocities by an angle dependent factor

where the smallest velocities are expected for small rotation angles. These theoretical

predictions have provided a taking off point for further investigations of this problem

using a variety of methods ranging from microscopic atomistic calculations to continuum

models designed to capture selected elements of the microscopic physics. Presently

there is a lively discussion concerning the theoretical interpretation of the electronic

physics in twisted graphenes: What is the appropriate long wavelength theory? How

can one distinguish between the electronic physics for “small” and “large” rotation
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angles? How does the the interlayer coherence scale depend on the fault angle? What

are the experimental consequences of the weak interlayer coherence? It is fair to say

that the one-electron physics of these systems is proving to be unexpectedly rich and

it has so far eluded a satisfactory (or at least complete) theoretical description. In this

article we briefly highlight some recent theoretical progress on this problem and focus

on some of the major unresolved issues.

Section 2 presents a discussion of the geometric properties of rotationally faulted

bilayers which are generally useful for analyzing their structural and electronic

properties. The results presented here provide a foundation for a theoretical analysis

we have presented earlier [19] though these details have not been published previously.

Sections 3-5 briefly review the existing theoretical approaches that have been developed

for describing the electronic structure of these systems. Section 3 reviews the essential

features of a long wavelength theory of layer that illustrates the physics of layer

decoupling by “rotational mismatch” [17]. Section 4 presents some highlights of

microscopic atomistic calculations on these systems and Section 5 briefly reviews the

content of several “second generation” continuum theories that refine the original

theoretical proposal. Section 6 summarizes with a discussion of the connections of

these theories to experiment and points to some interesting open problems.

2. Geometrical Considerations

2.1. Lattice Structures

A twisted graphene bilayer can be characterized by a relative rotation of the symmetry

axes of its two layers through angle θ and a rigid translation ~∆. Holding one layer fixed,

a rotation about the point ~r0 maps coordinates ~r in the fixed layer to positions ~r′ in the

rotated layer in the manner

~r′ = R(θ) · (~r − ~r0) + ~∆ (1)

where R(θ) is the two-dimensional rotation operator. For definiteness one can consider

the situation where the rotation is taken about a lattice site and the relative shift

∆ = 0. A commensurate rotation occurs when a lattice translation of the unrotated

layer ~Tmn = m~a1 +n~a2 spanned by its two primitive layer translations ~a1 and ~a2 and the

mapping of an inequivalent translation ~Tm′n′ (in the same star) are equal. This occurs

only at discrete angles θmn that can be indexed by the two integers

eiθmn =
me−iπ/6 + neiπ/6

ne−iπ/6 +meiπ/6
(2)

Small angle rotations have large m and n = m + 1. These small angle faults

describe large period superlattices where the atomic registry can be regarded as evolving

smoothly between widely separated regions with locally Bernal-like and AA like stacking.

Complementary structures with large m and n = 1 correspond to small angular

deviations from the 60◦ rotated structure. Since the combination of a 60◦ degree

rotation and a translation by a nearest neighbor bond vector is a symmetry operation
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of the honeycomb lattice, a commensurate rotation near 60◦ can be regarded as the

superposition of a small angle rotation and a nonprimitive translation. The primitive

translations ~A of a general (m,n) commensuration supercell are(
~A1

~A2

)
=

(
m n

−n m+ n

)(
~a1

~a2

)
(3)

with length | ~A| =
√
m2 + n2 +mn.

Commensuration pairs at angles θ and θ̄ = 60◦ − θ are related. The simplest

example of such a pair occurs trivially for θ = 0 and θ̄ = 60◦ which correspond to

the smallest possible unit cells with AB (Bernal) stacking and AA (perfectly eclipsed)

stacking. The unit cells of these structures have the same area but they have different

sublattice symmetries. Importantly, all commensurate rotations share this property:

they occur in partners where the sum of the rotation angles is 60◦ and their unit cells

have the same area. The commensuration indices (m,n) and (m̄, n̄) of the partners are

related (
m̄

n̄

)
=

(
−1 1

2 1

)(
m

n

)
(4)

eliminating common divisors by 3 from the result. Figure 1 illustrates this situation

where the structure in the left panel corresponds to (m,n) = (1, 3), θ = 32.204◦

and on the right (m̄, n̄) = (2, 5), θ̄ = 27.796◦. Partner commensurations can also

be transformed into each other by a translation ~∆ at a single rotation angle θ

demonstrating the invariance of the primitive cell area. The structure at θ = θ̄ = 30◦ is

its own commensuration partner and corresponds to an elementary two dimensional

quasicrystalline lattice. Note also that the form of Eqn. 1 demonstrates that the

indices (m,n) generally provide a more useful specification of the structure than the

fault angle θ. Indeed nearby rotation angles can have very different fault indices

and therefore describe crystalline structures with vastly different periods and different

physical properties. A plot of the commensuration periods | ~A| as a function of rotation

angle θ shows a complex distribution of allowed periods which is bounded from below.

This lower bound has a smooth dependence on θ, diverges as θ → (0◦, 30◦, 60◦) and is

symmetric around the self dual state at 30◦.

Commensuration partners are distinguished by their sublattice exchange parity. A

commensuration is sublattice exchange “even” if the commensuration cell contains an

A and a B sublattice site in each layer that are coincident with atomic sites in the

neighboring layer. A commensuration is sublattice exchange “odd” if only one sublattice

site in the commensuration cell is eclipsed. (Fixing the rotation center of the twist at

an atom site guarantees that there will be at least one coincident site.) The sublattice

exchange parity can be deduced from the translation indices (m,n). It is convenient to

label the eclipsed sites at the origin as the A sublattice, a nearest neighbor bond vector

~τ and its partner in the rotated layer τ ′. Then the condition for a second coincident site

on the B sublattice is

~T + ~τ = ~T ′ + ~τ ′ (5)
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Figure 1. Two lattice structures for rotationally faulted graphene bilayers at

complementary rotation angles. Red and blue dots denote atomic positions in

different layers. The highlighted rhombus is a primitive commensuration cell. The

figure compares the stacking patterns for commensuration pairs that are related by

θ̄ = 60◦ − θ. The structures are (left) θ = 32.204◦ (m = 1, n = 3) and (right) 27.796◦

(m = 2, n = 5). The commensuration cells are the same for the partner structures but

the point symmetry is different.

for some possible choice of ~T (~T ′) in the set of lattice translations in the reference(rotated)

layers. Since the ~T ’s are both lattice translations, this requires integer (p, q) solutions

to

eiθmn =
1 +
√

3
(
peiπ/6 + qe−iπ/6

)
1 +
√

3 (pe−iπ/6 + qeiπ/6)
=
meiπ/6 + ne−iπ/6

me−iπ/6 + neiπ/6
(6)

which can be expressed

p =
m− n+ 3mq

3n
(7)

and has integer solutions only when m − n is divisible by 3. When this is statisfied

the coincident sites occur at special high symmetry points in the cell ~Ac = ± ~Amn/3
(with only one sign per structure) and correspond to high symmetry positions along the

diagonal of the rhombus shown in the right hand panel of Figure 1. When m− n is not

divisible by 3 the only coincident site occurs at the center of rotation and its supercell

translates.

2.2. Reciprocal Space

Similar considerations apply to the momentum space representation of the twisted

bilayer for which Figure 2 gives a map illustrating the structure of its reciprocal space.

The reciprocal lattice of the commensuration supercell can be treated as a conventional

triangular lattice spanned by two primitive vectors 2π(êz × ~Ai)/A where A = | ~A1× ~A2|
is the area of the commensuration supercell and êz is the layer normal. However, it

is often useful to observe that since the real space lattice translations of the supercell
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Figure 2. A reciprocal space map for a twisted graphene bilayer illustrating the

rotation of the first star of reciprocal lattice vectors (open dots) to a star of rotated

reciprocal lattice vectors (filled blue dots), and a corresponding rotation of the zone

corner K points (red dots). The offset points K and K(θ) become coincident in the

extended zone after translations by a particular pair of reciprocal lattice vectors.

are coincident lattice translations of each of the layers, its reciprocal space can also be

indexed by a reciprocal lattice spanned by momenta with four integer indices describing

all linear combinations of the primitive reciprocal lattice translations of each of the

layers, in the manner

~Gp,q,p′,q′ = p~G1 + q ~G2 + p′ ~G′1 + q′ ~G′2 (8)

This demonstrates that the primitive ~G’s and ~G′’s and all possible combinations ~G+ ~G′

are in the reciprocal lattice of the faulted structure. The smallest nonzero combinations

of these vectors have length 4π/
√

3(m2 +mn+ n2) and span the first star of reciprocal

lattice vectors of the commensuration supercell.

A critical question is whether the momentum offset ~K(θ) − ~K or K(θ) − ~K ′ are

also in the reciprocal lattice of the commensuration cell. For the former situation this

is the question of whether

~K(θ)− ~K = ~Gp,q,p′,q′ = p~G1 + q ~G2 + p′ ~G′1 + q′ ~G′2 (?) (9)

for some choice of integers (p, q, p′, q′). Representing these two dimensional vectors by

complex numbers one finds that Eqn. 9 can be expressed

eiθmn =
1 +
√

3
(
peiπ/6 + qe−iπ/6

)
1 +
√

3 (p′e−iπ/6 + q′eiπ/6)
(10)

where θmn is given by Eqn. 2. Nontrivial solutions invert the indices p′ = q and q′ = p

and lead to the matching condition

p =
m− n− 3mq

3n
(11)

Thus ~K(θ)− ~K is in the reciprocal lattice only for supercommensurate structures where

m−n is a multiple of 3. Eqn. 11 is identical to Eqn. 7 that identifies the even sublattice

exchange commensurations, so that sublattice “even” structures always allow intravalley

interlayer coupling. For example, when (m,n) = (2, 5) we have θ = 27.796◦ and the

first integer solutions to Eqn. 10 occur for q = 3 for which p = 1 and (p′, q′) = (3, 1).
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The existence of this solution implies that these K points are coincident in the extended

zone after translations by p~G1 + q ~G2 and p′ ~G′1 + q ~G′2 as illustrated in the right panel of

Fig. 3.

One can also ask about the possibility of commensurability for intervalley

momentum transfer K(θ)−K ′, namely

~K(θ)− ~K ′ = ~Gp,q,p′,q′ = p~G1 + q ~G2 + p′ ~G′1 + q′ ~G′2 (?) (12)

Following a similar line of analysis one finds a different set of commensurability

conditions

p =
m(q + 1)− nq

m+ 2n

p′ =
nq −m(1 + q)

m+ 2n

q′ =
(2m+ n)q +m

m+ 2n
(13)

Thus for example, m = 1, n = 3 gives a rotation angle θ = 32.204◦ which has its

first integer solution when q̃ = q = 4, giving (p, q) = (−1, 4) and (p′, q′) = (1, 3).

Notice the asymmetry between the values of (p, q) and (p′, q′): the scattering between

inequivalent Dirac cones requires different umklapp terms when indexed to the individual

reciprocal lattices of the two layers. The indices would be reversed by considering

K → K ′(θ) couplings. This matching rule implies that ~K(θ) and ~K ′ are coincident in

after translations by p~G1 + q ~G2 and p′ ~G′1 + q ~G′2 as illustrated in the left panel of Fig. 3.

One can prove that Eqns. 9 and 12 cannot be simultaneously satisfied for a common

rotation angle. For example if m = 3µ+ 1 and n = 3ν + 1 then m− n is a multiple of 3

and intravalley couplings are in the reciprocal lattice. In this situation Eqn. 13 requires

that

p =
3(µq − νq + µ) + 1

3(µ+ 2ν + 1)
(14)

which is impossible since the numerator is never divisible by 3 so that intervalley coupling

is excluded. On the other hand, when m = 3µ±1 and ν = 3ν∓1 intravalley are excluded

and

p =
(3(µ− ν)q + µ) + 2q + 1

3(µ+ 2ν)∓ 1
(15)

which can be satisfied for integer p by appropriate choice of integer q so that intervalley

coupling is allowed. These two possibilities are thus complementary and mutually

exclusive: one or the other must occur if the rotation is commensurate. Using the

indexing rule Eqn. 4, one can easily show that partner commensurations realize

complementary commensuration conditions: one member admits only the intravalley

interlayer coupling while the other allows only the analogous intervalley scattering. Thus

the valley structure of the interlayer couplings are specified by the sublattice exchange

symmetry of the structure.
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Figure 3. Commensurability conditions in reciprocal space for partner

commensurations at (left) θ = 21.787◦ ((m,n) = 1, 3) and (right) θ = 38.213◦

((m,n) = (2, 5)). In the left panel the lattice structure is odd under sublattice exchange

and the offset K(θ)−K ′ (red dots) is in the reciprocal lattice of the commensuration

cell. Translation by particular layer reciprocal lattice vectors (spanned by the layer

reciprocal lattice vectors and their rotated counterparts, shown as the blue and violet

points, respectively) brings these two momenta into coincidence in the extended zone.

In the right panel the lattice structure is even under sublattice exchange and the

offset K(θ) − K is in the reciprocal lattice of the commensuration cell. Translation

by different layer reciprocal lattice vectors brings these two momenta into coincidence

in the extended zone. These two commensuration conditions are complementary and

mutually exclusive.

3. Layer Decoupling by Rotational Mismatch

Early work on the electronic properties of twisted graphene bilayers recognized that

small angle rotational faults are inevitably described by large period commensuration

cells that make atomistic calculations impractical. Instead it is useful to develop a long

wavelength description that captures the effect of rotation on the low energy electronic

structure. The essential physics in this treatment is the momentum offset of the Dirac

nodes produced by the rotation [17] as illustrated in Fig. 2.

The starting point of the continuum theory is the long wavelength theory

appropriate to single layer graphene. The effective mass theory for electrons in each

valley introduces two Dirac Hamiltonians for their smoothly varying pseudo-spinor fields

HK = −ih̄vFσ · ∇; HK′ = σyHKσy (16)

where the σ’s are 2×2 Pauli matrices acting on the sublattice amplitudes. A small angle

relative rotation of the crystallographic axes in the of the two layers offsets the crystal

momenta of their closest Dirac nodes by ∆K = 2K sin(θ/2). This can be described

by a pair of layer-polarized Dirac Hamiltonians parameterized by the momentum offset

∆ ~K = ~K(θ)− ~K in the manner

HK = h̄vFσ · (−i∇−
∆ ~K

2
)
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HK(θ) = h̄vFσ
θ · (−i∇+

∆ ~K

2
) (17)

where σθµ = exp(iσzθ/2)σµ exp(−iσzθ/2) because of the relative rotation of the two

layers.

Electrons in neighboring layers are coupled by a θ-dependent interlayer coupling

amplitude projected into the pseudospin basis. For small angle rotations these interlayer

amplitudes vary smoothly in real space and one can focus on their lowest Fourier

components. In the theory of Lopes dos Santos et al. [17] the offset momentum ∆ ~K

is not in the reciprocal lattice of the commensuration cell and these authors focus

on the three momenta ~Gi that leave the offset | ~K(θ) − ~K − ~Gi| invariant. These

momenta can be expressed in terms of the offset ∆K: in complex notation they

are Gi = (0,G1 =
√

3eiπ/6∆K,G1 + G2 =
√

3e−iπ/6∆K). In the pseudospin basis,

the interlayer coupling for each of these momentum transfers is characterized by a

2 × 2 matrix-valued tunneling coefficient T (G) whose elements have been estimated

numerically using a tight binding model. This yields in the small angle limit

T (G = 0) = t̃⊥

(
1 1

1 1

)
; T (G = −G1) = t̃⊥

(
z 1

z̄ z

)

T (G = −(G1 + G2)) = t̃⊥

(
z̄ 1

z z̄

)
(18)

where z = e2πi/3, z̄ = e−2πi/3 and t̃⊥ ∼ 0.11 eV, approximately independent of the

supercell period.

The asymmetry in the set of selected ~G’s appearing in Eqn. 18 occurs because of

the choice of the reference valley for the long wavelength expansion. Nevertheless, this

approach explicitly preserves the threefold rotational symmetry of the commensuration

cell. This is seen most clearly by observing that the T matrices are off diagonal operators

in the layer degree of freedom and one may therefore arbitrarily “shift” the interlayer

coupling momenta by a layer-dependent U(1) gauge transformation. In particular the

gauge shift e−i∆
~K·~r in the rotated layer brings the two Dirac nodes into coincidence and

shifts the three momentum transfers so that they form the three arms of a star generated

by Q = −∆K and its ±2π/3-rotated partners. The negates of these three momenta

occur in the reciprocal amplitudes describing the reverse tunneling processes. Thus the

expansion about a single zone corner point preserves the full three fold symmetry of the

commensuration cell, as required

The essential features of this theory are (1) the existence of a crystal momentum

offset due to the rotational fault, (2) the coupling of plane wave states in one layer to

a triad of plane wave states in its neighbor and (3) the existence of a G = 0 term in

the effective interlayer tunneling Hamiltonian. Feature (1) suggests that at sufficiently

low energy the effect of the interlayer coupling can be treated perturbatively in the

dimensionless coupling parameter Γ = t̃⊥/h̄vF∆K. Feature (2) implies the perturbative

effects of this coupling vanish by symmetry precisely at E = 0 so that the coupled

system preserves the Dirac nodes of its two (decoupled) layers. Perturbative effects of
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the coupling arise at linear order in the momentum differences ~k ± ∆ ~K/2 and can be

interpreted as a twist dependent renormalization of the Fermi velocity

v∗F
vF

= 1− 9

(
t̃⊥

h̄vF∆K

)2

(19)

Equation 19 needs to be applied with care since it breaks down both in the limit of

small rotation angles due to a failure of the perturbation theory when ∆K → 0 and

at large rotation angles when commensuration effects, neglected in this treatment, can

intervene. Finally, feature (3) indicates that electron states in the two layers that have

the same crystal momentum modulo ~G are coupled through the interlayer Hamiltonian.

In the low energy theory the layer-polarized Dirac cones degenerate in the planes that

bisect lines connecting their nodes (above the crossover energy h̄vF∆K/2) and one

expects the strongest interlayer mixing to occur in these planes. There are three such

planes that bisect the lines along ∆K and its ±2π/3 rotated counterparts. The onset

of this mixing is associated with a change of topology of the bilayer bands, connecting

a low energy sector with layer-decoupled Dirac cones to higher energy layer-coherent

hyperbolic bands. In the lowest band this transition is associated with a saddle point in

the electronic spectrum and a logarithmic van Hove singularity in the two dimensional

density of states [18].

4. Atomistic Calculations

The novel physics of rotationally-induced layer decoupling has stimulated theoretical

work by several groups to explore this effect using various atomistic models. Ab initio

calculations have been carried out for misaligned bilayer supercells containing up to

∼ 500 atoms (θ ∼ 5◦) while tight binding methods have allowed workers to access larger

systems of up to 15000 atoms [10, 21, 22, 23, 24]. These studies have examined the

Fermi velocity renormalization, the form of the low energy electronic spectrum near the

K points and the spatial modulation of the electronic charge density.

Much of the ab-initio work has understandably focused on the shortest period

twisted structures, e.g.
√

7×
√

7 and
√

13×
√

13 commensurations [10, 23]. Calculations

on these systems generally confirm a suppression of the interlayer coupling scale and a

Fermi velocity near the K point which is essentially indistinguishable from that of single

layer graphene. The most thorough investigation of the Fermi velocity renormalization

has been given by de Laissardière et al. [22] who suggest that the rotational faults

are characterized by three different velocity renormalization regimes, determined by the

fault angle: (a) 15◦ < θ < 30◦ where the Fermi velocity is essentially the same as for

single layer graphene, (b) 3◦ < θ < 15◦ where a downward renormalization is found,

well described by the perturbation theory of [17], and a low angle regime θ < 3◦ where

the low energy bands are flattened and not described by the perturbative treatment.

The small renormalization in the large fault angle regime (a) is at least qualitatively

consistent with the continuum theory since the renormalization occurs via a virtual

mixing of low energy states with states separated by an energy barrier h̄vF∆K. The
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breakdown of the perturbation theory for sufficiently small angle faults is similarly

understandable since it involves an expansion in t̃⊥/h̄vF∆K. Surprisingly, in this low

angle regime de Laissardière et al. also report a pronounced spatial modulation of the

low energy eigenstates that tends to localize their charge densities in spatial regions

locally characterized by “AA” stacking, suggesting some form of multiband physics that

is not captured by the truncated continuum model. The accuracy of the perturbation

theory in the intermediate regime has been further questioned by the density functional

calculations of Shallcross et al. [23] who find that the bilayer vF is nearly equal to that

of single layer graphene down to smallest angles (∼ 9◦) they were able to study.

The calculations by Shallcross et al. [23] also reveal features in the electronic spectra

near theK points that are not captured by the primitive continuum theory. Significantly,

close to the zone corners the electronic bands are not linear but instead they are mixed,

which requires an interlayer mass operator in the low energy Hamiltonian. Interestingly

the spectral structure, and therefore the matrix structure of this mass term, is different

for partner commensurations and therefore it cannot be determined solely by the size

of the commensuration cell. The scale of the mixing is nevertheless small relative to

its value for Bernal bilayers, e.g. the mixing scale for the θ = 30◦ ± 8.213◦ structure is

≈ 7 meV compared to ≈ 0.2 eV for Bernal stacking [3, 4, 26]. Further, over the range of

structures they studied this mass scale appears to a rapidly decreasing function of the

commensuration cell period. But the existence of this mass matrix in the low energy

theory presents a significant challenge to the interpretation of the electronic states even

at energies above the mass scale. Notably, in order to match smoothly to these low energy

eigenstates the bilayer eigenstates at higher energy must be (nearly) equal weight states

coherently mixed between the two layers instead of the layer-polarized eigenstates that

one would infer from the momentum space structure of the continuum theory .

5. Second Generation Continuum Theories

There has been progress in the development of new long wavelength models that extend

the physics identified in the original continuum formulation [17]. These theories examine

the effects of lattice commensuration [19] and of multi-band mixing [25] on the low

energy electronic structure. The former turn out to be most important for large angle

faults while the latter are critical to the physics at small rotation angles. The new

models are also formulated as continuum theories in order to circumvent the technical

difficulty posed by fully microscopic atomistic treatments of large commensuration cells.

Concurrently there has been an effort to distill the original continuum model to a simpler

effective two band model [27, 28] in an effort to explore the effects of the novel band

topology on the orbital quantization of its electronic states in a perpendicular magnetic

field. We refer to all these new models as “second generation” continuum theories.
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5.1. Interlayer Matrix Elements

A microscopic theory of the interlayer coupling can be formulated in the basis of Bloch

orbitals

ψα(~k) =
1√
N

∑
~T

ei
~k·(~T+~τα)φα(~T ) (20)

where φα=(A,B) are orbitals centered at positions ~T + ~τα and ~T is a lattice translation.

In this basis the interlayer Hamiltonian is

〈ψβ(~k′)|H|ψα(~k)〉 =
1

N

∑
~T ,~T ′

e−i
~k·(~T ′+~τβ)〈φβ(~T ′)|H|φα(~T )〉ei~k·(~T+~τα) (21)

Assuming that the inter-site tunneling amplitude depends on the layer-projected

difference coordinate, the matrix element can be expressed

〈φβ(~T ′)|H|φα(~T )〉 =
1

(2π)2

∫
d2q f(~q) ei~q·(

~T ′+~τ ′β−~T−~τα) (22)

Carrying out the lattice sums in Eqn. 21 and expressing the momenta in terms of their

differences from the respective zone corners, ~k = ~K + ~q, one obtains an expression for

the interlayer tunneling amplitude in terms of sums over the reciprocal lattices of the

reference (~G) and rotated (~G′) layers

Tβα(~q′, ~q) =
1

A
∑
~G, ~G′

f(~q + ~K + ~G) ei
~G′·~τβe−i

~G·τα

δ(~q′ − ~q + ∆K + ~G′ − ~G) (23)

where A is the area of the unit cell.

When q � G Eqn. 23 describes two distinct types of interlayer tunneling

processes: (1) Direct interlayer terms conserve the crystal momentum ~k and occur when

∆K = | ~K(θ)− ~K+ ~G′− ~G|. (Note that this occurs for ~G = ~G′ = 0 and for all boosts by

the reciprocal lattice vectors ~G = ~G′ − ~G that symmetrically shift the initial and final

states to nearby valleys.) (2) Indirect interlayer terms conserve the Dirac momentum

~q and occur when ~K + ~G = ~K(θ) + ~G. The matrix element for this latter process is

dominated by the Fourier amplitude of the tunnelling potential at the first momentum
~K + ~Gc in the extended zone where the zone corner points coincide. Processes (1) and

(2) have very different character. In the Dirac language, process (1) requires ~q 6= ~q′ and

provides a microscopic basis for the continuum formulation of Lopes dos Santos et al.

[17]. By contrast process (2) allows (indeed requires) ~q = ~q′ coupling and in particular

it provides a mechanism for coupling between the tips of the Dirac cones in neighboring

layers. It can be understood as an interlayer umklapp process whereby the scattering

by a reciprocal lattice vector of the commensuration cell provides precisely the right

momentum to bridge the momentum offset ∆K. The ratio of the amplitudes for the

indirect and direct couplings is approximately f(| ~K + ~G|)/f(| ~K|) so that the indirect

term is generally weaker than the direct term.
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5.2. Superlattice Commensuration Effects

As discussed in Section 2.2 either K → K(θ) or K ′ → K(θ) couplings are in the

reciprocal lattice of the commensuration cell for a faulted bilayer, depending on the

sublattice symmetry, and using Eqn. 23 they are allowed interlayer tunnelling processes.

The low energy theory is fundamentally changed by these terms since they introduce an

interlayer mass operator in the long wavelength Hamiltonian. Interestingly, the analytic

structure of this mass matrix is determined solely by the sublattice symmetry of the

commensuration. Thus one can define two complementary families of commensurate

faults where all members of a common family have a common form for their low

energy Hamiltonians. The energy scale of this mass operator depends on the period

of the commensuration, and it is largest for low order commensurate rotations. The

primitive stacked structures with AB and AA stacking are parent structures for this

family behavior which give prototypical examples for the interlayer mixing possible for

generic commensurate bilayers.

The commensuration physics for these systems can be understood most easily by

explicitly writing the layer Bloch states in real space in the “first star” approximation

that retains only the three reciprocal lattice vectors that keep the combination ~K + ~G

to the first star of K points

Ψ(~r) =
∑
α

Φα(~r)uα(~r); Φα(~r) =
1√
3

3∑
m=1

ei
~Km·(~r−~τα) (24)

The coupling between layers is a functional of the Bloch fields Ψ(~r) and its properties

are captured by the local functional

U =
1

2

∫
d2r T`(~r)|Ψ1(~r)−Ψ2(~r)|2 (25)

where T` is a real modulated supercell-periodic function arising from the lattice structure

of the commensuration cell. The coupling function acts to correlate the amplitudes and

phases of the Ψ’s in the neighboring layers. The purely local coupling between layers in

Eqn. 25 can be readily generalized to describe interlayer coupling with a finite range

without substantially changing the physics. Equation 25 describes a coupled mode

theory where the full Bloch waves Ψ of the two layers (importantly these are not the

Dirac envelope functions uα(~r)) are coupled by through a local spatially modulated

potential.

Although the exact form of the coupling function T` is unknown its important

properties are constrained by symmetry: it is a real supercell-periodic function with

local maximum near aligned sites of the two layers and with minima for regions where

atoms in neighboring layers are out of registry. A useful analytic model satisfying these

constraints can be constructed from the elementary density waves in each of the layers

nµ=1,2(~r) =
∑
m∈[1]

∑
α=A,B

ei
~Gµ,m·(~r−~τµ,α) (26)

summed over the first star of reciprocal lattice vectors in the µ-th layer. Then, a
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nonlinear functional of the density fields that satisfies all the symmetry constraints is

T`(~r) = C0e
C1(n1(~r)+n2(~r)) (27)

The sum of the layer density waves is a real function with the translational symmetry

of the commensuration cell and no shorter. Eqn. 27 is maximized at special positions

where the two density functions in each layer are separately maximized corresponding to

aligned atomic sites, and it exhibits exponential suppression in regions where the density

waves are out of registry. This ansatz for the coupling function has some important

features. (1) It is a nonlinear function of the primitive reciprocal lattices vectors of

each of the layers so that all the reciprocal lattice vectors of the commensuration cell

are are represented in an expansion of the exponential in powers of its argument. (2)

It is a separable function, constructed from a product of functions each of which is

spanned by the separate reciprocal lattices of the two layers. (3) It is parameterized

by two constants C0 and C1 which respectively describe the strength and range of

the microscopic interlayer tunneling amplitudes. (Thus for example, very long range

hopping is described by a small value of C1.) The two constants C0 and C1 can be

estimated from microscopic theory.

Figure 4 gives a density plot of the local coupling function T`(~r) calculated for

partner commensurations at θ = 21.787◦ and θ = 38.213◦. The former corresponds

to a sublattice exchange “odd” structure and has a threefold rotational symmetry. Its

partner is a sublattice exchange “even” structure and retains the full sixfold symmetry

of the graphene layer, though on an inflated commensuration supercell. This illustrates

a general property of all “odd” and ”even” commensurate faults. The patterns shown

in this density plot provide a real space image of the interlayer resonance pattern for

a twisted bilayer. Interestingly, for large angle faults, one finds that the appearance of

fivefold resonance rings (due to rotated misaligned hexagons) is a robust motif in the

coupling function. For small angle faults the coupling function is described instead by

the familiar Moire pattern that evolves smoothly between zones locally defined by by

AB, BA and AA stacking.

The couplings between the Dirac fields uα in neighboring layers are obtained from

the cross terms in Eqn. 25 after integrating out the lattice scale oscillations and are

given by the Fourier transform of T` on the reciprocal lattice of the commensuration cell

t(~G). The ~G = 0 term describes the crystal momentum-conserving interlayer couplings

discussed in the theory of Lopes dos Santos et al. [17]. In addition there are umklapp

terms involving ~G 6= 0 terms that express the symmetry allowed couplings between Dirac

nodes Km → Km′(θ). The geometrical considerations of Section 2.2 require that for any

given commensuration there are couplings within two distinct pairs of Dirac nodes at

the corners of their respective Brillouin zones. In the Bloch basis these matrix elements

are spanned by a 3 × 3 matrix of finite momentum scattering amplitudes V̂ps which,
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Figure 4. The spatial dependence of the interlayer coupling function T`(~r) of Eqn.

27 is illustrated by these greyscale plots for commensurate faults at 21.787◦ (left)

and 38.213◦ (right). The left structure has odd sublattice exchange parity,the right

structure is even. The left pattern has a threefold rotational symmetry, the right

pattern has the sixfold symmetry of an isolated graphene sheets. Both patterns contain

combinations of fivefold resonance rings that are combined in clusters to form a periodic

two dimensional pattern. Adapted from reference [19].

using the threefold rotational symmetry, takes the form

V̂ps =


V0 V1 V2

V2 V0 V1

V1 V2 V0

 (28)

Here V0 describes the scattering amplitude for a momentum transfer G = |∆ ~K| coupling

the two layers while V1 and V2 describe scattering amplitudes with larger momentum

transfers∼ ~G. By projecting Eqn. 28 onto the sublattice (pseudospin) basis, one obtains

the 2× 2 interlayer mass matrices Ĥint that couple the Dirac fermions of the two layers.

The low energy Hamiltonian for an even bilayer is thus expressed as a 4 × 4 matrix

(acting on the two sublattice and two layer degrees of freedom)

Ĥeven =

(
−ih̄ṽFσ1 · ∇ Ĥ+

int

(Ĥ+
int)
† −ih̄ṽFσ2 · ∇

)
(29)

while for the odd bilayer

Ĥodd =

(
−ih̄ṽFσ1 · ∇ Ĥ−int

(Ĥ−int)
† ih̄ṽFσ

∗
2 · ∇

)
(30)

where σn are Pauli matrices acting in the sublattice pseudospin basis of the n − th

layer and ṽF is the renormalized Fermi velocity. Note that for even parity faults the

bilayer Hamiltonian couples nodes of the same chirality, whereas the odd parity faults

introduce coupling between nodes of compensating chirality. In either case the spectrum

for coupled system retains a two-valley character due to the two ways of matching nodes

in either family of structures. The interlayer mass matrices Ĥ±int are

Ĥ+
int = Veiϑ

(
eiϕ/2 0

0 e−iϕ/2

)
, Ĥ−int = Veiϑ

(
1 0

0 0

)
(31)
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Eqns. 29 and 31 show that for sublattice “even” faults the mass term involves an

xy rotation of its pseudospin through angle ϕ. This angle can not be identified with

the rotation angle θ but it results instead from the interference of the three complex

scattering amplitudes Vi. By contrast in Eqns. 30 and 31 one finds that interlayer

motion across an “odd” fault is mediated by the amplitude on its dominant eclipsed

sublattice. In both mass matrices the overall phase of the operator ϑ can be removed

by a gauge transformation.

Eqn. 31 describes a coupling between Dirac waves in the neighboring layers that

persists in the long wavelength q → 0 limit, qualitatively changing the structure of the

low energy spectra. Their effects are illustrated in Figure 5. For sublattice odd parity

faults one pair of coupled bands are gapped on the interaction scale V leaving an E = 0

contact point between a second pair of quadratically dispersing bands. For the even

parity structures the q = 0 spectrum contains a pair of coherence-split doublets. These

two doublets are the symmetric and antisymmetric combinations of the original single

layer Dirac modes; interestingly the layer-coupled states are topologically required to

retain their Dirac character for small q, and disperse linearly away from the points of

degeneracy. At finite momentum two branches undergo an avoided crossing which gaps

the spectrum at its charge neutrality points. Thus these structures are generically fully

gapped where the size of the gap is determined by the pseudospin rotation angle ϕ in

Eqn. 31 which allows these branches to hybridize. This gap degenerates to zero for the

special case of an AA stacked structure where ϕ = 0 by symmetry. In both cases the

residual effect of the mixing at high energy is to introduce a coherence splitting between

two linearly dispersing layer-hybridized bands.

Both these behaviors have precise analogs for the limiting cases of Bernal and AA

stacked bilayers which can be understood as the primitive parent structures of these

two families. As shown in the lower left panel of Fig. 5 the Bernal spectra exhibit the

mass structure expected for all sublattice exchange odd faults, though on an inflated

energy scale (≈ 0.2 eV) reflecting the full alignment of all sites on a single sublattice.

Similarly the primitive AA stacking features a coherence splitting of its bonding and

antibonding layer-coupled states, but without the pseudospin rotation ϕ so that the

spectrum remains gapless and the zero energy states occur on a ring in reciprocal space.

5.3. Nonlocal Potential Scattering

For small rotation angle the offset momentum ∆K → 0 and perturbation theory in the

dimensionless parameter t̃⊥/h̄vF∆K fails. The breakdown of the perturbation theory

occurs because of an incomplete treatment of multiple scattering processes involving

the interlayer coupling operator. Recognizing this, Bistritzer and MacDonald (BM)

[25] developed a theory that treats multiple scattering through the three fundamental

interlayer amplitudes that describe a spatially modulated interlayer coupling with the

period of the commensuration supercell. Their results show that the Fermi velocity

renormalization of the perturbation theory presages more dramatic physics at small
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Figure 5. The low energe electronic structure for the sublattice exchange odd

parity θ = 21.787◦ commensuration and the partner even parity 38.213◦ structure

are compared with the spectra for the parent Bernal (AB) and AA stacked structures.

All odd parity structures, as shown on the left, contain a pair of coherence split massive

bands and a contact point between two quadratic bands at E = 0. The even parity

structures, shown on the right, feature a bonding/antibonding splitting, with a fully

developed gap near the charge neutrality point which degenerates to a gapless state

for the AA stacked structure. Adapted from reference [19].

rotation angle which can be described as “velocity reversal,” i.e. the Fermi velocity

changes sign as a function of (small) rotation angle crossing through zero at a series of

discrete magic angles. As a consequence the small angle regime is predicted to feature

a manifold of nearly flat bands at low energy.

The BM model is formulated as a two layer scattering theory: states with

momentum ~k in one layer are scattered into states at momentum ~k+ ~Q in its neighbor.

In the pseudospin basis the amplitudes for these processes are the 2× 2 matrices given

in Eqn. 18. The gauge transformation e−i∆
~K·~r on the rotated layer brings two Dirac

nodes of neighboring layers into coincidence, and in this momentum shifted basis the

three momentum transfers ~Qi(=0,±1) are Q0 = −∆ ~K and two ±2π/3-rotated partners

Q±1 which form a threefold symmetric triad. Thus this construction considers a twofold

layer-degenerate Dirac cone whose states are coupled through an off-diagonal nonlocal

operator containing three possible momentum transfers ~Qi in the interlayer hopping.

In the long distance theory the single layer Hamiltonians are isotropic, so for arbitrary

rotation angle θ the the theory is specified by its unrenormalized Fermi velocity, the

rotation angle and the coupling strength labelled w in BM [25], which combine to form

a single dimensionless scaling parameter α = w/2h̄vF sin(θ/2).

Repeated action of the nonlocal interlayer operator generates a lattice of coupled
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momenta as shown in the top panel of Figure 6. The interlayer tunneling amplitudes

are directed transitions in reciprocal space: the momenta Qi and their negates −Qi

describe complementary processes that transport electrons to and from the rotated

layer. Consequently, an even number of applications of the nonlocal operator to an

initial single-layer Bloch state at wavevector ~k generates a Bloch state in the same

layer with momentum ~k + ~Q where ~Q is spanned by the primitive vectors ~Q1 − ~Q0

and ~Q−1 − ~Q0. This defines a triangular reciprocal lattice whose six first star elements

have magnitude
√

3Q0, and are 90◦ rotated with respect to the original ± ~Qi’s. An odd

number of applications of the operator transports the electron to the neighboring layer

on the same reciprocal lattice, but offset by the momentum shift ~Q0. The combination

of these two sets describes a honeycomb lattice where the alternating sites (momenta)

occupy different layers as shown in Fig. 6.

BM studied this model by numerically diagonalizing a truncated Hamiltonian

expanded in a plane wave basis and retaining plane waves with kinetic energies below the

coherence scale ∼ w. The effects of multiple scattering through the interlayer coupling

terms is then encoded in the structure of the bilayer eigenstates which contain coherent

superpositions of the single-layer Dirac modes. For large rotation angles (θ > 3◦) the

model reproduces the perturbation theory of Lopes dos Santos et al. By contrast, in

the very small angle regime the bandwidth h̄vFQ0 collapses, the number of elements

in the low energy basis grows correspondingly and the electronic structure becomes

spectrally congested as illustrated in Fig. 6. Thus the small angle regime is described

by a strong coupled multiband theory that introduces physics inaccessible to a low order

perturbation theory. BM find that the low energy spectra in this regime show a very

substantial reduction of the Fermi velocity (typically < 0.1 of its single layer value) due

to level repulsion among the coupled bands. Remarkably, the reduced velocity parameter

oscillates as a function of the fault angle as shown in Figure 7 and crosses zero at a

series of magic rotation angles. They suggest that this oscillation likely results from a θ

dependence of the superpositions of single layer modes that contain velocities of opposite

sign, though a complete theory of the velocity oscillations has yet to be developed. Thus

the velocity renormalization found in the weak coupling limit represents just the first

step towards a complete twist-induced reconstruction of the low energy spectrum!

5.4. Two Band Models

There has been interest in distilling the continuum theory to a simpler effective two

band model that captures the topological structure of its low energy spectrum. The

approach is similar in spirit to the theory of Bernal stacked bilayers [3, 26, 29] where

one can integrate out its high energy degree of freedom to arrive at an effective theory

for its low energy states. For the Bernal bilayer this procedure identifies a new class of

layer-coherent chiral fermions that have quadratic low energy dispersion and a Berry’s

phase of 2π. For the twisted bilayer, neglecting commensuration effects, the low energy

spectrum contains two layer-polarized linear Dirac cones that are recoupled at an energy
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Figure 6. Top panel: A lattice of momenta is generated by repeated action of

a nonlocal interlayer coupling operator on a Bloch state in a single layer. The

nonlocal operator transports an electron between layers and boosts the momentum by a

threefold symmetric triad of momentum transfers Qi. An even number of applications

of the operator generates a triangular lattice of momenta in the original layer (red),

an odd number generates a triangular lattice offset by momentum ∆K (black). The

combination forms a honeycomb lattice of coupled momenta. Bottom panel: Band

structures obtained by numerical diagonalization of the continuum Hamiltonian in a

truncated plane wave basis retaining kinetic energies of order the coupling strength

w. The bands are plotted along the momentum space trajectory ABCDA in the top

figure. For small rotation angles the bands flatten and the Fermi velocity of the zero

energy states is strongly suppressed. Adapted from reference [25].

scale h̄vF |∆ ~K|/2 where they merge. The two band model attempts to provide a compact

description of the topological transition of the band dispersion that connects the low

energy “doubled cone” sector to its high energy layer-hybridized sector.

For twisted bilayers the two band construction can be understood as a variant of

the low energy theory for a Bernal bilayer that allows for a finite momentum offset |∆ ~K|
between its Dirac nodes. Thus the low energy theory for Bernal stacking is modified in

the manner

HK = − h̄
2

m

(
0 ∂2

∂̄2 0

)
→ − h̄2

m(θ)

(
0 ∂2 − (∆K)2

∂̄2 − (∆K̄)2 0

)
(32)

valid for very small fault angles where h̄vF |∆K| � t̃⊥ and m = t̃⊥/v
2
F . This expression
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Figure 7. The magnitude of the renormalized Fermi velocity for the zero energy

states is plotted as a function of the coupling parameter α2 = (w/2h̄vF sin(θ/2))2 for

small rotation angles. The oscillations results from sign changes of the Fermi velocity

in the small rotation angle regime. For large rotation angles the renormalization factor

v∗/v ≈ 1− 9α2 → 1. Adapted from [25].

can be derived by replacing the interlayer operators of Eqn. 18 by a simpler expression

t̃⊥σ− which physically describes an interlayer tunneling amplitude across a single

sublattice in each layer. The spectrum of this Hamiltonian features a pair of Dirac cones,

split by the momentum offset |∆ ~K|, that merge at a two dimensional saddle point at

q = 0 representing the topological transition of the band structure. Importantly, the

single layer Dirac cones in this model have the same chirality so that annihilation of the

Dirac points when they are coupled is topologically forbidden. Generically, this model

does allow for an energy offset between the Dirac points of the coupled bilayer but this

is believed to be small for physically reasonable coupling strengths.

The Hamiltonian in Eqn. 32 has been used to study the orbital quantization of

a twisted bilayer in the presence of a perpendicular magnetic field. By construction

the limit ∆K = 0 describes the Landau quantization of Bernal bilayer graphene: a

Berry’s phase of 2π and quantized energy levels ∝
√
n(n− 1)B. By contrast for finite

rotation angles the low energy spectrum of the offset model is a “doubled” theory of

single layer graphene: the fourfold degeneracy due to the spin and valley degrees of

freedom is doubled by an approximate layer decoupling of its low energy eigenstates.

An asymptotic analysis of the eigenvalues within this model demonstrates that splittings

of the Landau level degeneracies due to interlayer coupling are exponentially suppressed

as a function of the rotation angle in the low energy regime [28]. The spectrum thus

features a zero mode and Landau levels that disperse ∝
√
nB [27, 28]. This twofold layer

degeneracy is quickly eliminated as one passes through the crossover energy h̄vF∆K/2

where the Dirac cones merge and hybridize. Above this crossover the spectrum has

a different character: layer degeneracies are removed and the quantized energies are

∝ (n+ 1/2)B as expected for a parabolic interlayer coherent band.
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6. Discussion

Rotational faults commonly occur in a several different forms of graphene and

their electronic properties are actively studied experimentally. The rapidly growing

experimental literature on this subject has not yet provided a unified picture of the

effects of faults on the electronic behavior, possibly due to differences in the electronic

properties of samples produced by different experimental methods.

A significant point of agreement among the various experimental works is that the

interlayer coherence scale is very small in these systems [9, 10, 14, 15]. This can be

deduced clearly from their Landau level spectra which have been measured by scanning

tunneling spectroscopy (STS). These spectra show a scaling of the Landau level energies

En ∝
√
nB [14, 15] the signature of the Landau quantization of a massless Dirac band,

as observed for single layer graphene and quite distinct from the level sequence observed

for Bernal stacked bilayers [3]. Perhaps the strongest evidence for a reduction of the

interlayer coupling scale comes from angle resolved photoemission experiments which

directly measure the quasiparticle dispersion relation [16, 30] and find spectra that

follow the expected form for an isolated Dirac cone. These measurements have been

interpreted as providing the first direct measurement of the Dirac dispersion relation in

graphene, uncontaminated by substrate or other interlayer effects [16].

Since the effects of the interlayer coupling in twisted multilayers are intrinsically

weak, their study is posing a significant experimental challenge. It is here where

different experiments carried out on different samples disagree. For example, the Fermi

velocity can be deduced from the slope of the
√
nB scaling relation for the Landau

quantized energies. The strongest evidence for a twist-induced renormalization of vF
comes from the Landau level spectra measured by scanning tunneling spectroscopy of

CVD graphenes grown on Ni substrates [20]. This work reports that vF is not constant

as a function of scanned position across a macroscopic sample, but instead it is found to

vary in a range 0.87 × 106 m/s < vF < 1.1 × 106 m/s. Simultaneous measurement

of the topography of the Moire superlattice period of these samples correlates the

velocity reduction with the period and hence the rotation angle. The larger value,

found for large angle rotations, agrees well with the vF for single layer graphene and

the 20% reduced value is correlated with a small angle rotation ∼ 3◦ as suggested by a

perturbative analysis of the continuum theory [17, 25]. This contrasts with analogous

STS measurements carried out for multilayer graphenes grown epitaxially on SiC (0001̄).

These also show the
√
nB scaling of the Landau quantized energies. However, for these

materials the slope of the scaling relation yields a Fermi velocity 1.1 × 106 m/s for all

samples studied down to a rotation angle of 1.4◦ [15] completely spanning the range of

rotation angles where a velocity renormalization is expected.

A similar discrepancy arises in the spectroscopy of the van Hove singularity

presumed to occur in the region where the momentum-offset Dirac cones of a twisted

bilayer merge. Low energy STS on Ni/CVD grown graphene reveals low energy peaks

whose energies disperse with their topographically measured rotation angles in the
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low angle regime 1.2 < θ < 3.5◦ [18] roughly consistent with the van Hove scenario.

Yet these features are not seen at all in spectroscopy of the SiC epitaxial twisted

graphenes regardless of the fault angle. Perhaps the strongest challenge to the idea

of a twist-induced spectral reconstruction comes from angle resolved photoemission.

These measurements directly measure the quasiparticle dispersion and clearly resolve

the Dirac cone with a Fermi velocity that is indistinguishable from that of single layer

graphene. Despite a careful search, no evidence is found in these measurements for any

type of hybridization between Dirac cones in the spectral regions where they cross [30].

The simplest interpretation of the ARPES data is that the first few graphene layers

accessible to this spectroscopy are electronically floating, i.e. extremely weakly coupled

to each other and to deeper layers in the film.

An important goal for theory in this area is therefore to identify situations where

the effects of the interlayer coupling across a rotational fault are manifested in their

electronic behavior. There has been progress in this direction. Bistritzer and MacDonald

have studied the effect of the rotation angle of a bilayer on its interlayer tunneling

conductance, predicting dramatic enhancements of the vertical conductance at special

rotation angles that can be identified with low order commensurate superlattices [31].

More recent work has pointed to nontrivial effects of a θ-dependent interlayer coupling

on the equilibrium charge redistribution across the bilayer in a perpendicular field [32].

Kindermann and I studied the Landau level spectra for weakly coupled bilayers and

find that even a weak coherence splitting of bilayer bands at energies well above the

mass scale produces a striking new effect, the Dirac comb [33]. Here small differences

in the orbitally quantized states in two weakly coherence-split bands produces an

amplitude modulation of the Landau level spectrum with a period that greatly exceeds

the coherence scale, and should be observable by magnetotransport in the weak field

regime. Small rotations angles can introduce long spatial Moire periods for twisted

bilayers that can be made commensurate with the magnetic length
√
h̄/eB on accessible

field scales, accessing Hofstadter commensuration physics in a new family of materials

[34]. The band flattening theoretically predicted for in the small twist angle regime will

surely focus attention on many body effects in the low energy physics. Further studies

along all of these lines provide a very open area for further work.

One might be discouraged by the lack of a definitive theory of the electronic

structure of rotationally faulted graphenes. To the contrary this is an exciting situation.

These systems are challenging to the most familiar tools of electronic structure theory

and their understanding is likely to involve creative new approaches.

Acknowledgements

My research that is reported in this review is supported by the Department of Energy

under contract DE-FG02-ER45118.



Interlayer coupling in rotationally faulted multilayer graphenes 23

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V

and Firsov A A 2005 Nature 438 197

[2] Zhang Y, Tan Y-W, Stormer H L, and Kim P 2005 Nature 438 2005

[3] McCann E and Fal’ko V 2006 Phys. Rev. Lett.96 086805

[4] Koshino M and McCann E 2009 Phys. Rev. B 80 165409

[5] Min H and MacDonald A H 2008 Prog. Theor. Phys. Suppl. No 175 1

[6] Min H and MacDonald A H 2008 Phys. Rev. B 77 155416

[7] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nature Physics

DOI:10.1038/nphys2008

[8] Berger C et al. 2006 Science 312 1191

[9] de Heer W A, Berger C, Wu X, Sprinkle M, Hu Y, Ruan M, Stroscio J A, First P N, Haddon R,

Piot B, Faugeras C, Potemksi and Moon J-S 2010 J. Phys. D 43 374007

[10] Hass J, Varchon F, Millan-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N,

Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504

[11] Reina A et al 2009 Nano Lett. 9 30

[12] Schmidt H, Ludtke T, Barthold P, McCann E, Fal’ko V I and Haug R I 2008 Appl. Phys. Lett. 93

172108

[13] Li G and Andrei E Y 2007 Nature Physics 3 623

[14] Li G, Luican A and Andrei E Y 2009 Phys. Rev. Lett. 102 176804

[15] Miller D M, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009

Science 324 9242

[16] Sprinkle M et al. 2010 Phys. Rev. Lett. 81, 155436 (2010)

[17] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802

[18] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y

2009 Nature Physics 6 109

[19] Mele E J 2010 Phys. Rev. B 81 161405

[20] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011

Phys. Rev. Lett 106 126802

[21] Latil S, Meunier V and Henrard L 2007 Phys. Rev. B 76 201402

[22] de Laissardière G T, Mayou D and Magaud L 2010 Nano Letters 10 804

[23] Shallcross S, Sharma S and Pankratov O A 2008 Phys. Rev. Lett. 101 056803 (2008)

[24] Shallcross S, Sharma S, Kandelaki E and Pankratov O A 2010 Phys. Rev. B 81, 1

[25] Bistritzer R and MacDonald A H 2011 Proc. Nat. Acad. Sci. 108 12233

[26] Castro E V, Novoselov K S, Morozov S V, Peres N M R, Lopes dos Santos J M B, Nilsson J,

Guineau F, Geim A K, and Castro Neto A H 2007 Phys. Rev. Lett 99 216802

[27] de Gail R, Goerbig M O, Guinea F, Montambaux G, Castro Neto A H 2011 Phys. Rev. B 84

045436

[28] Choi M-Y, Hyun Y-H and Kim Y 2011 arXiv:1105.4551v1

[29] Castro E V, Novoselov K S, Morozon S V, Peres N M R, Lopes dos Santos J M B, Nilsson J,

Guinea F, Geim A K and Castro Neto A H 2010 J. Phys.: Condes. Matter 22 1

[30] Hicks J et al. 2011 Phys. Rev. B 83 205403

[31] Bistritzer R and MacDonald A H 2010 Phys. Rev. B 81 245412

[32] Suarez Morelli E, Vargas P, Chico L and Brey L 2011 arXiv: 1108.0395v1

[33] Kindermann M and Mele E J 2011 arXiv:1106.0204

[34] Bistritzer R and MacDonald A H 2011 Phys. Rev. B 84 035440

http://arxiv.org/abs/1105.4551

	1 Introduction
	2 Geometrical Considerations
	2.1 Lattice Structures
	2.2 Reciprocal Space

	3 Layer Decoupling by Rotational Mismatch
	4 Atomistic Calculations
	5 Second Generation Continuum Theories
	5.1 Interlayer Matrix Elements
	5.2 Superlattice Commensuration Effects
	5.3 Nonlocal Potential Scattering
	5.4 Two Band Models

	6 Discussion

