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Abstract 
 
We present a method for the direct and continuous separation of red and white blood cells 

from plasma at the microscale. The method is implemented in a microfluidic system with 

magnetic functionality. The fluidic structure within the microsystem consists of an inlet 

and a single microfluidic channel with multiple outlets. The magnetic functionality is 

provided by an array of integrated soft-magnetic elements that are embedded transverse 

and adjacent to the microchannel. The elements are magnetized using an external field, 

and once magnetized they produce a magnetic force on blood cells as they flow through 

the microchannel.  In whole blood, white blood cells (WBCs) behave as diamagnetic 

microparticles, while red blood cells (RBCs) exhibit diamagnetic or paramagnetic 

behavior depending on the oxygenation of their hemoglobin.   We study the motion of 

blood cells through the microchannel using a mathematical model that takes into account 

the magnetic, fluidic and gravitational forces on the cells. We use the model to study 

blood cell separation, and our analysis indicates that the microsystem is capable of 

separating WBC-rich plasma, deoxygenated RBC-rich plasma and cell-depleted plasma 

into respective outlets.   
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I. Introduction 

Microfluidic systems with magnetic functionality are finding increasing use in 

bioapplications that involve the immobilization and separation of biomaterials such as 

cells, proteins, antigens and DNA.1  In most such applications, the biomaterial needs to 

be magnetically “labeled” with magnetic micro/nano-particles in order to provide 

sufficient coupling to an applied field to enable manipulation. Direct manipulation 

(without labeling) is not usually practical as the intrinsic magnetic susceptibility of most 

biomaterials is so small that they do not efficiently couple to a field. However, there are 

exceptions such as blood cells, which can be manipulated with practical magnetic fields. 

2-8 Furthermore, in venous (deoxygenated) blood, white blood cells (WBCs) behave as 

parametric microparticles, while deoxygenated red blood cells (RBCs) exhibit 

diamagnetic behavior.9-10 Thus, these two types of cells move in opposite directions in an 

applied field, and therefore in principle they can be magnetically separated from one 

another.  

To date, relatively few systems have been developed that magnetically separate 

unlabeled blood cells, despite a substantial need for fast, accurate, and inexpensive blood 

cell analysis.11  One such system has been developed by Takayasu et al.10  In this system, 

the blood flows continuously through a flexible rectangular conduit (3.5 mm x 1 mm) 

that is wrapped in the form of a helix with an overall diameter and length of 80 mm and 

100 mm, respectively. The magnetic force is provided by a magnetic wire (1mm 

diameter) that is wrapped along the length of the conduit in close proximity to it. The 
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wire is magnetized by placing the conduit/wire assembly along the axis of a 

superconducting solenoidal electromagnet. This system separates deoxygenated blood 

into three outlets that contain WBC-rich plasma, deoxygenated RBC-rich plasma and 

cell-depleted plasma, respectively.  

A much smaller microscale system has been developed by Han and Frazier.12 In 

this system there are two identical and parallel flow channels, which are 30 mm long and 

have a height and width of 50 µm and 150 µm, respectively. The magnetic force is 

provided by an integrated rectangular (50 µm x 120 µm) soft-magnetic bar that runs the 

length of the channels (between them), and is magnetized by a permanent magnet. This 

system separates deoxygenated blood into three outlets; two that contain deoxygenated 

RBC-rich plasma, and a third that contains WBC-rich plasma.    

In this paper we introduce a magnetically functional microfluidic system for the 

continuous and direct separation of blood cells from plasma. The fluidic structure in the 

microsystem consists of an inlet that feeds a single microfluidic channel with three 

outlets (Fig. 1). The magnetic functionality is provided by an array of integrated soft-

magnetic elements, which are embedded transverse and adjacent to the microchannel. A 

bias field is used to magnetize the elements, and once magnetized these elements produce 

a magnetic force on blood cells as they flow through the microchannel. Specifically, the 

magnetized elements repel WBCs and attract deoxygenated RBCs (Fig. 1c). The 

microsystem is oriented with the microchannel (blood flow) aligned with the 

gravitational force, and the cells are separated perpendicular to the flow. The reason for 

this is because the fluidic and gravitational forces are greater than the magnetic force over 
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extended regions of the flow channel, and therefore they need to be orthogonal to the 

direction of cell separation so as not to resist it. In this paper we study the transport of 

blood cells through the microsystem.  We model blood cell separation taking into account 

magnetic, fluidic and gravitational forces. Our analysis indicates that the microsystem is 

capable of separating WBC-rich plasma, deoxygenated RBC-rich plasma and cell-

depleted plasma into respective outlets.  

The cell/plasma separation method presented here has advantages over competing 

techniques such as centrifuging, or magnetic activated cell sorting (MACS), which 

involves magnetic labeling. Specifically, small samples of blood can be processed within 

minutes with the cells in their native state.  Furthermore, the microsystem is compact and 

efficient; i.e., energy is needed to sustain blood flow through the microchannel, but the 

cell/plasma separation itself consumes no energy. Thus, the microsystem is highly 

portable and holds potential for low cost point-of-service medical diagnostic applications. 

It is also ideal for filtering weakly magnetic micro/nano-particles from a transport fluid.   

Lastly, we note that this paper represents an extension of earlier work.13 

Specifically, the microsystem described here is an enhancement of one introduced in a 

previous paper, which was limited to the separation of WBCs from deoxygenated RBCs, 

with no ability to extract cell-depleted plasma.  Similarly, a model for predicting cell 

transport through the microsystem was developed earlier, but its application was limited 

to a proof-of-concept study. Here, we use the model for parametric analysis to study the 

cell separation performance of the microsystem as a function of its magnetic structure.  
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II. Theory 

In this section we briefly review a model for predicting blood cell transport 

through the microsystem; a detailed description of the model can be found in a previous 

paper.13 The model takes into account the dominant forces on the cells and is based on 

the following simplifying assumptions: the blood cells are treated as noninteracting rigid 

microspheres; the blood flow in the microchannel is laminar; the impact of particle 

motion on the flow field is ignored; a fixed value is used for the blood viscosity (complex 

blood rheology is ignored); and wall effects are ignored when determining the fluidic 

force. While this model is not suitable for a rigorous analysis of cell transport, we use it 

to assess the feasibility of cell separation based on the interplay of the dominant forces on 

the cells. A rigorous analysis of cell transport would require a complicated, fully-coupled 

structural/fluidic numerical analysis that would account for the interactions of numerous 

structurally deformable cells, and this is beyond the scope of the present work.   

We predict the motion of blood cells using Newton’s law,  

          c
c m f g

dm ,
dt

= +
v F F + F   (1) 

where cm and cv  are the mass and velocity of the cell, and mF , fF , and gF  are the 

magnetic, fluidic and gravitational force (including buoyancy), respectively. The 

magnetic force is obtained using an “effective” dipole moment approach and is given 

by14-16 

                                              ( )( )m 0 c a aV c fµ χ χ= − •∇F H H ,           (2) 
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where cχ  and cV  are the susceptibility and volume of the cell, and fχ  is the 

susceptibility of the transport fluid (in this case plasma). aH is the applied magnetic field 

at the center of the cell, and 7
0 4 10  H/mµ π −= ×  is the permeability of free space. The 

fluidic force is based on Stokes’ law for the drag on a sphere in a viscous fluid,        

                                           f c,hyd c f6 R ( ),πη= −F v - v                           (3) 

where c,hydR  is the effective hydrodynamic radius of the cell, and η  and fv are the 

viscosity and the velocity of the fluid, respectively. The gravitational force is given by  

        g c c f ˆV ( )g ,ρ ρ=F - x  (4) 

where cρ  and fρ  are the densities of the cell and fluid, respectively ( 2g 9.8 m/s= ). Note 

that gravity acts in the + x direction, parallel to the flow (see Figs. 1c and 2b).   

A The Magnetic force 

The magnetic force depends on the field in the microchannel and the coupling of 

the cells to this field. The magnetic field is a superposition of the bias field biasH  and the 

field eH due to the array of magnetized elements,  

 ( )     H H H
a bias e

e,x bias,y e,y

= +

= + +

H H H
� �x y.

 (5) 

These fields are not independent as biasH induces eH . Thus, to predict the total field in 

the microchannel we need models for the bias field, the magnetization of the elements, 

and the field of the magnetized elements. Our model for the bias field is based on an 
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analytical analysis of the field due to a rectangular block magnet17 (pp 211-216 of 

reference 18). We use this model to optimize the magnitude and uniformity of the bias 

field across the microsystem. Once biasH  is known we use a linear magnetization model 

with saturation to predict the magnetization eM of the soft-magnetic elements.13 

Specifically, we assume that the elements are identical and noninteracting (i.e., the field 

of one does not affect the magnetization of another), and obtain  

 d
d

d

H H N M
NM
M H N M

bias
bias es

e

es bias es

 <= 
 ≥

, (6) 

where dN  is the demagnetization factor of the element, which is geometry dependent, 

and esM  is its saturation magnetization. The demagnetization factor for a highly 

permeable ( eχ ≈ ∞ ) long rectangular element of width 2w and height 2h that is 

magnetized parallel to its height can be obtained using analytical formulas (see Fig. 2b).  

Specifically, both the demagnetization factor Nd  and the aspect ratio of the element 

hp
w

=  can be defined parametrically as a function of a variable k  over the 

domain 0 1k< <  as follows:19      

 
2 2

d 2

E( ) ' ( ) E( ') ( ')4N ,
'

k k K k k k K k
kπ

   − −   =  (7) 

 
2

2

h E( ') ( ') ,
w E( ) ' ( )

k k K k
k k K k

−
=

−
 (8) 
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where 2' 1k k= − , and ( )K k  and E( )k  are the complete elliptic integrals of the first 

and second kind, respectively, 

 2 22 2
2 20 0

1K( ) E( ) 1 sin ( )
1 sin ( )

k d k k d
k

π π

φ φ φ.
φ

= , = −
−

∫ ∫  (9) 

To determine the magnetization of the elements, we first use Eqs. (7) and (8) to obtain 

Nd  for a give aspect ratio p  (see p 191, Table A.2 in reference 19), and then we 

substitute this value into Eq. (6) to get eM .  

    Once eM  is known, eH  is easily determined. Specifically, the field solution for 

a long rectangular element of width 2w and height 2h that is centered with respect to the 

origin in the x-y plane, and magnetized parallel to its height (along the y-axis as shown in 

Fig. 2b) is well known (pp 210-211in reference 18).  The field components are 

         
2 2 2 2

(0)
2 2 2 2

M (x + w) ( ) (x - w) ( )H ( , ) ln ln ,
4 (x + w) ( ) (x - w) ( )

e
ex

y h y hx y
y h y hπ

    + − + − = −    + + + +     
         (10) 

and  

          (0) -1 -1
2 2 2 2 2 2

M 2h(x + w) 2h(x - w)H ( , ) tan   tan .
2 (x + w) (x - w)

e
ey x y

y h y hπ
    

= −    + − + −    
       (11) 

In these equations, eM  is determined using Eq. (6).  

The field due to the entire array of elements is obtained via superposition. Let Ne 

denote the number of elements, and let the first element be centered with respect to the 

origin in the x-y plane. All other elements are positioned along the x-axis as shown in Fig. 

2b. We identify the elements using the index n = (0,1,2,3,4, …, Ne-1). The field 

components due to the first element (n = 0) are given by Eqs. (10), (11). The n’th element 
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is centered at nx s= , and its field and force components can be written in terms of the 

0’th components as follows:   

                            

( ) (0)

( ) (0)

( , ) ( , )
                                                 ( 1, 2,3, )

( , ) ( , ).

n
ex ex n

n
ey ey n

H x y H x s y
n

H x y H x s y

= −

=

= −

…  (12) 

 
The total field of the array is obtained by summing the contributions from all the 
elements,  

 
1

(0)

0
( , ) ( , ),

eN

ex ex n
n

H x y H x s y
−

=

= −∑  (13) 

 
1

(0)

0

( , ) ( , ).
eN

ey ey n
n

H x y H x s y
−

=

= −∑  (14) 

 
The force components are given by13,16,17  
   

( )
1 1 (0)

(0)
0 c

0 0

1 1 (0)
(0)

,
0 0

( , )F ( , ) V ( , )  

( , )                                               ( , )  

e e

e e

N N
ex n

mx c f ex n
n n

N N
ex n

bias y ey n
n n

H x s yx y H x s y
x

H x s yH H x s y
y

µ χ χ
− −

= =

− −

= =

   ∂ −= − −   ∂   
   ∂ −

+ + −   ∂   

∑ ∑

∑ ∑ ,



 (15) 

and   

( )
(0)1 1

(0)
0 c

0 0

(0)1 1
(0)

,
0 0

( , )
F ( , ) V ( , )

( , )
                                                 ( , )  

e e

e e

N N
ey n

my c f ex n
n n

N N
ey n

bias y ey n
n n

H x s y
x y H x s y

x

H x s y
H H x s y

y

µ χ χ
− −

= =

− −

= =

  ∂ − = − −    ∂   

 ∂ − 
+ + −    ∂  

∑ ∑

∑ ∑ .




 (16) 

In Eqs.  (15) and (16) we have assume that the bias field is constant and in the y-direction.   
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B. Fluidic force 

The fluidic force is predicted using Stokes’ law for the drag on a sphere in a 

viscous fluid. The blood flow in the microchannel is assumed to be laminar, and since the 

diameters of WBCs and RBCs are small relative to the channel height, we assume that 

the fluid velocity is relatively constant across the cells. We use Eq. (3) to estimate the 

drag force at a given time using the particle velocity at that time, and the fluid velocity at 

the position of the cell at that time. Let ch and cw denote the half-height and half-width of 

its rectangular cross section (Fig. 2a).  We assume fully developed laminar flow parallel 

to the x-axis and obtain  

 
2

f
f

( )3 vv ( ) 1
2

c

c

y h hy
h

  − +
 = −  
   

, (17) 

where fv  is the average flow velocity in the channel.16,17  Note that the distance y in Eq. 

(17) is taken with respect the center of the magnetic elements (Fig. 2b). We substitute Eq. 

(17) into Eq. (3) and obtain the fluidic force components 

 
2

f
fx , c,x

3v ( )6 v 1 ,
2

c
c hyd

c

y h hR
h

πη
   − + = − − −  
     

F  (18) 

and  

                fy , c,y6 v .c hydRπη= −F        (19)

We use these in the equations of motion below. 
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C. Blood cell properties 

The magnetic properties of WBCs, RBCs and plasma are needed to complete the 

model. White blood cells comprise five different kinds of cells that are classified into two 

groups: agranulocytes (lymphocyte and monocyte), and granulocytes (neutrophil, 

eosinophil and basophil).10,20  These cells have different sizes, with diameters that range 

from 6  µm to 15 µm. We account for the different types of WBCs by using the following 

average cell properties: 31070  kg/mwbcρ = , wbcR = 5 µm, and wbcV  = 524 µm3.20 White 

blood cells exhibit a diamagnetic behavior in plasma, but their magnetic susceptibility is 

not well known.10 Furthermore, the different types of WBCs may have different values of 

susceptibility, and these decrease with time. In order to determine the feasibility of WBC 

separation we use an estimate for WBC susceptibility as suggested by Takayasu et al., 

specifically we use the susceptibility of water 6
2 9.2 10wbc H Oχ χ −= = − ×  (SI).10  While this 

value should provide a conservative estimate of the magnetic force on a WBC, we study 

WBC separation below using a range of values ( 69.2 10 wbc plasmaχ χ−− × ≤ < ) in order to 

determine the impact of this parameter on system performance.  

Red blood cells when unperturbed, have a well-defined biconcave discoid shape 

with a diameter of 8.5 ± 0.4 µm and a thickness of 2.3 ± 0.1 µm. These cells account for 

approximately 99% of the particulate matter in blood, and the percentage by volume 

(hematocrit) of packed red blood cells in a given sample of blood, is normally 40-45%. 

For red blood cells, we use rbcR = 3.84 µm (hydrodynamic radius), 3
rbcV 88.4 m= µ , and 
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31100  kg/mrbcρ = .21 The susceptibility of a RBC depends on the oxygenation of its 

hemoglobin. We use 6
, 9.22 10rbc oxyχ −= − ×  (SI) and 6

, 3.9 10rbc deoxyχ −= − × (SI) for 

oxygenated and deoxygenated red blood cells, respectively.9,10,21 Finally, the transport 

fluid is blood plasma which has the following properties: 0.001 kg/sη = , 

31000 kg/mfρ =  and 67.7 10fχ −= − ×  (SI). 9,10,21  

D. Equations of motion 

The equations of motion for blood cell transport through the microsystem can be 

written in component form by substituting Eqs.  (15), (16), (18) and (19) into Eq.  (1), 

2
c,x c cf

c mx c c c,hyd c,x c c f
c

dv y (h h )3vm F (x , y ) 6 R v 1 V ( )g,
dt 2 h

   − +  = − πη − − + ρ ρ 
     

-  (20) 

 c,y
c my c c c,hyd c,y

dv
m F (x , y ) 6 R v

dt
= − πη , (21) 

           v ( ) ,                 v ( ) .   c c
c,x c,y

dx dyt t
dt dt

= =                             (22) 

Equations (20) - (22) constitute a coupled system of first-order ordinary differential 

equations that are solved subject to initial conditions for (0)cx , (0)cy , ,v (0)c x , and 

,v (0)c y . These equations can be solved numerically using numerical techniques such as 

the Runge-Kutta method.  
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II. Results 

We use Eqs.  (20) - (22) to study blood cell transport through the microsystem. 

We start with a specific configuration in which the microchannel is 120 µm high 

( 60ch mµ= ), 1 mm wide and 35 mm long. There are 80 identical permalloy elements 

(78% Ni 22% Fe, page 43 in reference 18) embedded transverse and adjacent to the 

microchannel. Each element has a height and width of 200 µm, and the elements are 

spaced 200 µm apart (edge to edge). Thus, w = h = 100 µm in Eqs. (10) and (11), and 

these elements have an aspect ratio / 1p h w= = . We use Eqs. (7) and (8) to determine the 

demagnetization factor for these elements, which turns out to be N 0.456d =  (p 191, 

Table A.2 in reference 19). The 80 elements span a distance of 31.8 mm along the 

channel.  The bias field is 5000 Gauss ( 5H 3.9 10bias = ×  A/m), which is sufficient to 

magnetically  saturate the elements.  

It instructive to examine the magnetic force provided by the elements. To this end, 

we use Eqs. (15) and (16) to predict the magnetic force on deoxygenated RBCs in the 

microchannel above an isolated array of three magnetized elements with the dimensions 

and spacing as defined above. The force components mxF  and myF across the 

microchannel are shown in Figs 3a and 3b, respectively. These components are computed 

over the dotted rectangular region show in Fig. 3c, which extends from 20 µm to 100 µm 

above the elements, and from -100 µm to the left of the array to + 100 µm  to the right of 

the array.  Note that mxF , which is in the flow direction, changes sign across each 
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element; while myF , which is responsible for cell separation, also changes sign across 

each element, but acts predominantly downward above each element. Thus, the magnetic 

elements will attract deoxygenated RBCs, but repel WBCs  and oxygenated RBCs. Also 

not that myF  is on the order of a pico-Newton near the elements, but decreases rapidly 

with distance from the elements. By comparison, the gravitational force 

g c c fV ( )gρ ρ=F - (including buoyancy) on a RBC is approximately 0.09 pN, which is on 

the same order as, or greater than, the magnetic separation force over extended regions of 

the microchannel. Similarly, the flow-directed fluidic force on a RBC is even larger, (e.g. 

approximately 7.2 pN for an average flow velocity of fv 0.1 mm/s= ). Thus, it is 

advantageous to orient the microsystem with the gravitational and flow-directed fluidic 

force orthogonal to the direction of separation so that they do not resist it. 

   We now study blood cell transport. A blood sample containing WBCs and 

deoxygenated RBCs is introduced into the inlet. We assume that blood cells enter the 

microchannel to the left of the first element at (0) 4 .x w= −  We choose different initial 

heights for the cells to determine the impact of this variable on cell separation. 

Specifically, we choose y(0) = 115 µm, 130 µm, …, 205 µm. The top of the 

microchannel is 120 µm above the elements at y = 220 µm. The average fluid velocity is 

fv 0.2 mm/s,=   and the cells enter the channel with a velocity that correlates with their 

initial height in the channel (laminar flow). We use Eqs.  (20) - (22) to predict WBC and 

RBC trajectories, which are shown in Fig. 4a and b, respectively. The trajectory profiles 

are slightly irregular due to the spatial variation of the magnetic force.13,16,17 Note that the 
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WBCs and deoxygenated RBCs separate well before they reach the end of the array.  

Specifically, all the WBCs move to the top of the channel, while all the deoxygenated 

RBCs move to the bottom.  The separation times for the WBCs and RBCs (i.e. the time it 

takes for all of the cells to reach their respective ends of the microchannel) are 95s and 

120s, respectively. As a consequence of this separation, WBC-rich plasma and 

deoxygenated RBC-rich plasma will exit the microchannel at the respective side outlets, 

while cell-depleted plasma will exit through the central outlet as shown in Fig. 1b.    

Next, we study cell separation as a function of the dimensions of the magnetic 

elements. We repeat the analysis above but vary the dimensions and spacing of the 

elements with all other variables held constant.  We perform two simulations with the 

dimensions (height, width and spacing) of the elements set to 300 µm and 400 µm, 

respectively. The WBC and RBC trajectories for these cases are shown in Figs. 4 and 5, 

respectively.  Notice that cell separation occurs over a shorter distance (faster) as the size 

and spacing of the magnetic elements increase relative to the dimensions of the channel.  

Lastly, we study WBC separation as a function of WBC susceptibility. Note that 

in our previous simulations we used 69.2 10wbcχ −= − ×  (SI), which we believe provides a 

conservative estimate for the magnetic force, and hence separation. However, since wbcχ  

is not well known, it is instructive to study the feasibility of WBC separation for less 

negative values of wbcχ , i.e. in the range 69.2 10 wbc plasmaχ χ−− × < < . Such values render a 

weaker magnetic force than the nominal value, and hence weaker separation. We perform 

simulations using 6 6 6 68.0 10 , 8.15 10 , 8.45 10 , , 9.20 10wbcχ − − − −= − × − × − × − ×… (SI). These 
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susceptibilities yield magnetic forces that are respectively 20%, 30%, 40%,…, and 100% 

of the nominal force obtained using the nominal value 2wbc H Oχ χ= . We predict the WBC 

separation time (i.e., the time it takes for a WBC to traverse the height of the 

microchannel) for the range of wbcχ . We set the height, width and spacing of the 

magnetic elements to 400 µm, and set all other parameters as in our simulations above.  

In Fig. 7, we plot the separation time as a function of the percentage of force that each 

wbcχ value corresponds to, i.e.,  ( ) ( )2/ 100wbc plasma H O plasmaχ χ χ χ − − ×   = 20, 40,…, 100. 

The WBC trajectories for two of the cases: 68.0 10wbcχ −= − ×  and 68.45 10−− × , which 

correspond to 20% and 50% of the nominal magnetic force, are shown in Fig. 8. From 

these plots we find that a weaker magnetic force renders a longer separation time as 

expected. However, the analysis indicates that WBC separation is still feasible even when 

the magnetic force is only 20% of our assumed conservative value. Furthermore, even if 

the magnetic coupling to the WBCs were weaker than our simulated lower bound 

( 68.0 10wbcχ −= − × ),   there are several other variables that can be adjusted to compensate 

for this to ensure viable WBC separation. Specifically, one could increase the number, 

size, and spacing of the elements, or decrease the height of the microchannel, or reduce 

the flow rate to enhance separation for weakly coupled cells.  
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IV. Conclusion 

We have presented a method and model for the direct and continuous separation 

of deoxygenated whole blood into three components: deoxygenated RBC-rich plasma, 

WBC-rich plasma, and cell-depleted plasma. The method can be implemented in a 

passive magnetophoretic microsystem that enables rapid processing of small blood 

samples. The microsystem is compact, efficient and can be fabricated using established 

methods.12,22-24 As such, it holds substantial potential for point-of-service medical 

diagnostic applications. The microsystem is also suitable for a broad range of 

applications that involve the manipulation, immobilization or filtering of weakly 

magnetic micro or nanoparticles.  
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Figure Captions 

FIG. 1. Magnetophoretic microsystem:  (a) microsystem with bias field structure; (b) 

cross-section of microsystem showing magnetic elements, microchannel and outlets; and 

(c) magnified view of microfluidic channel showing the bias field, magnetic elements, 

and forces on red and white blood cells (RBCs and WBCs).      

FIG. 2.  Magnetophoretic microsystem:  (a) microfluidic channel, and (b) cross section of 

microsystem showing array of magnetized elements.  

FIG.  3.  Magnetic force across the microchannel above three magnetized elements: (a) 

surface plot of  Fmx, (b) surface plot of  Fmy., (c) area (dotted line) over which the 

magnetic force is computed.  

 FIG.  4.  Blood cell trajectories above magnetized elements; height, width and spacing of 

elements = 200 µm  (upper half of elements shown for reference): (a) WBC trajectories, 

(b) RBC trajectories. 

FIG.  5.  Blood cell trajectories above magnetized elements, height, width and spacing of 

elements = 300 µm  (upper half of  elements shown for reference): (a) WBC trajectories, 

(b) RBC trajectories. 

FIG. 6.  Blood cell trajectories above magnetized elements, height, width and spacing of 

elements = 400 µm (upper half of elements shown for reference): (a) WBC trajectories, 

(b) RBC trajectories. 

FIG. 7.  White blood cell separation time vs. WBC susceptibility. 

FIG. 8.  White blood cell trajectories above magnetized elements, height, width and 

spacing of elements = 400 µm  (upper half of elements shown for reference):  

(a) 68.45 10wbcχ −= − ×  (SI),  (b) 68.0 10wbcχ −= − ×  (SI). 
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