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Abstract 

 The mechanisms of friction in natural joints are still relatively unknown and attempts at modelling 
cartilage-cartilage interfaces are rare despite the huge promise they offer in understanding bio-friction. This article 
derives a model combining finite strain, porous and thin film flow theories to describe the lubrication of cartilage-
on-cartilage line contacts. The material is modelled as compliant and poroelastic in which the micro-scale fibrous 
structure is interstitially filled with synovial fluid. This fluid flows over the interface between the bodies and is 
coupled to pressure generated by relative motion in the thin-film region formed under load. A Stribeck analysis 
demonstrated that this type of contact is determinable to conventional elastic lubrication but that the friction 
performance is improved by this interfacial flow. Moreover, the inclusion of periodic flow conditions when 
contact is onset is a specific novelty which elucidates new observations in the lubrication mechanisms pertaining 
to natural joints.  
 
Keywords: Poroelasticity; Lubrication; Compliance; Cartilage; Friction. 
 
1. Introduction  

The interface of mammalian articular joints is comprised of opposing cartilage layers which allow for 
sliding under shock and cyclic loads with very low friction [1], [2], [3]. Degradation of the cartilage surfaces due 
to degenerative diseases, such as osteoarthritis, affects around 3.3% of the works population. Joint pain, stiffness, 
swelling and decreased range of motion are common symptoms associated with the disease. Whilst non-invasive 
treatment methods exist to combat pain and discomfort, joint replacement is common tool to symptoms. The 
cartilage can be conceptualised as a compliant-poroelastic material containing a fluid phase and a solid matrix 
which frustrates the free movement of fluid creating transient pressure responses to deformation [4], [5], [6], [7]. 
The fluid acts as the primary load bearing medium when the surfaces are in motion, but when the movement is 
slow or stationary loads are transferred to the solid matrix as the fluid migrates out of the high pressure regions 
[8], [9]. Maintaining a significantly pressurised fluid is dependent on whether the forces induced by advection of 
the material as it undergoes deformation are significantly larger than those due to diffusion of the fluid within the 
material due to porous flow. This results in a high Peclet number for the contact with this behaviour, referred to 
in the literature as migrating contact, contributing to the remarkable load carrying capacity [10], [11], [12] and 
the ability to maintain a well lubricated interface for sustained use [13], [14]. At the cartilage surface fluid is free 
to traverse the boundary in response to a load differential across that boundary. This allows for the tribological 
rehydration process whereby fluid in the converging wedge is drawn into the poroelastic medium from the 
surrounding bath [15], [16]. Whilst the hydration of the cartilage tissues has been noted as an important contributor 
to lubrication, it has been hypothesised recently that it is equally important to the preservation of joint space and 
ultimately joint health [15]. 

Biot [17] created an early description of fluid flow in a poroelastic solid and subsequent investigators 
have since built on this to model articular cartilage [5], [18], [19], [20]. Estimates for the material properties have 
been derived from experimental compression testing [9], [21], [22] and from magnetic resonance imaging [23]. 
High fidelity models focusing on the bio mechanics of a single joint have utilised commercial finite element 
packages to understand how the cartilage is externally loaded by the relative motion of bone [24], [25], [26], [27].  

While it is clear that the lubrication processes at the boundary is complex, it has been shown that the 
resulting friction coefficients from a cartilage-on-glass case form a Stribeck curve similar to those in non-porous 
materials [28]. Soft fluid-filled porous materials of this nature have been modelled by coupling the continuum 
mechanics that describe a compliant-poroelastic material with thin film theory to describe the lubricating boundary 
[29], [30]. Recently, this was expanded to include a Stribeck type analysis of a compliant-poroelastic (or 
porohyperelastic) material rotating against an impermeable surface to show that the lubrication modes (boundary, 
mixed and hydrodynamic) can be predicted at given operating conditions [31]. The present work performs a 
similar Stribeck type analysis on two contacting compliant-poroelastic layers. Replacing the impermeable wall 
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with a compliant-poroelastic surface allows fluid to flow across the contacting boundaries and for mutual 
deformation in response to contact, friction and lubricating loads. This more closely represents the tribological 
reality in a natural joint and is achieved using a periodic flow boundary condition at the interface in the fluid 
phase. This condition is the novel contribution of this work which facilitates a step-change in the state-of-the-art 
modelling capacity for cartilage interactions in natural joints. 
 
2. Materials and Methods 

 This section provides a definition of the problem in terms of cartilage-on-cartilage contacting in the 
natural joint, outlines the theory of compliant-poroelastic lubrication, the numerical procedure implemented to 
solve the problem and defines the case study investigated in the remainder of the article. 
 
2.1 Problem Definition 

In this article the compliant-poroelastic lubrication of cartilage-on-cartilage is considered where two 
bodies rotate under load in a line contact geometry. For this purpose, a 2D cross-section through the geometry is 
modelled and the governing equations derived. The geometry is defined in the x-y plane in which the size of the 
body considered in the out-of-plane z direction is orders of magnitude larger than in either of the x or y directions. 
The contacting interfaces are assumed to be perfectly smooth, the material properties are isotropic and do not vary 
within the compliant-poroelastic material.  

Figure 1 shows the problem geometry where two bodies ABCD and EFGH represent converging-
diverging wedges of cartilage, both with outer and inner radii of R0 and R1 respectively, rotating at axial speeds 
of Ω1 and Ω2 about their corresponding centres [0, ±R0, 0]. The boundaries AD, BC, EH and FG of the cartilage 
bodies extend far enough from the centre such that they do not affect the results generated in the contact region. 
A sector angle of ±θ specifies the pre-deformation geometry of the bodies which both have a line of symmetry at 
x = 0. The backing of the cartilage bodies CD and GH are assumed to be in contact with rigid bone within the 
natural joint and as such they are impermeable and do not deform.  
 

 
 
Figure 1 – Sketch of the compliant-poroelastic lubrication of two curved articular cartilage bodies rotating under 
load. In the case shown the penetration depth v0 < 0, deformation of the contacting interface is included, and a 

full film of thickness h is formed. 
 

The boundaries AB and EF represent the lubricated interface of cartilage-on-cartilage, surface texture 
and/or roughness of these surface is not included in the model. This forms a line contact problem in which a 
lubricated film of thickness h is created between the surfaces, additional constraints apply due to flow between 
the lubricating region and the cartilage bodies. The boundaries AB and EF can also be in solid contact depending 
on the magnitude of the load carried, when the bodies contact there is a transition from fluid film lubrication to 
periodic fluid flow across the porous interface. The total load carried is L = L1 = −L2, which is the load due to 
fluid pressure and solid normal stress acting on AB and EF respectively. The subscripts 1 and 2 are used 
throughout this article to distinguish between variables related to the bodies ABCD and EFGH respectively, giving 

the total load on ABCD as L1 and EFGH as L2. To generate this, the bodies are deformed by an increment of ± v02  

about the line y = 0 such that they contact with a penetration depth of v0. For negative penetration depths a full 
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fluid film is formed, as v0 decreases to zero and then becomes positive surface deformation is generated and a full 
fluid film is maintained, subsequently as v0 becomes more positive solid contact of the interface onset.  
 
2.2 Compliant-Poroelastic Lubrication 

In this model cartilage is considered biphasic in which the solid fibrous material deforms under load and 
is interstitially pressurised by a fluid filling the pores. The poroelastic description of cartilage is well-established 
as an accurate means of capturing the behaviour of the material under load [5], [6]. Compliant-poroelasticity or 
porohyperelasticity is of specific interest because cartilage experiences large deformations during operation in the 
natural joint, therefore compliance must be considered in any model describing this complex Fluid Structure 
Interaction phenomenon [18]. In the following subsections compliant-poroelastic lubrication is described in which 
the combined theories of finite strain, porous flow and thin film flow form a mechanism describing the 
functionality of cartilage in natural joints. A steady-state assumption is applied to the model derived by de Boer, 
et al. [31] for cartilage against a rigid impermeable surface. This is then expanded for the contact of two compliant-
poroelastic bodies, elucidating the lubrication mechanisms for cartilage-on-cartilage contacts under representative 
constant load and axial speed conditions. 
 
2.2.1 Solid Mechanics 

Finite strain theory is invoked to derive the equation of state for the compliant solid phase, the generation 
of stress is subsequently coupled to fluid pressurisation to form the compliant-poroelastic response. This results 
in Eq. (1) which describes the conservation of energy in the solid phase coupled to the body force generated by 
fluid pressurisation. The equation of state for the solid phase is derived based on the definition of the Biot-Willis 
parameter α and the strain energy density W. The Biot-Willis coefficient is a fundamental constant used in the 
definition of poroelasticity in order to account for the compressibility of the solid and fluid phases respectively 
[17]. The strain energy density is used to define the hyperelastic response of the solid deformation in which the 
stress-strain relationship for the material is obtained by the derivative of strain energy density with respect to 
strain [32]. This expands on the concept of linear poroelasticity established for cartilage like materials by Mow, 
et al. [5], [6] toward finite deformations and compliant materials as implemented by Simon [18] and more recently 
by de Boer et al. [31] with respect to rotating interfaces and lubrication.  

In Eq. (1), 𝐮 is the solid deformation, p is the fluid pressure, 𝐅 = 𝐈 + ∇𝐮 is the deformation gradient 

tensor and 𝐒 = ∂W∂𝛆  is the 2nd Piola-Kirchhoff stress tensor. Where 𝐈 is the identity tensor, 𝛆 = 12 (𝐂 − 𝐈) is the strain 

tensor, and 𝐂 = 𝐅T𝐅 is the right Cauchy-Green deformation tensor. Due to the 2D nature of the problem, plane 
strain assumptions apply for the solid phase. When the body force due to fluid pressure is neglected or α = 0, 
only the solid phase is considered and subsequently Eq. (1) becomes exactly the equation for the conservation of 
energy in a compliant solid material.  

 ∇ ∙ (𝐅𝐒) = α∇p (1) 

 
The strain energy density for the solid phase considers two terms as described by Eq. (2), where Wiso is 

the isochoric strain energy density and Wvol is the volumetric strain energy density. To generate a representative 
strain energy density for the compliant solid phase a metric to a simplified hyperelastic model is used. This can 
be replaced by any suitable definition so long as the constants used to describe the response can be obtained by 
physical testing. Here only the drained shear modulus G and drained bulk modulus K are needed, both of which 
can be obtained for the drained solid phase. Drained means that these material properties are measured when the 
fluid has been entirely exuded from the porous material and only the solid phase is considered.  

By implementing the compressible Neo-Hookean hyperelastic model the isochoric and volumetric strain 
energy density functions for the solid phase are given respectively by Eqs. (3) and (4). In which, J = det(𝐅) is the 

volume ratio, I1 = J−2 3⁄ I1 is the 1st invariant of the isochoric part of the right Cauchy-Green deformation tensor 
and I1 = det(𝐂) is the 1st invariant of the right Cauchy-Green deformation tensor. The Cauchy stress tensor is 
also defined by 𝛔 = J−1𝐅𝐒𝐅T and from which the von Mises’ stress is obtained as the tensor magnitude σmises =‖𝛔‖. 

 W = αWiso + (1 − α)Wvol (2) 
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Wiso = G2 (I1 − 3) (3) 

Wvol = K2 (J − 1)2 (4) 

 
The volume ratio J is used to couple changes in the solid volume to the generation of pressure as described 

in Section 2.2.2. The Biot-Willis coefficient α varies between 0 and 1, with a value of 1 meaning that any change 
in the volume of the solid produces the same change in volume of the fluid. When α = 0 there is no contribution 
to volumetric changes in the fluid as the solid volume changes. Where 0 < α < 1 there is both volumetric changes 
to both the solid (through volumetric strain) and fluid (through volumetric flow) phases. 

 
2.2.2 Fluid Mechanics 

Conservation of mass in the fluid phase leads to the derivation of the governing equation for the pressure, 
this is coupled to changes in volume of the solid to form the compliant-poroelastic response. Eq. (5) describes the 
porous fluid flow in the fluid phase and a term describing the change in volume of the solid due to motion of the 
bodies through space which results from the steady-state form of the material derivative. Where in Eq. (5), ρ is 

the fluid density, 𝐪 = − κη ∇p is the fluid velocity and 𝐯 = 𝐯T + 𝐯R is the velocity of the bodies. The fluid velocity 

is generated proportionally with the pressure gradient which results in the definition of the material intrinsic 
permeability κ. This, in combination with the dynamic viscosity η, produces a viscous porous flow as given by 
Darcy’s law, this is well-established mechanism for describing the transport of synovial fluid in cartilage [33]. 
The fluid is also linearly compressible where ρ = ρ0 exp(χp), in which ρ0 is the density at zero pressure and χ is 
the fluid compressibility. The velocity of the bodies is comprised of two terms, the translational velocity 𝐯T and 
the rotational velocity 𝐯R = 𝛀 × (𝐱 − 𝐱0). Here the translation of the body is zero 𝐯T = 0 and the rotation is 
defined by 𝛀 = [0,0, Ω] as the axial velocity, 𝐱 is the position vector and 𝐱0 = [0, ±R0, 0] are the locations of the 
centres of rotation in the material frame of reference. The rotational velocity of the two bodies are different as 
they rotate about different centres with different axial speeds, hence subscripts 1 and 2 are used to distinguish 
between ABCD and EFGH respectively.  

 ∇ ∙ (ρ𝐪) = −αρ(𝐯 ∙ ∇J) (5) 

 
2.2.3 Boundary Conditions 

Boundary conditions are specified for the solid and fluid governing equations, these must describe the 
representative behaviour of the cartilage material as it rotates under load in lubricated conditions. Table 1 gives 
these conditions for the solid deformation 𝐮 and fluid pressure p at each boundary, 𝐱n and 𝐱t are the surface 
normal and tangential unit vectors respectively, the normal direction is orientated in the outward facing direction 
of the bodies and the tangential direction is orientated in the positive direction of sliding.  

 
Table 1 – Boundary conditions for the compliant-poroelastic lubrication model of cartilage-on-cartilage 

contacting in the natural joint. 
 

Boundary Contact Deformation, 𝐮 Pressure, p 

AB, EF No 

Yes 

𝐒1,2 ∙ 𝐱n1,2 = 0 𝐒1,2 ∙ 𝐱n1,2 = −pc𝐱n1,2   𝐒1,2 ∙ 𝐱t1,2 = μs(𝐒1,2 ∙ 𝐱n1,2) 𝐮1 = −𝐮2 

p1,2 = plub p1 = p2 𝐪1 ∙ 𝐱n1 = 𝐪2 ∙ 𝐱n2  

BC, CD, EH, FG n/a 𝐒1,2 ∙ 𝐱n1,2 = 0 p1,2 = 0 

CD, GH n/a 𝐮1,2 = (0, ± v02 , 0) 
𝐪1,2 ∙ 𝐱n1,2 = 0 
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Note that when contact occurs boundaries AB and EF are both within and outside the contacting region. 
When there is no contact the pressure acting on AB and EF is that due to the thin film lubrication plub alone and 
is described in detail in Section 2.2.4, corresponding to this a free deformation (or zero traction) condition is 
applied to the solid. If contact does occur then the condition for the fluid phase becomes periodic in the contact 
region as fluid moves across the interface, outside the contact region the pressure remains that of the lubricating 
pressure. The solid condition in the contact region is dictated by contact mechanics as described in more detail in 
Section 2.2.5, outside the contact region it remains free to deform. Boundaries CD and GH are considered 
impermeable and as such zero fluid flow conditions are applied, for the solid phase these boundaries deform in 

the vertical direction by ± v02  respectively to generate the total load carried L (see Section 2.2.6), they are 

constrained to zero in the remaining directions. The boundaries BC, CD, EH and FG are assumed far enough from 
the centre of the contact such that a zero or ambient pressure condition is applicable, for the solid phase they can 
freely to deform. 

 
2.2.4 Thin Film Flow 
 Within the region between boundaries AB and EF a thin film fluid flow is assumed to form, the Reynolds 
approximation is invoked to reduce the dimension of the thin film governing equation by neglecting derivatives 
across the film thickness. This facilitates the formation of a governing equation for the lubricating pressure plub 
arising from the thin film acting in the horizontal direction of sliding motion. This is a valid approach so long as 
the radii of the contacting bodies are orders of magnitude larger than the vertical distance between the two 
surfaces. The vertical distance between AB and EF is the film thickness as given by h = yAB − yEF. Fluid is also 
transported in vertical direction through the porous interfaces, the lubricating flow is subsequently coupled to the 
fluid flow into and out of the compliant-poroelastic bodies 𝐪 by an additional source term. This results in Eq. (6) 
and Eq. (7) for the transport of fluid in the thin film region, where Q is the volumetric flux (per unit depth), xt is 
the horizontal component of the tangential surface direction 𝐱t, V is the fluid flow into and out of the porous 
interfaces and U is the interfacial sliding speed. Zero pressure boundary conditions plub = 0 are applied at the 
locations A, B, E and F to correspond to those connecting boundaries outlined in Table 1. Hydrodynamic 
cavitation of the fluid phase is not considered as the pressures experienced remain significantly above the saturated 
vapour pressure [34]. However, it is possible that a free surface, and therefore pressure due to interfacial surface 
tension, is present at the diverging region. This presents challenges not only in the consideration of the free surface 
in the fluid film region but also potentially where fluid is drawn back into the porous material and the interaction 
of the free surface with the material pores [35]. It is therefore assumed that the gap between the porous surfaces 
is fully flooded. 
 ∂(ρQ)∂xt = ρV (6) 

Q = − h312η ∂plub∂xt + Uh2  (7) 

 
The horizontal tangential direction xt is different for the two bodies due to the alignment of the geometry 

about the line of symmetry x = 0. Therefore, for AB a positive xt is the same as the positive direction of sliding 
and that for EF a positive xt is the same as the negative direction of sliding, with the positive direction of sliding 
corresponding to the positive horizontal axis y = 0. As such for EF a scaling of -1 is applied to the derivative terms 
of Eq. (6) and Eq. (7) to formulate the correct lubricating pressure acting on both boundaries. The sliding speed 
is given by U = U1 + U2, in which the sliding speeds of each body are U1,2 = ±Ω1,2R0 respectively due to the 
difference in the direction of positive rotation at the interface and the positive direction of sliding.  

The fluid flow into and out of the porous interfaces is also different on and AB and EF due to the opposite 
alignment of the normal outward facing direction of the two bodies. As such on AB, V = V1 − V2 and on EF, V =V2 − V1. Each of these flows correspond to the surface flux of porous fluid flow within each of the bodies, V1,2 =𝐪1,2 ∙ 𝐱n1,2 , obtained from the fluid phase. This creates a coupling between the pressure and pressure gradient 

acting on AB and EF and the additional challenge of solving the thin film flow equations with the compliant-
poroelastic equations. The result of this is that the lubricating pressure produced plub is identical in distribution 
and magnitude on AB and EF, whereas the distributions of the lubricating flux Q and interfacial flow V acting on 
AB and EF are identical in distribution but opposite in sign. In the case where contact occurs and the film thickness 
is zero h = 0, there can be no lubricating flow as Q = 0 is obtained from Eq. (7). Within this region the pressure 
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remains identical on either side of the interface, p1 = p2, and the normal fluid flow across the interface becomes 
equal, V1 = V2. This subsequently leads to a periodic flow condition for the fluid flowing through the bodies at 
the contacting interface as described in Table 1. 
 
2.2.5 Contact Mechanics 
 A contact pressure pc is generated between the two bodies while in contact. This is calculated according 
to the required penetration of the bodies, which is in turn dictated by the magnitude of deformation of the 
contacting interfaces under load and the penetration depth v0. The contact pressure applies a normal stress to the 
solid phase ensuring that the penetration of the bodies is zero, corresponding to this is a tangential stress due to 
friction generated between the solid-on-solid contact. For this purpose, a dry cartilage-on-cartilage coefficient of 
friction μs is specified which describes the proportion of tangential solid load to normal solid load at the interface 
between the two solid bodies when all fluid has been exuded (drained conditions). The distribution of contact 
pressure generated on either side of the contact is identical, however there will be differences in the resulting solid 
stress distributions at the interface if the material properties of the touching bodies vary.  

When the two bodies are in contact the film thickness is zero h = 0 and this forms a contact region of 
length b along the line y = 0. As such the minimum film thickness is always equal to zero hmin = 0 when the two 
surfaces are in contact, however this does not always relate to a positive penetration depth v0 as surface 
deformation occurs. Therefore hmin remains positive until the total load L cannot be maintained and contact is 
onset. This means that the contact length b becomes positive when hmin is zero, note that this does not correspond 
with the expected penetration length b0. The resulting condition for the solid deformation is anti-periodic at the 
interface, where the two bodies form the contacting region along y = 0. 

 

 
 

 
 
Figure 2 – Sketch of the two cartilage bodies in contact showing the definitions of: (a) the penetration length b0 
where deformation is not included; and (b) the contact length b where deformation is included. In both cases the 

penetration depth is positive v0 > 0. 
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The penetration length is given by b0 = √v0(4R0 − v0) ∙ H(v0), where H(∙) is the Heaviside function. 
This gives the length of the contacting region when deformation of the interfaces is not considered, see Figure 2a. 
This measurement facilitates an analysis how out of shape the contact length b, which includes surface 
deformation, becomes in comparison to the size of the penetration b0. The contact length b is determined by Eq. 
(8), where θl and θr are angles swept out by the contacting region on the left-hand-side and right-hand-side of the 
vertical axis respectively. These can be expressed in terms of the arc length of either body within the contact 
region, sl and sr, as given on the left-hand-side and right-hand-side of the vertical axis respectively. These are by 
Eq. (9) and Eq. (10), where either boundary AB or EF can be considered for conducting the integration. The term δ(h) is the Delta function of the film thickness and produces a value of unity where the film thickness is zero and 
contact is onset. For reference the arc length of each boundary are equal to s1,2 = 0 at A or E, s1,2 = R0θ at 

[0, ± v02 ], and s1,2 = 2R0θ at B or F. The contact length must be calculated using this approach because the region 

over which the film thickness is zero is not symmetrical about the vertical axis due to deformation of the interface 
under load, as shown in Figure 2b. 

 b = R0 sin(θl) + R0sin(θr) (8) sl = ∫ δ(h) ds1,2 = R0θl R0θ
0  (9) 

sr = ∫ δ(h) ds1,2 = R0θr2R0θ
R0θ  (10) 

 
2.2.6 Load Capacity 
 The total load capacity (per unit depth) is given by the loads acting on AB and EF but it is also the sum 

of fluid load Lf1,2 and solid load Ls1,2  acting on either surface, L = L1 = −L2 and L = Lf1 + Ls1 = −(Lf2 + Ls2). 

Subsequently these are related by considering the individual contributions of the fluid pressure and solid stress 
acting on AB and EF, giving Lf = Lf1 = −Lf2, Ls = Ls1 = −Ls2  and L1,2 = Lf1,2 + Ls1,2 . Each of the individual 

contributions are described in Eq. (11) and Eq. (12) and are obtained by integrating the fluid pressure p1,2 and 

magnitude of the solid normal stress Sn1,2 = ‖𝐒1,2 ∙ 𝐱n1,2‖ distributions over each boundary. As such the 

individual load contributions for both the fluid and solid phases are equal on each body as the same pressure and 
normal stress is applied to both AB and EF. The total load L varies monotonically with the penetration depth v0 
and as such the determination of contact or full fluid film behaviour is described by variance of either parameter. 

 Lf1,2 = ∫ p1,2 ds1,22R0θ
0  (11) 

Ls1,2 = ∫ Sn1,2 ds1,22R0θ
0  (12) 

 

 The Sommerfeld number is defined by 
ηUL  and is used in the analysis of load variation of line contact 

geometries to establish the different lubrication regimes observed. Two further parameters are also introduced pmax = maxs1,2 (p1,2) and Smax = maxs1,2 (Sn1,2) which describe the maximum value of the fluid pressure and 

magnitude of the solid normal stress acting on either AB or EF respectively. 
 
2.2.7 Friction 

When contact mechanics was considered in Section 2.2.5 a coefficient of friction μs was specified for 
the contact between the solid cartilage-on-cartilage interface in drained conditions. This differs to the coefficient 
of friction of the compliant-poroelastic contact μ1,2 which also includes the influence of shear stresses due the 
fluid flow. The compliant-poroelastic coefficients of friction are given by Eq. (13), the friction is different on AB 
and EF because the fluid shear stress varies with the film thickness. In Eq. (13), T1,2 = Tf1,2 + Ts1,2 are the total 

tangential loads, Tf1,2 are the fluid tangential loads and Ts1,2  are the solid tangential loads each acting on AB and 
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EF respectively. Subsequently, Ts1,2 = μsLs1,2  are the solid tangential loads, Tf1,2 = μf1,2Lf1,2 are the fluid 

tangential loads and μf1,2 are the coefficients of friction due to fluid flow acting on AB and EF respectively. 

Additionally, the parameter Γ = LfLs is defined as the ratio of the fluid load to solid load in the contact. 

 μ1,2 = T1,2L1,2 = μs + μf1,2Γ1 + Γ  (13) 

 
The fluid tangential loads Tf1,2  are given by integration of the fluid shear stress τ1,2 acting along AB and 

EF. This results in Eq. (14) and Eq. (15) which respectively describe the fluid tangential loads and shear stress of 
the fluid acting on both surfaces as derived from thin film flow theory. Due to the alignment of tangential 
directions being opposite on AB and EF the derivative term of Eq. (15) for EF is scaled by -1, which is consistent 

with the method applied to the fluid flow equations as described in Section 2.2.4. In Eq. (15), SRR = U1−U2U  is the 

slide-to-roll ratio. It is of note that the second term on the right-hand-side of Eq. (15) contains 
1h which tends to 

infinity when the film thickness is zero and contact is onset. However, when the slide-to-roll ratio is zero, SRR =0, then this term becomes zero in the fluid shear stress calculation and the problem of the infinitely thin film can 
be neglected. Also, in this case the fluid tangential loads become Tf1 = −Tf2, leading to μf = μf1 = μf2 and μ =μ1 = μ2. 

 Tf1,2 = ∫ τ1,2 ds1,22R0θ
0  (14) 

τ1,2 = ± h2 ∂plub∂xt + SRR Uηh  (15) 

 
A zero slide-to-roll ratio is only examined in this article, however de Boer et al. [31] used a limiting film 

thickness approach to resolve the problem in relation to the contact of a compliant-poroelastic material against a 

rigid impermeable surface. This method sets a minimum film thickness for the 
1h term in question and as a result 

a maximum fluid shear stress is generated within an infinitely thin film. The scale over which the limiting film 
thickness should be specified is somewhat arbitrary and this has been previously examined by authors who link it 
to the size of surface asperities in elastic materials. These models are yet to establish a means of incorporating 
porous flow over the contacting interface between asperities and as such no technique is necessarily applicable to 
the compliant-poroelastic model presented here.  
 
2.3 Numerical Method  
 The Finite Element (FE) method, as implemented in the software Comsol Multiphysics v3.5a, was used 
to solve the problem outlined in Section 2.2. This package provides the necessary tools for coupling the solid, 
fluid and thin film flow components of the model.  
 
2.3.1 Discretisation 

The two bodies ABCD and EFGHG were each discretised with quadrilateral elements, with elements 
distributed elements evenly along all the lengths. Grid independent results were observed when the number of 
elements on AB/CD/EF/GH was 300 and on AD/BC/EH/FG was 30. This produced a mesh with a total of 18000 
elements, in which 9000 elements discretised each of the bodies independently. The same mesh was used for all 
simulations conducted. The compliant-poroelastic domains were discretised with 2D elements, this subsequently 
meant that 1D elements discretised the thin film flow domains AB and EF. For each of the governing equations 
specified, 2nd order polynomial shape functions were used to generate the elemental equations and formulate the 
finite element matrix problem. This was subsequently solved using the numerical algorithms provided with the 
software to provide the distributions of solid stress and fluid pressure throughout the numerical domains. 
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2.3.2 Solution Procedure 
To solve the model numerically a single initialisation step was required to generate solutions for a given 

penetration depth v0. This step was needed to ensure that the initial solution provided was significantly closer to 
the final solution than zero distributions of solid stress and fluid pressure. It was found that a zero solution would 
cause the solver to diverge unless the contact mechanics was solved without the thin film flow equations 
previously. This was due to a high sensitivity of the solution to the lubricating pressure provided at AB and EF 
when contact mechanics was included, where there is also a strong coupling to the fluid flow to and from the 
porous interface. Therefore, the initialisation step did not include the thin film flow equations and instead a no 
flux boundary condition was applied to both AB and EF. Subsequently, this solution was used as the initial 
solution to the solid stress and fluid pressure when the thin film flow equations were then also included. In the 
case where there is no penetration v0 < 0 this step was not necessary as contact mechanics were not required. An 
iterative solver was subsequently used to solve the FE matrix problem and satisfy the requirements of contact 
mechanics if applicable. This was achieved using a penalty type algorithm to solve for the contact pressure. In 
which two model constants were needed, the contact stiffness and initial contact pressure. These were specified 

as 
G2 and 

G100 respectively in accordance with the guidelines provided in the software for use of the penalty 

algorithm with compliant materials. 
 

2.4 Case Study 
 The case study investigated considers two cartilage bodies under constant load rotating with constant 
axial speed. For this the material properties, operating conditions and geometrical parameters are presented in 
Table 2. The geometry defined considers two 1 mm thick layers of cartilage rotating against each other with 
sliding conditions at the contacting interface between them. These values were chosen to represent the material 
properties of cartilage and its operation in natural joints. The value chosen for the solid-on-solid coefficient of 
friction is μs was selected based on that of dry cartilage-on-cartilage friction measurements under similar 
conditions. The high solid friction in such contacts is related to the complete exudation of water within the contact 
thus leaving the best current value for ‘dry fiction’ as that of two soft elastic bodies, that is the solid coefficient of 
friction in drained conditions for a compliant-poroelastic material such as cartilage. A zero slide-to-roll ratio has 
been specified to avoid the fluid shear stress measurement problems as discussed in Section 2.2.7. This results in 
a constant value of the sliding speed U which is assumed large enough to generate a shear rate which produces a 
constant viscosity of the fluid (~105 – 106 s-1). This is an important consideration as the model is derived based on 
an isoviscous fluid response in which the viscosity of the shear-thinning synovial fluid can be considered constant 
in value [36].  

The only parameter allowed to vary in the model is the penetration depth v0, from which load variation 
is achieved and subsequently the range of lubrication regimes observed. The range of v0 used is given in Table 2, 
the parameter was varied with a step size of 1 μm such that a total of 111 simulations were conducted. This means 
that for the Stribeck analysis presented in Section 3 there is no sliding speed variation only load variation. The 
simulation time varied exponentially with decreasing v0 when in contact and linearly when contact mechanics 
was not needed, with the longest simulation taking 3 hrs 47 mins at the minimum v0 and the shortest taking 3 
mins at the maximum v0. The total computing time was 76 hrs 13 mins. 
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Table 2 – Material properties, geometrical parameters and operating conditions for the case study investigated. 
 

Name Symbol Value 

Drained shear modulus G 0.5 MPa 

Drained bulk modulus K 5 MPa 

Outer radius R0 100 mm 

Inner radius R1 99 mm 

Sliding speed U 0.2 m.s-1 

Penetration depth v0 [-100, 10] μm 

Biot-Willis coefficient α 0.9 

Dynamic viscosity η 0.001 Pa.s 

Sector angle θ π/36 rad 

Permeability κ 1x10-15 m2 

Coefficient of friction 
(drained solid-on-solid) 

μs 0.45 

Fluid density at ambient 
pressure 

ρ0 1000 kg.m-3 

Fluid compressibility χ 0.1 GPa-1 

Slide-to-roll ratio SRR 0 

Axial speed Ω1,2 ±1 rad.s-1 

 
3. Results and Discussion 

 Results presented in this section correspond to two different categories. In Section 3.1 a Stribeck analysis 
of the compliant-poroelastic lubrication model is conducted showing the full range of lubrication regimes 
experienced under load. Section 3.2 then goes on to explore the results of this analysis in more depth, with each 
subsection describing the pressure, stress and fluid flow distributions observed in the different lubrication regimes. 
 
3.1 Stribeck Analysis 
 Steady-state simulations were conducted over the specified range of the penetration depth v0 given in 
Section 2.4, with the corresponding pressure and stress distributions calculated as a result. Post-processing of 
these simulations allowed the friction, film thickness, contact length, maximum pressure and stress, and the load 
capacity to be determined, as presented in Figure 3. As part of this Stribeck analysis it should be noted that the 
sliding speed is kept constant and that load is the variable parameter, each solution produced represents a different 
result of the system assuming steady-state conditions. 
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Figure 3 – Stribeck analysis of the compliant-poroelastic lubrication of cartilage-on-cartilage. Showing the 

variation of the following parameters with the Sommerfeld number 
ηUL : (a) the compliant-poroelastic coefficient 

of friction μ, the coefficient of friction due to fluid flow μf and the ratio of fluid to solid load Γ; (b) the contact 
length b, penetration length b0, minimum film thickness hmin and absolute value of the penetration depth |v0|; 
(c) the maximum pressure on the contacting interface pmax and the maximum normal stress on the contacting 

interface Smax; and (d) the fluid load Lf and the solid load Ls. 
 
 Figure 3a shows the clear definition of the expected lubrication regimes in a conventional line contact, 
where friction initially reduces with increasing load to a minimum value before sharply increasing as contact is 
onset. However, the exact values and shape of the response for the compliant-poroelastic materials is significantly 
different to that of elastic materials in lubricated conditions, which is linked to the flow of fluid through the porous 
interface. Figure 3a indicates that load carried by the fluid is one or two orders of magnitude larger than that of 
the solid when the friction is low and a full fluid film is generated, and subsequently that in the high friction case 
that the load capacity of the two phases are of the same order of magnitude with contact onset at the interface. 
The contribution to friction from the fluid phase is always monotonically decreasing with increasing load, however 
due to the biphasic nature of the material the overall friction increases after contact is onset. The minimum 
coefficient of friction observed was μ = 0.0053 which occurred the instance before the minimum film thickness 
reached zero with increasing load and contact occurred.  

The contacting interface is deformed significantly according to Figure 3b, with the difference between 
the penetration depth and minimum film thickness increasing with load over three orders of magnitude. At the 
instance that contact would be onset without deformation, v0 = 0, the film thickness is hmin = 4 μm, but when 
contact is onset and the film thickness is zero, hmin = 0, then the penetration depth was v0 = 13 μm. The contact 
length sharply increases with load as contact is onset and remains less than the expected penetration length for all 
loads investigated. The size of the contact region and penetration depths experienced throughout imply that the 
material deformation is significant (up to 10% of the thickness) and that a compliant model is needed under the 
loads experienced given the magnitude of the material parameters provided.  

The maximum stress and maximum pressure are both monotonically increasing with load as according 
to Figure 3c. Before contact occurs, both increase at a steady rate, however after contact the maximum stress 
increases at a faster rate (after briefly plateauing during the initial contact) and the maximum pressure increases 
with a reduced rate. Corresponding to this Figure 3d shows that the fluid load is always monotonically increasing 
at a steady rate despite the onset of contact, whereas the solid load is always monotonically increasing with load 
but experiences as sharp increase in rate after contact is initiated.  
 
3.2 Lubrication Regimes 
 The following subsections present results relating to each of the lubrication regimes identified in the 
Stribeck analysis conducted in Section 3.1. Visualisation of the pressure and stress distributions in the two bodies 
is provided, along with the pressure, stress, film thickness and fluid flow acting on the contacting interface.  
 
3.2.1 Thin Film Flow 
 In this regime a full fluid film is formed between the two bodies, the load carried is low (right-hand-side 
of Figure 3) and the behaviour can be described as elastohydrodynamic. Figure 4a shows that pressure which is 
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generated due to lubricated flow at the contacting interface is built-up in the minimum film thickness region, 
corresponding to this Figure 4b indicates that the solid stress increases in the region either side of the pressure 
build-up where material is compressed under load and constrained against the cartilage/bone interface. The 
magnitude of the pressure and stress reached is low (~0.5 – 1 kPa) and as such the amount of deformation is also 
low. Figure 5a shows that the contacting interface is deformed under the low pressurisation but that this is not 
distorting the shape of the bodies. Also shown is that while the fluid is pressurised that the solid stress is negligible 
as contact is not onset. Fluid flows into the material before the constriction as V is negative whereas fluid flows 
out of the material after the constriction where V is positive, see Figure 5b. Corresponding to this the lubricating 
flux is always positive such that there is always a flow of lubricant in the sliding direction but in the constriction, 
this is reduced where flow into and then out of the material reach their maximum values. 
 
 

 
 

Figure 4 – Distributions within the compliant-poroelastic bodies of: (a) the fluid pressure p; and (b) the solid 
Mises’s stress σmises. In this case the penetration depth is v0 = 1 μm. 

 

 
 

Figure 5 – Distributions along the contacting interface of the compliant-poroelastic bodies showing: (a) the fluid 
pressure p, the solid normal stress Sn and the film thickness h; and (b) the lubricating flux Q and the fluid flow 

at the contacting interface V. In this case the penetration depth is v0 = 1 μm. 
 
3.2.2 Low Friction 
 As the load is increased a full fluid film is maintained between the contacting bodies; significant 
deformation occurs due to the compliant solid phase and as such a large constriction is formed. Figure 6a and 
Figure 6b show that this generates pressure and stresses of the order of ~10 – 20 kPa which form in the same way 
as observed in the thin film flow regime. However, in this case the solid stress response is more significant with 
a maximum value forming on the cartilage/bone interface near the centre of the bodies. At the contacting interface 
there is a significant constriction formed in which the film thickness is always positive but near-zero in value, this 
where the fluid pressure is built-up much more than in the thin film flow regime as seen in Figure 7a. The shape 
of the pressure distribution is representative of conventional line contact in which after the pressure build-up there 
is a negative pressure formed to maintain mass conservation in the lubricating film. Figure 7b indicates a similar 
response in terms of the lubricating flux and interfacial flow than for the thin film flow regimes. The lubricating 
flux is reduced in value compared to the previous case but is always positive in value, the interfacial flow exhibits 
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the same behaviour where flow is into the material before the constriction and out after the constriction. This 
interfacial flow is also an order of magnitude larger than in the thin film flow regime. However, the gradients are 
much steeper for this regime. The combination of interfacial flow and complaint deformation of the material 
facilitates the large constriction formed, which in turn results in the generation of small fluid shear stress and the 
formation of the low coefficients of friction observed in this regime. With the minimum coefficient of friction 
reached being 0.0053 for the case study investigated. 
 

 
 

Figure 6 – Distributions within the compliant-poroelastic bodies of: (a) the fluid pressure p; and (b) the solid 
Mises’s stress σmises. In this case the penetration depth is v0 = -19 μm. 

 

 
 
Figure 7 – Distributions along the contacting interface of the compliant-poroelastic bodies showing: (a) the fluid 
pressure p, the solid normal stress Sn and the film thickness h; and (b) the lubricating flux Q and the fluid flow 

at the contacting interface V. In this case the penetration depth is v0 = -19 μm. 
 
3.2.3 Boundary Contact  
 A further increase in load from the low friction regime results in boundary contact. In this case there is 
no longer a full fluid film formed and instead the constriction reaches zero and contact is onset. Figure 8a and 
Figure 8b correspondingly show that the pressure and stress continue to exhibit the same shape of response than 
in the previous regimes but that they span a larger constriction region. The magnitude of both parameters is also 
increased and is of the order of ~50 kPa. The most significant changes are observed at the contacting interface. 
Figure 9a shows that the pressure produces a small spike before the constriction in addition to a positive solid 
stress (~10 kPa) being generated where the film thickness is zero. Figure 9b shows that the lubricating flux 
becomes zero where the film is also zero and no flow can occur. In the region before the constriction the flow is 
positive and after the constriction a small amount of backflow is experienced before becoming positive again. 
Corresponding to this the interfacial flow is more complex than for the previous regimes with a different shape of 
response produced. Flow moves into the body before the constriction and out after the constriction. However, in 
the latter of these there is also flow into the body where backflow is predicted in the lubricating line. Within the 
contacting region there remains flow across the interface due to the periodic flow conditions formed, this is 
however significantly lower in magnitude than the flow in the flow across the interface where contact is not onset. 
In the boundary contact regime both the lubricating flux and interfacial flow are lower than they are in the low 
friction regime. 
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Figure 8 – Distributions within the compliant-poroelastic bodies of: (a) the fluid pressure p; and (b) the solid 
Mises’s stress σmises. In this case the penetration depth is v0 = -48 μm. 

 

 
 

Figure 9 – Distributions along the contacting interface of the compliant-poroelastic bodies showing: (a) the fluid 
pressure p, the solid normal stress Sn and the film thickness h; and (b) the lubricating flux Q and the fluid flow 

at the contacting interface V. In this case the penetration depth is v0 = -48 μm. 
 
3.2.4 High Friction 
 Increasing the load even further results in the high friction regime under contact conditions, in this regime 
a full fluid film is not formed and the bodies are signficaitnly penetrated into one another. The maximum pressure 
is shown to be ~60 kPa and the maximum stress at ~85 kPa in Figure 10a and 10b respectively, demonstrating 
that the high friction results in an increase of the solid in the load carrying capacity due to solid-on-solid contact. 
The shape of the pressure and stress distributions remain similar in shape, spread over a larger contact region. 
Figure 11a indicates that the pressure on the contacting interface maintains the same shape as for the boundary 
contact regime but only increases to ~60 kPa whereas the solid stress increases with the size of the contact and 
reaches ~40 kPa which is a much larger difference than the pressure compared to the previous regime. The film 
thickness is zero over a larger contact length and this corresponds to where the solid stress is positive. The 
lubricating flux and interfacial flow show similar behaviour to that of the boundary contact regime but where the 
values are significantly larger in magnitude, see Figure 11b. There is no backflow experienced after the contact 
region in this case and a zero-flow maintained throughout the contact region. However, there is flow into and out 
of the material after the contact owing to the complex link with the periodic flow maintained in the contact region. 
Again, in this regime the flow across the boundary in the contacting region is less than that experienced across 
the boundary outside of the contact region. The coefficient of friction in this regime is of the order of ~0.1 – 0.15. 
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Figure 10 – Distributions within the compliant-poroelastic bodies of: (a) the fluid pressure p; and (b) the solid 
Mises’s stress σmises. In this case the penetration depth is v0 = -100 μm. 

 

 
 

Figure 11 – Distributions along the contacting interface of the compliant-poroelastic bodies showing: (a) the 
fluid pressure p, the solid normal stress Sn and the film thickness h; and (b) the lubricating flux Q and the fluid 

flow at the contacting interface V. In this case the penetration depth is v0 = -100 μm. 
 
4. Summary and Conclusions 

This study set out to address the tribological line contact problem between mating articular cartilage 
layers with a focus on their mechanical interactions. That is a system where cartilage layers are in a rotational 
sliding configuration and experience large deformations, which are themselves manifested due to squeeze loading 
from the relative motion of rigid bone and tangential forces arising from friction induced by sliding at the 
contacting interface. In addition to the numerical cartilage representation, this system contains a complicated 
boundary where the two cartilage layers meet. At this boundary contact mechanics govern the interaction of the 
solid phases, while the fluid phase is governed by either a lubricating interface when the separating gap is positive, 
or by a periodic flow condition when the gap is zero and the surfaces are in contact such that fluid is free to migrate 
across the boundary from one body to the other.  

Mammalian articular joints experience a wide variety of operating conditions on which the mechanical 
loading and tribological surface interactions depend. Previous work showed that this type of broad system could 
be modelled by coupling together a hyperelastic constitutive equations with a Darcy flow conservation equation 
to create a compliant-poroelastic (or porohyperelastic) model for the cartilage body and then further coupling thin 
film flow to solve for fluid pressure at the lubricating boundary [31]. This study removes the simplifying 
impermeable boundary and replaces it with a second cartilage layer and implements an opposing sliding contact 
conditions on the solid phase and a periodic flow condition on the fluid phase which better approximates the 
tribological reality. 

The fluid phase carries most of the load at the lubricating boundary. This occurs in cases with and without 
solid contact. In these regions the solid phase is experiencing its maximum volumetric deformation as the layers 
rotate into the contact region. This is mirrored in both layers (for the operating conditions used here) such that the 
system experiences high pressure at the contacting interface. Since the fluid is free to move between the contacting 
bodies this pressure is constant across the boundary. The loading magnitudes and stress distributions are 
comparable to those found in steady-state cases for rotation against an impermeable wall [31]. 
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The Stribeck analysis conducted indicates that cartilage-on-cartilage in rotating line contacts exhibits the 
same transition through frictional interactions as elastic contacts under isoviscous conditions, expect that for each 
lubrication regime identified there is a corresponding interfacial flow contributing to the tribological performance. 
Where the normal loads are high the system operates in the boundary lubrication regime and conversely in the 
low load case the system tends towards hydrodynamic lubrication. A minimum coefficient of friction is reached 
at the transition where contact of the surfaces is onset, in the case investigated this was a value of 0.0053. The 
mixed regime describes this transition, and like other tribological interactions, this is characterised by a sharp 
change in the coefficient of friction up to a value of ~0.1 – 0.15. As the lubricating boundary is linked to the 
cartilage body by porous flow these changes in tribological status have structural ramifications. At the onset of 
contact between the solid bodies there is a sharp increase in the solid stress. This occurs around the border between 
boundary and mixed lubrication. This onset condition designates the type of cartilage loading and the resulting 
magnitude of compressive/shear stresses are important to joint health [37], and have frictional importance to 
mechanical systems where minimal friction is desirable [38].  

To this end, it is also important to consider the surface properties of cartilage which are known to have a 
significant role in the tribological response of human joints and are not established in the current model. Surface 
topography is of the same order of magnitude in size as the film thickness such that asperity deformation in the 
mixed lubrication regime can prolong solid-solid contact and further reduce friction. Additionally, cartilage 
surfaces are subject to interactions in which the transport of chemical species defines the capacity for flow to 
occur between the interface and lubricating film. These interactions determine the ability for fluid to flow without 
restriction through the contact and effect the material properties of both phases, this also goes to reduce friction 
further under favourable conditions. The current model develops the capacity to investigate cartilage-on-cartilage 
interactions by facilitating interfacial fluid flow, and for which the tribological response is determinable to 
conventional lubrication but differs due to the newly captured mechanism. The inclusion of these surface 
properties will bring the model capabilities into representative conditions but do not reduce the importance of the 
step-change in state-of-the-art modelling for cartilage-on-cartilage interactions developed in this article. 

While the layers in this study are symmetrical, this is not generally the case in nature where the mating 
geometries form an approximate concave-convex pair. On each of these surfaces the cartilage layers can vary in 
thickness or in health, damage and wear. The model presented here allows the possibility of studying these 
asymmetries by furthering the model to include 3D and representative geometries obtained from experimental 
measurements. In addition, this type of model can be furthered to explore cartilage-on-cartilage interactions in 
dynamic cases corresponding to load and speed variations observed in biomechanical systems, such as walking 
and shock response. These developments will also facilitate modelling for other dynamic behaviour such as 
viscoelasticity, anisotropy and species transport/interactions in order to bring the model into line with the complex 
description of biomaterial properties. 
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