広島大学学術情報リポジトリ

Hiroshima University Institutional Repository

Title	High－intensity cycling re－warm up within a very short time－frame increases the subsequent intermittent sprint performance
Author（s）	Yanaoka，Takuma；Hamada，Yuka；Fujihira，Kyoko；Yamamoto， Ryo；Iwata，Risa；Miyashita，Masashi；Hirose，Norikazu
Citation	European Journal of Sport Science，20（10）：1307－1317
Issue Date	2020－01－25
DOI	10．1080／17461391．2020． 1713901
Self DOI	
URL	https：／／ir．Lib．hiroshima－u．ac．jp／00051514
Right	This is an Accepted Manuscript of an article published by Taylor \＆Francis in European Journal of Sport Science on 25 Jan 2020，available online：http：／／ www．tandfonline．com／10．1080／17461391．2020． 1713901. This is not the published version．Please cite only the published version．この論文は出版社版ではありません。引用の際には出版社版をご確認，ご利用ください。
Relation	

Hisblina Univeriy Inthivioul Reporiney

High-intensity cycling re-warm up within a very short timeframe increases the subsequent intermittent sprint performance

Journal:	European Journal of Sports Science
Manuscript ID	TEJS-2019-0870.R2
Manuscript Type:	Original Paper
Keywords:	Performance, Recovery, Team Sport, Metabolism

SCHOLARONE ${ }^{\text {" }}$
 Manuscripts

High-intensity cycling re-warm up within a very short time-frame increases the subsequent intermittent sprint performance

This study investigated the effect of high-intensity cycling re-warm up (RW) within a very short time-frame on the subsequent intermittent sprint performance. Twelve active males completed three trials in random order: control (CON); 3-min RW at 30% of maximal oxygen uptake $\left(\mathrm{VO}_{2 \max }\right)$ (RW30); and $1-\mathrm{min} \mathrm{RW}$ at 90% of $\mathrm{VO}_{2 \max }$ (RW90). During the experimental trials, participants performed 40 min of intermittent cycling exercise followed by 15 min of rest. During the rest period, participants completed CON, RW30, or RW90. After the rest period, participants performed the Cycling Intermittent-Sprint Protocol (CISP), which consisted of 10 seconds of rest, 5 seconds of maximal sprint, and 105 seconds of active recovery with the cycles repeated over 10 min . The mean work during sprint for the CISP was significantly higher in both RW trials than in the CON trial (mean \pm standard deviation; CON: 3539 ± 698 J; RW30: $3724 \pm 720 \mathrm{~J} ;$ RW90: $3739 \pm 736 \mathrm{~J} ; \mathrm{p}<0.05$). The mean electromyogram amplitude during the sprint for the CISP was higher in the RW30 trial than in the CON trial; however, there was no significant difference between the two trials $(\mathrm{p}=0.06)$. The mean median frequency during sprint for the CISP was significantly higher in the RW90 trial than in the CON and RW30 trials ($\mathrm{p}<0.05$). Rectal temperature did not differ between trials. Oxygenated haemoglobin during the initial 30 s of the CISP was significantly higher in the RW90 trial than in the CON trial ($\mathrm{p}<$ 0.05). Compared with seated rest, RW, irrespective of whether it comprised 1 min at 90% of $\mathrm{VO}_{2 \max }$ or 3 min at 30% of $\mathrm{VO}_{2 \max }$, increased the subsequent intermittent sprint performance.

Keywords: intermittent team sport; cycling sprint; muscle activation; body temperature; gas analysis; muscle oxygenation

Introduction

The ability to perform high-intensity exercise is important for intermittent sports players.

However, this ability decreases after half-time during intermittent team sports, including football and rugby (Bradley et al., 2009; Lovell, Barrett, Portas, \& Weston, 2013). The distance covered while running at high-speed during a football match was reduced by 8.4% during the initial part of the second half compared with the initial part of the first half (Weston et al., 2011). Furthermore, the sprint performance was reduced by 2.4% at the onset of the second half compared with at the onset of the first half (Mohr, Krustrup, Nybo, Nielsen, \& Bangsbo, 2004). These reductions resulted from the passive recovery during half-time and have been associated with physiological changes, including loss of muscle $\left(\mathrm{T}_{\mathrm{m}}\right)$ and core temperatures $\left(\mathrm{T}_{\mathrm{c}}\right)$, decrement of muscle activation and reduction of oxygen availability in the muscle (Russell, West, Harper, Cook, \& Kilduff, 2015; Silva, Neiva, Marques, Izquierdo, \& Marinho, 2018; Yanaoka, Hamada, et al., 2018).

The efficacy of a re-warm up (RW) at half-time has been recently reviewed (Hammami, Zois, Slimani, Russel, \& Bouhlel, 2018; Russell et al., 2015; Silva et al., 2018). RW is important to avoid a decrease in the ability to perform sprinting, jumping and endurance exercise because it helps to maintain or increase $\mathrm{T}_{\mathrm{m}}, \mathrm{T}_{\mathrm{c}}$, muscle activation and oxygen availability in muscle (Russell et al., 2015; Silva et al., 2018; Yanaoka, Hamada, et al., 2018; Yanaoka, Kashiwabara, et al., 2018). Although recent reviews have recommended RW at moderate-intensity for 5 to 7 min to avoid reductions in exercise performance immediately after a rest period (Hammami et al., 2018; Russell et al., 2015; Silva et al., 2018), the RW protocol may not be suitable for competitions because of time limits that restrict the implementation of RW in real-world settings (Towlson, Midgley, \& Lovell, 2013). However, no studies have addressed an effective RW protocol that can be performed within a very short time-frame. This issue is important to address since fitness coaches and sports scientists are challenged to provide evidence-based recommendations for an RW protocol that could increase the
subsequent high-intensity exercise performance during intermittent team sports.

Increases in exercise performance after a warm-up depend on the net balance between fatigue and potentiation (Bishop, 2003; Seitz \& Haff, 2016). A high-intensity warm-up has greater influences on body temperature, muscle activation, anaerobic metabolism, aerobic metabolism and acute fatigue compared with a low-intensity warmup (Bishop, 2003; McGowan, Pyne, Thompson, \& Rattray, 2015). Particularly, a highintensity warm-up may impair subsequent sprint performance due to acute fatigue compared with a low-intensity warm-up when the matched for warm-up durations (McGowan et al., 2015). For example, maximal sprint performance decreases after a cycling warm-up at 110% of peak aerobic power compared with those at 40% and 80% of peak aerobic power (Wittekind, Cooper, Elwell, Leung, \& Beneke, 2012). In contrast, a high-intensity warm-up may have a similar potentiation effect on exercise performance compared a low-intensity warm-up when matched for total volume during warm-up. A previous study has compared the effects of low-intensity, long-duration warm-ups and high-intensity, short-duration warm-ups on exercise performance when matched for total warm-up volume and suggested that similar positive effects on exercise performance were observed for these protocols (Shima, Maeda, \& Nishizono, 2006). However, it is not known whether RW has similar, if any, benefits in increasing the subsequent exercise performance.

Therefore, the purposes of the present study were 1) to investigate the effect of high-intensity RW within a very short time-frame on the subsequent intermittent cycling sprint performance and 2) to compare the effects of high-intensity RW within a very short time-frame and an established lower-intensity RW with a longer duration (Yanaoka, Hamada, et al., 2018) on intermittent cycling sprint performance. Based on a
previous study, the present study defined an intermittent sprint as a short-duration sprint interspersed with recovery periods long enough to allow nearly complete recovery of sprint performance (Girard, Mendez-Villanueva, \& Bishop, 2011). We hypothesized that high-intensity RW within a very short time-frame and lower-intensity RW with a longer duration would have similar beneficial effects on the intermittent cycling sprint performance. In the present study, a 3-min RW at 30% of maximal oxygen uptake $\left(\mathrm{VO}_{2 \text { max }}\right)$ was chosen since it has been established as the lowest-volume RW that increased intermittent sprint performance (Yanaoka, Hamada, et al., 2018)

METHODS

Materials and Methods

Participants

Twelve active males who habitually exercised for more than 2 days per week participated in this study. Participants were included in the study if they had no recent history of illness, injury, or rehabilitation during the testing schedule. The physical characteristics of the participants were as follows: age, 23 ± 2 years; height, 1.71 ± 0.05 m ; body mass, $68.5 \pm 8.7 \mathrm{~kg}$; and $\mathrm{VO}_{2 \max }, 47.7 \pm 6.6 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$ (mean \pm standard deviation [SD]). This study was approved by the Ethics Review Committee on Research with Human Subjects of Waseda University (approval number: 2017-286), and all participants provided written informed consent before participating in this study.

Participants were asked to not alter their regular lifestyle habits, exercise and diet throughout the study. They recorded all the food and drinks consumed for 24 h prior to each experimental trial, and they replicated their dietary intake during subsequent trials to ensure that they were standardised across trials. Participants
refrained from consuming alcohol and caffeine for 24 h prior to each experimental trial. Furthermore, they fasted for 3 h before each experimental trial and were only allowed to consume water during that time period.

Experimental Design

Participants completed three trials in randomised, counterbalanced order after one practice trial to familiarise themselves with the experiment at least 3 days before the first experimental trial. All trials were separated by 3 to 13 days. During the experimental trials, two consecutive intermittent cycling exercises separated by a 15 min rest period were performed on a cycle ergometer (Monark 894E, Monark, Varberg, Sweden). Interventions during the $15-\mathrm{min}$ rest period were as follows: seated rest (control: CON); 3-min RW at 30% of $\mathrm{VO}_{2 \max }$ (RW30); and 1-min RW at 90% of $\mathrm{VO}_{2 \text { max }}$ (RW90). The RW30 was previously reported as the lowest work during RW (Yanaoka, Hamada, et al., 2018). The mean temperature and humidity during the experimental trials were $20.6 \pm 0.5^{\circ} \mathrm{C}$ and $50.8 \pm 1.4 \%$ (mean $\pm \mathrm{SD}$), respectively. All three experimental trials were performed at the same time of day to avoid any circadian rhythm-related variations in the obtained results.

Graded Exercise Test

Participants initially underwent a graded exercise test to determine their $\mathrm{VO}_{2 \max }$ and maximum heart rate $\left(\mathrm{HR}_{\max }\right)$ on a cycle ergometer (Monark 894E, Monark, Varberg, Sweden). The test started at 40 W , with a target cadence of 80 rpm , and increased by 40 W every 2 min until volitional exhaustion. A breath-by-breath gas analysis was performed using an automatic gas analyser (Quark CPET, COSMED, Rome, Italy). Linear regression for VO_{2} against exercise intensity was calculated and used to predict
the relative exercise intensity during the experimental trials (i.e., 60% and 130% of $\left.\mathrm{VO}_{2 \text { max }}\right)$.

Exercise Protocol

The exercise protocol used in the present study was the same as that of a previous study (Yanaoka, Hamada, et al., 2018). In the experimental trials, participants performed 40 \min of intermittent cycling exercise followed by 15 min of rest and 10 min of the Cycling Intermittent-Sprint Protocol (CISP) on a cycle ergometer (Monark 894E, Monark, Varberg, Sweden) (Figure 1). First, participants rested on a chair for 5 min , followed by a standardised warm-up (i.e., 5 min of cycling at 95 W and 30 s of cycling at 120 W). Then, they performed 40 min of intermittent cycling exercise that consisted of 20 repetitions that lasted 2 min each. Each $2-\mathrm{min}$ period started with 15 s of passive rest, followed by 25 s of unloaded cycling, 10 s of cycling at 130% of $\mathrm{VO}_{2 \max }$ and 70 s of cycling at 60% of $\mathrm{VO}_{2 \max }$. After the $15-\mathrm{min}$ rest period, they performed the CISP, which consisted of 5 repetitions that lasted 2 min each. Each 2 -min period started with 10 s of passive rest, followed by 5 s of maximal sprint against a resistance of 7.5% of body mass and 105 s of cycling at 50% of $\mathrm{VO}_{2 \text { max }}$. Each sprint was initiated from a stationary start, with the right pedal crank at approximately 90° to the horizontal plane. Pedal cadence throughout the trial was 80 rpm , except during the 5 -s maximal sprint. The CISP that was described previously was used to assess the intermittent sprint performance of athletes (Hayes et al., 2013).

FIGURE 1 ABOUT HERE

RW Intervention

During the $15-\mathrm{min}$ rest period, participants rested on the cycle ergometer for 15 min
(CON), rested on the cycle ergometer for 11 min followed by cycling at 30% of $\mathrm{VO}_{2 \text { max }}$ for 3 min (RW30), or rested on the cycle ergometer for 13 min followed by cycling at 90% of $\mathrm{VO}_{2 \max }$ for 1 min (RW90). The intensity of the RW90 was chosen to equalise the exercise volume (i.e., energy expenditure), which is estimated using oxygen uptake values and exercise duration according to the formula of the American College of Sports Medicine (American College of Sports Medicine, 2010) during RW, with the RW30. Each RW trial was completed 1 min prior to the commencement of the CISP.

Measurements

Sprint performance

Power during 5 s of sprinting of the CISP was calculated using a Monark Anaerobic Test software (Monark, Varberg, Sweden), which accounted for both the load on the flywheel and crank kinematics. Work was defined as the mean power multiplied by the duration of the sprint (i.e., 5 s). High reliability of the work during sprints for the CISP has been previously reported (i.e., intra-class correlation $=0.9)($ Hayes et al., 2013 $)$.

Surface electromyogram

An electromyogram (EMG) of the muscle bellies of the right vastus lateralis was recorded during the 5 -s sprint using a surface electrode (SX230-1000, Biometrics, Newport, United Kingdom), with the ground electrode placed on the left wrist (sampling frequency: 1000 Hz , band pass filter: $10-500 \mathrm{~Hz}$). Electrode placement was defined by 30% of the length between the patella and greater trochanter (Takagi et al., 2014). To reduce impedance ($<2 \mathrm{k} \Omega$), the skin was abraded and washed before electrode placement. The root mean square (RMS) and median frequency (MDF) as the mean values between the onset and the end of the burst were calculated for each sprint.

The RMS values were normalised to the 100% maximum voluntary isometric contraction (MVC) value obtained from 3-s MVC against manual resistance before each experimental trial. The 100% MVC value was obtained from a 1 -s window during the 3s MVC. Onset of the burst was defined by using an electric threshold of $\pm 0.2 \mathrm{mV}$ (Racinais et al., 2007).

Body temperature

Rectal temperature (T_{r}) was measured using a thermistor (401J, Nikkiso-therm, Tokyo, Japan) from a depth of 10 cm past the anal sphincter at 1-min intervals. Skin temperature $\left(\mathrm{T}_{\mathrm{s}}\right)$ was measured using a button-type data logger (Thermochron SL, KN Laboratories, Osaka, Japan) at 1-min intervals, and the logger was attached to four sites (i.e., chest, forearm, thigh and calf). The mean T_{s} was calculated as follows: $T_{s}=0.3 \times$ $($ chest + forearm $)+0.2 \times\left(\right.$ thigh + calf) (Ramanathan, 1964). The T_{m} at the thigh was estimated from the T_{s} using the following equation: $\mathrm{T}_{\mathrm{m}}=1.02 \times \mathrm{T}_{\mathrm{s}}$ at the thigh +0.89 (de Ruiter, Jones, Sargeant, \& de Haan, 1999).

Gas analysis

A breath-by-breath gas analysis was continuously performed using an automatic gas analyser (Quark CPET, COSMED, Rome, Italy) during the experimental trial. The analysers were calibrated before each graded exercise test with gases of known concentrations $\left(\mathrm{O}_{2}: 16 \%, \mathrm{CO}_{2}: 5 \%\right)$, and the tube flowmeter was calibrated using a 3-L syringe. The mean VO_{2}, carbon dioxide production $\left(\mathrm{VCO}_{2}\right)$ and respiratory exchange ratio (RER) were calculated.

Muscle oxygenation measurements

Two-wavelength (770 and 830 nm) light-emitting diode near-infrared spatial-resolved spectroscopy (NIR SRS : Hb14, ASTEM, Kanagawa, Japan) was used to measure muscle oxygenation of the right vastus lateralis, which was defined as 30% of the length between the patella and the greater trochanter above the patella at 5 Hz (Yanaoka, Hamada, et al., 2018). The $\operatorname{NIR}_{\text {SRS }}$ probe consisted of one light source and two photodiode detectors, and the optode distances were 20 and 30 mm . The $\mathrm{NIR}_{\text {SRS }}$ technique provided continuous, non-invasive monitoring of changes in oxygenated $(\Delta \mathrm{oxy}-\mathrm{Hb})$, deoxygenated $(\Delta$ deoxy -Hb$)$ and total haemoglobin $(\Delta$ total -Hb$)$ concentrations from rest before a standardised warm-up, and muscle oxygen saturation $\left(\mathrm{SmO}_{2}\right)$. The Δ total- Hb and SmO_{2} were calculated with the following equations: Δ total$\mathrm{Hb}=\Delta$ oxy $-\mathrm{Hb}+\Delta$ deoxy $-\mathrm{Hb} ; \mathrm{SmO}_{2}=$ oxy $-\mathrm{Hb} /$ total -Hb. The $\mathrm{NIR}_{\text {SRS }}$ variables were affected by the thickness of the fat layer (Niwayama, Lin, Shao, Kudo, \& Yamamoto, 2000). However, the NIR $_{\text {SRS }}$ data can be corrected by using the fat layer thickness (Niwayama, Suzuki, Yamashita, \& Yasuda, 2012). Therefore, the fat layer thickness at the measurement site was assessed using an ultrasound device (LogiQ3, GE Healthcare, Tokyo, Japan) before each trial, and the $\operatorname{NIR}_{\text {SRS }}$ variables were calculated using fatcorrection software (Hb14, ASTEM, Kanagawa, Japan). The within-subject coefficient of variation for the fat layer thickness was $3.6 \pm 1.5 \%$.

HR and the Rating of Perceived Exertion

HR was measured using a wireless HR monitor at 5-s intervals during the experimental trials (Polar RCX3, Polar Electro, Kempele, Finland). The rating of perceived exertion (RPE) was assessed before and after 40 min of cycling intermittent exercise, after the rest period and after the CISP (i.e., at 0, 40, 55 and 65 min$)(\mathrm{Borg}, 1982)$.

Statistical Analyses

The sample size was estimated using G*Power 3 (Faul, Erdfelder, Lang, \& Buchner, 2007), using the data from a previous study that investigated the warm-up effects on exercise performance when the total work during a warm-up was matched (Shima et al., 2006). To detect improvements in exercise performance with a power of 80% and an alpha level of 5%, a sample size of ≥ 7 participants was required. Statistics were computed using SPSS computer software (version 25.0, SPSS Japan Inc., Tokyo, Japan). All values are shown as mean \pm SD. The Shapiro-Wilk test was used to check for normality of distribution. All measurements were found to be normally distributed. A repeated-measures two-factor analysis of variance was used to examine differences among the three trials for all measurements. Mauchly's test was consulted and Greenhouse-Geisser correction was applied if sphericity was violated. When significant interactions and trial effects were detected, post-hoc multiple comparisons were made using the Bonferroni method. Statistical significance was set at $\mathrm{p}<0.05$. Unfortunately, some data were missing; T_{r} data are presented for 11 participants, T_{s} and estimated T_{m} data are presented for 10 participants and NIR $_{\text {SRS }}$ data are presented for 9 participants.

Results

Sprint Performance

The mean work during sprint for the CISP was significantly higher in both RW trials than in the CON trial (RW30: $p=0.038$, RW90: $p=0.021$, Figure 2a).

FIGURE 2 ABOUT HERE

Neuromuscular Activity

The mean RMS during sprint for the CISP was higher in the RW30 trial than in the

CON trial; however, there was no significant difference between the two trials ($\mathrm{p}=$ 0.056) (Figure 2b). The mean MDF during sprint for the CISP was significantly higher in the RW90 trial than in the CON and RW30 trials (CON: p $=0.014$, RW30: $\mathrm{p}=$ 0.040) (Figure 2c).

Body Temperature

T_{r} did not differ among the three trials (Table 1). Mean T_{s} and estimated T_{m} at 65 min was significantly higher in both RW trials than in the CON trial $\left(T_{s}\right.$: $\mathrm{RW} 30 ; \mathrm{p}=0.042$, RW90; $\mathrm{p}=0.037, \mathrm{~T}_{\mathrm{m}}:$ RW30; $\mathrm{p}=0.003$, RW90; $\left.\mathrm{p}=0.013\right)($ Table 1$)$.

TABLE 1 ABOUT HERE

Gas Analysis and Muscle Oxygenation

Mean $\mathrm{VO}_{2}, \mathrm{VCO}_{2}$ and RER during the first 40 -min intermittent exercise did not differ among the three trials. The mean values of $\mathrm{VO}_{2}, \mathrm{VCO}_{2}$ and RER during the CISP are provided in Figure 3. The mean VO_{2} during the initial 30 s of the CISP was significantly higher in both RW trials than in the CON trial (RW30: $p=0.001$, RW90: p <0.001), and it was significantly higher in the RW90 trial than in the RW30 trial ($\mathrm{p}=$ 0.005) (Figure 3a). The mean VCO_{2} for the CISP was significantly higher in the RW30 trial than in the CON trial $(\mathrm{p}=0.02)$ (Figure 3 b). The mean RER for the CISP was significantly higher in both RW trials than in the CON trial (RW30: $p=0.021$, RW90: p $=0.016)($ Figure 3c).

All NIR $_{\text {SRS }}$ variables during the first 40-min intermittent exercise did not differ among the three trials. The mean values of all NIR $_{\text {SRS }}$ variables during the CISP are provided in Figure 4. The mean $\Delta \mathrm{oxy}-\mathrm{Hb}$ during the initial 30 s of the CISP was significantly higher in the RW90 trial than in the CON trial ($\mathrm{p}=0.012$) (Figure 4a). The
mean Δ deoxy- Hb in the initial 30 s of the CISP was higher in the RW30 trial than in the CON trial; however, there was no significant difference between the two trials $(\mathrm{p}=$ $0.061)$ (Figure 4b). The mean Δ total- Hb during the initial 30 s of the CISP was higher in both RW trials than in the CON trial; however, there were no significant differences between the trials (RW30: $\mathrm{p}=0.099$, RW90: $\mathrm{p}=0.083$) (Figure 4c). The mean SmO_{2} during the CISP did not differ among the three trials.

FIGURES 3 and 4 ABOUT HERE

HR and RPE

There was a main effect of trial ($\mathrm{p}<0.001$) and trial \times time interaction ($\mathrm{p}<0.001$) for the HR. The HR before the commencement of the CISP was significantly higher in both RW trials than in the CON trial (CON: $46 \pm 5 \% \mathrm{HR}_{\max }, R W 30: 49 \pm 5 \% \mathrm{HR}_{\max }, \mathrm{p}=$ 0.038, RW90: $68 \pm 4 \% \mathrm{HR}_{\max }, \mathrm{p}<0.001$), and significantly higher in the RW90 trial than in the RW30 trial ($\mathrm{p}<0.001$). The HR during the CISP was significantly higher in the RW90 trial than in the other trials (CON: $70 \pm 5 \% \mathrm{HR}_{\max }, \mathrm{p}=0.015, \mathrm{RW} 30: 71 \pm$ $4 \% \mathrm{HR}_{\max }, \mathrm{p}=0.008$, RW90: $\left.74 \pm 6 \% \mathrm{HR}_{\max }\right)$.

There was a main effect of trial $(\mathrm{p}=0.001)$ and trial \times time interaction $(\mathrm{p}=$ 0.007) for the RPE. The RPE at 55 min was significantly higher in the RW90 trial than in the other trials (CON: 9.5 ± 2.4 arbitrary units [A.U.], $\mathrm{p}=0.008$, RW30: 10.4 ± 2.0 A.U., $p=0.023$, RW90: 11.8 ± 2.1 A.U.).

Discussion

To our knowledge, the present study is the first to investigate the effect of 1-min highintensity cycling RW on the subsequent intermittent sprint performance. The main findings of the present study were that 1) the RW90 trial showed that the subsequent
cycling intermittent sprint performance was increased by 5.7% compared with the CON trial and 2) the RW90 trial was as effective as the RW30 trial for increasing the cycling sprint performance. Moreover, the rates of increase of the cycling intermittent sprint performances were similar compared with those of RW protocols reported previously (i.e., 7-min RW at 70% of $\mathrm{HR}_{\max }$: 4.1\% [Yanaoka, Kashiwabara, et al., 2018] and 3-min RW at 60% of $\mathrm{VO}_{2 \text { max }}: 7.1 \%$ [Yanaoka, Hamada, et al., 2018]). Many fitness coaches believed that the major limitation of the implementation of RW is lack of time (Towlson et al., 2013). Therefore, the present findings may be of value for players and coaches who are generally busy with other ergogenic strategies during half-time.

Exercise performance improvements after a warm-up are generally attributed to increased body temperature, resulting in increases in adenosine triphosphate turnover and cross-bridge cycling rate, as well as improvements in muscle fibre functionality and muscle fibre conduction velocity (MFCV) (McGowan et al., 2015). Furthermore, sprint performance after RW for 7 min was increased because of maintained or increased T_{r} and T_{m} (Hammami et al., 2018; Russell et al., 2015; Silva et al., 2018). For example, Mohr et al. reported that a moderate-intensity RW for 7 min maintained T_{m} during halftime of actual soccer matches, and there was a correlation $(r=0.6)$ between the change in T_{m} and sprint performance (Mohr et al., 2004). In the present study, both RW trials showed increased estimated T_{m} at 65 min . This increase in the estimated T_{m} during the CISP may contribute to the increased intermittent sprint performance because of the physiological changes that occur with increasing body temperature. However, since the T_{m} in the present study was estimated from the T_{s}, the T_{m} may be underestimated. T_{s} at the thigh might have decreased after commencement of a cycling exercise due to reflex vasoconstriction, and it is followed by an increase (Nakayama, Ohnuki, \& Niwa, 1977). However, we have no direct T_{m} data. Therefore, T_{m}, which is measured directly,
requires further study.

Enhanced muscle activation is one of the factors for an acute increase in exercise performance after a warm-up or RW (McGowan et al., 2015; Yanaoka, Hamada, et al., 2018). For example, a previous study that used the same exercise protocol as the one described in the present study indicated that the 3-min low-intensity RW increased the subsequent intermittent cycling sprint performance and RMS during sprints (Yanaoka, Hamada, et al., 2018). It has been suggested that enhanced muscle activation, as evidenced by increased EMG activity during sprints, may be related to the acute increase in the intermittent cycling sprint performance after RW (Yanaoka, Hamada, et al., 2018) because a previous study reported that there is a linear relationship between RMS and power output during cycling (Hug \& Dorel, 2009). Although there was no significant difference between the two trials for the mean RMS ($p=0.056$) (Figure 2b), the mean RMS during sprinting for the CISP was higher in the RW30 trial than in the CON trial. Moreover, the RW90 trial increased MDF during sprints for the CISP compared with the CON and RW30 trials. These findings suggested that the RW90 trial may increase the MFCV since a previous study reported that the MDF reflected the MFCV (Stewart, Macaluso, \& De Vito, 2003). MFCV increases after active warm-up via increased core and muscle temperatures or a higher recruitment of type II muscle fibres (Kupa, Roy, Kandarian, \& De Luca, 1995; Morimoto, Umazume, \& Masuda, 1980; Sadoyama, Masuda, Miyata, \& Katsuta, 1988). In the present study, both RW trials did not influence the T_{r} or estimated T_{m} during the rest period. Therefore, it is a possible that the RW90 trial may increase the recruitment of type II muscle fibres.

A previous study reported that high-intensity voluntary contractions lead to enhancement in voluntary muscular performance in subsequent exercise, which is a
phenomenon called post-activation potentiation (PAP) (Blazevich \& Babault, 2019). Increased intermittent cycling sprint performance after the RW90 (i.e., high-intensity RW) trial may be related to the PAP effect. The effect of high-intensity RW aimed at a PAP effect on sprint performance was investigated, and the results suggested that a fiverepetition maximal leg press RW could improve subsequent sprint performance (Zois, Bishop, Fairweather, Ball, \& Aughey, 2013). The potential mechanisms underlying the PAP effect are an increase in calcium $\left(\mathrm{Ca}^{2+}\right)$ sensitivity of the acto-myosin complex caused by phosphorylation of the myosin regulatory light chain and an increase in higher-order motor neuron recruitment (Blazevich \& Babault, 2019; Sale, 2002). A previous study suggested that the PAP effect is greater in type II muscle fibres than in type I muscle fibres since type II muscle fibres have lower basal Ca^{2+} sensitivity and type I muscle fibres already have higher Ca^{2+} sensitivity (Blazevich \& Babault, 2019). Our speculation (i.e., increased recruitment of type II muscle fibres) may be consistent with these mechanisms of the PAP effect. However, further investigations of the highintensity RW used in the present study and the PAP effect are needed since the intensity of the RW90 trial was lower than that in a previous study (i.e., 90% of $\mathrm{VO}_{2 \max }$ or a 5repetition maximal leg press) (Zois et al., 2013).

Another potential mechanism contributing to the increased intermittent cycling sprint performance after both RW trials might be an enhancement of the primary VO_{2} response after commencement of the CISP. A previous study suggested that there is a close relationship between the ability to maintain intermittent sprint performance and faster VO_{2} kinetics (Dupont, McCall, Prieur, Millet, \& Berthoin, 2010). A reasonable hypothesis (Edholm, Krustrup, \& Randers, 2015) that RW may enhance the primary VO_{2} response to the subsequent exercise was suggested since soccer players started the second half with a higher HR , which is related to VO_{2} responses during varying non-
steady state exercises (Bot \& Hollander, 2000), after RW. In the present study, higher VO_{2} and HR after both RWs were observed, suggesting that the present results supported a previously proposed hypothesis (Edholm et al., 2015), and that an enhanced primary VO_{2} response may contribute to increased intermittent sprint performance in both RW trials. Moreover, the RW90 trial increased $\Delta \mathrm{oxy}-\mathrm{Hb}$ during the CISP, suggesting that oxygen availability in muscle increased after RW. Increased oxygen availability in muscle may accelerate the re-synthesis of phosphocreatine, which is directly related to the ability to perform high-intensity exercise after sprints (Girard et al., 2011; Spencer, Bishop, Dawson, \& Goodman, 2005). Therefore, increased oxygen availability in muscle may contribute to the increased intermittent cycling sprint performance after the RW90.

The potential mechanism of oxygen availability in the muscle in the RW90 trial may increase the oxygen supply to the muscle. The $\Delta \mathrm{oxy}-\mathrm{Hb}$ is an indicator of the balance between O_{2} supply and utilization (Takagi, 2016). No differences in the mean Δ deoxy- Hb , which is an indicator of the balance between O_{2} unloading in the muscle and blood outflow from the muscle (Takagi, 2016), were observed among the three trials, thus suggesting the possibility of increased O_{2} supply but not decreased O_{2} utilization. Previous reviews have suggested that a warm-up increases the oxygen supply to the muscle via vasodilation of blood vessels and an increase in blood flow to the muscles during subsequent exercise (Bishop, 2003; Jones, Koppo, Burnley, \& Carter, 2003). A previous study reported that relative changes in the oxy-Hb increased after a warm-up, and that this may occur due to the increased blood flow to the muscle (Takizawa \& Ishii, 2006). Moreover, it has been suggested that a specific core RW may increase muscle blood flow, as evidenced by decreased mean T_{s}, which was possibly a result of cutaneous reflex vasoconstriction with exercise (Tong, Baker, Zhang, Kong, \&

Nie, 2019). The redistribution of blood flow from skin to active muscles to meet the augmented metabolic demand is a compensatory vasoregulation after the commencement of exercise (Nakayama et al., 1977). However, no studies have addressed the muscle and skin blood flow, measured directly following RW. Future research should be focused on muscle and skin blood flow.

The present study did not observe decreased mean T_{s} at 55 min after both RW trials compared with the CON trial, which is not consistent with a previous study (Tong, Baker, Zhang, Kong, \& Nie, 2019). This may be due to differences in the measuring method of T_{s} between the present and previous studies (Tong, Baker, Zhang, Kong, \& Nie, 2019). Although the mean T_{s} was calculated from 4 sites in the present study, it was calculated from 12 sites (i.e., head, upper arm, forearm, finger, chest, upper back, lower back, anterior thigh, posterior thigh, anterior calf and posterior calf) in the previous study (Tong, Baker, Zhang, Kong, \& Nie, 2019). The decrease in T_{s} after the commencement of exercise is greater in the extremities than in the trunk (Nakayama et al., 1977). Indeed, the previous study showed that the T_{s} at the finger most decreased after RW (Tong, Baker, Zhang, Kong, \& Nie, 2019). Thus, because of differences in the assignment of regional proportions to calculate T_{s} between the present and previous studies, decrements of T_{s} after both RW trials may not be observed in the present study.

Although both RW trials had similar positive influences on the subsequent intermittent sprint performance, the present study reported that RPE at 55 min was significantly higher in the RW90 trial than in the RW30 trial. According to Towlson et al., another situational factors perceived as a major barrier to the implementation of RW was interference with the psychological preparation of the players (Towlson et al., 2013). However, the RPE at 55 min in the RW90 trial was 11.8 ± 2.1 (i.e., between "light" and "somewhat hard"), suggesting that a 1-min RW at 90% of $\mathrm{VO}_{2 \max }$ may not
be considered more difficult exercise for the active, younger individuals who participated in this study.

This study had some limitations. First, there was a difference between the exercise mode and intensity used in the present study and that of actual intermittent team sports. This study used two consecutive intermittent cycling exercises. However, most intermittent team sports involve running, jumping and multidirectional running. Moreover, it was not possible to conclude whether the present results could be obtained using actual intermittent team sports. However, a previous study has suggested that there was a moderate correlation between repeated sprint performance performed on a cycle ergometer and during running on the ground (i.e., total work vs total run time) (Fitzsimons, Dawson, Ward, \& Wilkinson, 1993). Therefore, intermittent sprint performance following a RW may be increased during actual intermittent team sports. Second, the type of participants involved in the present study did not allow us to make comparisons with professional athletes. Therefore, it is not possible to conclude whether the present results can be applied to these activities or actual intermittent team sports played by professional athletes.

In conclusion, the $1-\mathrm{min}$ cycling RW at 90% of $\mathrm{VO}_{2 \text { max }}$ increased the subsequent intermittent cycling sprint performance over 10 min after the $15-\mathrm{min}$ rest period compared with seated rest, and it was as effective as the $3-\mathrm{min}$ cycling RW at 30% of $\mathrm{VO}_{2 \text { max }}$. These evidence-based findings may contribute to the implementation of RW within a very short time-frame.

Acknowledgements

This study was supported by a Grant-in-Aid for JSPS Research Fellow (number: 17J02878) (to TY) and internal funding from the Waseda University (to MM and NH).

Declaration of Interest Statement

The authors have no conflicts of interest to disclose.

References

American College of Sports Medicine. (2010). ACSM's resource manual for guidelines for exercise testing and prescription.

Bishop, D. (2003). Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Medicine, 33(6), 439-454. https://doi.org/10.2165/00007256-200333060-00005

Blazevich, A. J., \& Babault, N. (2019). Post-activation Potentiation Versus Postactivation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Frontiers in Physiology, 10(November). https://doi.org/10.3389/fphys.2019.01359

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.

Bot, S., \& Hollander, A. (2000). The relationship between heart rate and oxygen uptake during non-steady state exercise. Ergonomics, 43(10), 1578-1592. https://doi.org/10.1080/001401300750004005

Bradley, P. S., Sheldon, W., Wooster, B., Olsen, P., Boanas, P., \& Krustrup, P. (2009). High-intensity running in English FA Premier League soccer matches. Journal of Sports Sciences, 27(2), 159-168. https://doi.org/10.1080/02640410802512775
de Ruiter, C., Jones, D., Sargeant, A., \& de Haan, A. (1999). Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human
adductor pollicis muscle. Experimental Physiology, 84(6), 1137-1150.

Dupont, G., McCall, A., Prieur, F., Millet, G. P., \& Berthoin, S. (2010). Faster oxygen uptake kinetics during recovery is related to better repeated sprinting ability. European Journal of Applied Physiology, 110(3), 627-634. https://doi.org/10.1007/s00421-010-1494-7

Edholm, P., Krustrup, P., \& Randers, M. B. (2015). Half-time re-warm up increases performance capacity in male elite soccer players. Scandinavian Journal of Medicine and Science in Sports, 25(1), e40-e49. https://doi.org/10.1111/sms. 12236

Faul, F., Erdfelder, E., Lang, A.-G., \& Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.

Fitzsimons, M., Dawson, B., Ward, D., \& Wilkinson, A. (1993). Cycling and running tests of repeated sprint ability. Australian Journal of Science and Medicine in Sport, 25(4), 82-87.

Girard, O., Mendez-Villanueva, A., \& Bishop, D. (2011). Repeated-sprint ability - part I: factors contributing to fatigue. Sports Medicine, 41(8), 673-694. https://doi.org/https://dx.doi.org/10.2165/11590550-000000000-00000

Hammami, A., Zois, J., Slimani, M., Russel, M., \& Bouhlel, E. (2018). The efficacy, and characteristics, of warm-up and re-warm-up practices in soccer players: a systematic review. The Journal of Sports Medicine and Physical Fitness, 58(1-2), 135-149. https://doi.org/10.23736/S0022-4707.16.06806-7

Hayes, M., Smith, D., Castle, P. C., Watt, P. W., Ross, E. Z., \& Maxwell, N. S. (2013). Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint cycling. Journal of Sports Sciences, 31(5), 565-572. https://doi.org/10.1080/02640414.2012.744077

Hug, F., \& Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182-198. https://doi.org/10.1016/j.jelekin.2007.10.010

Jones, A. M., Koppo, K., Burnley, M., \& Carter, H. (2003). Effects of Prior Exercise on Metabolic and Gas Exchange Responses to Exercise. Sports Medicine, 33(13), 949971. https://doi.org/10.2165/00007256-200333130-00002

Kupa, E. J., Roy, S. H., Kandarian, S. C., \& De Luca, C. J. (1995). Effects of muscle fibre type and size on EMG median frequency and conduction velocity. Journal of Applied Physiology, 79(1), 23-32. https://doi.org/10.1152/jappl.1995.79.1.23

Lovell, R., Barrett, S., Portas, M., \& Weston, M. (2013). Re-examination of the post half-time reduction in soccer work-rate. Journal of Science and Medicine in Sport, 16(3), 250-254. https://doi.org/10.1016/j.jsams.2012.06.004

McGowan, C. J., Pyne, D. B., Thompson, K. G., \& Rattray, B. (2015). Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Medicine, 45(11), 1523-1546. https://doi.org/10.1007/s40279-015-0376-x

Mohr, M., Krustrup, P., Nybo, L., Nielsen, J. J., \& Bangsbo, J. (2004). Muscle temperature and sprint performance during soccer matches - Beneficial effect of re-warm-up at half-time. Scandinavian Journal of Medicine and Science in Sports, 14(3), 156-162. https://doi.org/10.1111/j.1600-0838.2004.00349.x

Morimoto, S., Umazume, Y., \& Masuda, M. (1980). Properties of spike potentials detected by a surface in intact human muscle. Japanese Journal of Physiology, $30(1), 71-80$.

Nakayama, T., Ohnuki, Y., \& Niwa, K. (1977). Fall in sin temperature during exercise. Japanese Journal of Physiology, 27, 423-437.

Niwayama, M., Lin, L., Shao, J., Kudo, N., \& Yamamoto, K. (2000). Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer. Review of Scientific Instruments, 71(12), 4571-4575. https://doi.org/10.1063/1.1322578

Niwayama, M., Suzuki, H., Yamashita, T., \& Yasuda, Y. (2012). Error factors in oxygenation measurement using continuous wave and spatially resolved nearinfrared spectroscopy. The Journal of Japanese College of Angiology, 52(April), 211-215. https://doi.org/10.7133/jca.52.211

Racinais, S., Bishop, D., Denis, R., Lattier, G., Mendez-Villaneuva, A., \& Perrey, S. (2007). Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and Science in Sports and Exercise, 39(2), 268-274. https://doi.org/10.1249/01.mss.0000251775.46460.cb

Ramanathan, N. L. (1964). A new weighting system for mean surface temperature of the human body. Journal of Applied Physiology, 19(3), 531-533. https://doi.org/10.1152/jappl.1964.19.3.531

Russell, M., West, D. J., Harper, L. D., Cook, C. J., \& Kilduff, L. P. (2015). Half-time strategies to enhance second-half performance in team-sports players: a review and recommendations. Sports Medicine, 45(3), 353-364.
https://doi.org/10.1007/s40279-014-0297-0

Sadoyama, T., Masuda, T., Miyata, H., \& Katsuta, S. (1988). Fibre conduction velocity and fibre composition in human vastus lateralis. European Journal of Applied Physiology and Occupational Physiology, 57(6), 767-771. https://doi.org/10.1007/BF01076001

Sale, D. G. (2002). Postactivation potentiation: role in human performance. Exercise and Sport Science Reviews, 30(3), 138-43.

Seitz, L. B., \& Haff, G. G. (2016). Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Medicine, 46(2), 231-240. https://doi.org/10.1007/s40279-015-0415-7

Shima, N., Maeda, A., \& Nishizono, H. (2006). The effects of postactivation potentiation on muscular strength and power. Descente Sports Science, 27(1), 217223. in japanese

Silva, L. M., Neiva, H. P., Marques, M. C., Izquierdo, M., \& Marinho, D. A. (2018). Effects of warm-up, post-warm-up, and re-warm-up strategies on explosive efforts in team sports: a systematic review. Sports Medicine, 48(10), 2285-2299. https://doi.org/10.1007/s40279-018-0958-5

Spencer, M., Bishop, D., Dawson, B., \& Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Medicine, 35(12), 1025-1044. https://doi.org/10.2165/00007256-200535120-00003

Stewart, D., Macaluso, A., \& De Vito, G. (2003). The effect of an active warm-up on surface EMG and muscle performance in healthy humans. European Journal of Applied Physiology, 89(6), 509-513. https://doi.org/10.1007/s00421-003-0798-2

Takagi, S. (2016). Skeletal muscle oxygen dynamics and peak aerobic capacity. The Journal of Physical Fitness and Sports Medicine, 5(5), 379-383. https://doi.org/10.7600/jpfsm.5.379

Takagi, S., Murase, N., Kime, R., Niwayama, M., Osada, T., \& Katsumura, T. (2014). Skeletal muscle deoxygenation abnormalities in early post-myocardial infarction. Medicine and Science in Sports and Exercise, 46(11), 2062-2069. https://doi.org/10.1249/MSS. 0000000000000334

Takizawa, K., \& Ishii, K. (2006). Relationship between muscle oxygenation, VO_{2}, and high intensity aerobic exercise performance improving effect of warm-up. Advances in Exercise and Sports Physiology, 12(4), 121-125.

Tong, T. K., Baker, J. S., Zhang, H., Kong, Z., \& Nie, J. (2019). Effects of Specific Core Re-Warm-Ups on Core Function, Leg Perfusion and Second-Half Team Sport-Specific Sprint Performance: A Randomized Crossover Study. Journal of Sports Science \& Medicine, 18(3), 479-489.

Towlson, C., Midgley, A. W., \& Lovell, R. (2013). Warm-up strategies of professional soccer players: Practitioners' perspectives. Journal of Sports Sciences, 31(13), 1393-1401. https://doi.org/10.1080/02640414.2013.792946

Weston, M., Batterham, A. M., Castagna, C., Portas, M. D., Barnes, C., Harley, J., \& Lovell, R. J. (2011). Reduction in physical match performance at the start of the second half in elite soccer. International Journal of Sports Physiology and

Performance, 6(2), 174-182. https://doi.org/10.1123/ijspp.6.2.174

Wittekind, A., Cooper, C. E., Elwell, C. E., Leung, T. S., \& Beneke, R. (2012). Warmup effects on muscle oxygenation, metabolism and sprint cycling performance. European Journal of Applied Physiology, 112(8), 3129-3139. https://doi.org/10.1007/s00421-011-2262-z

Yanaoka, T., Hamada, Y., Kashiwabara, K., Kurata, K., Yamamoto, R., Miyashita, M., \& Hirose, N. (2018). Very-Short-Duration, Low-Intensity Half-Time Re-warm up Increases Subsequent Intermittent Sprint Performance. Journal of Strength and Conditioning Research, 32(11), 3258-3266. https://doi.org/10.1519/JSC. 0000000000002781

Yanaoka, T., Kashiwabara, K., Masuda, Y., Yamagami, J., Kurata, K., Takagi, S., Miyashita, M., \& Hirose, N. (2018). The Effect of Half-time Re-Warm up Duration on Intermittent Sprint Performance. Journal of Sports Science \& Medicine, 17(2), 269-278.

Zois, J., Bishop, D., Fairweather, I., Ball, K., \& Aughey, R. J. (2013). High-intensity re-warm-ups enhance soccer performance. International Journal of Sports Medicine, 34(9), 800-805. https://doi.org/10.1055/s-0032-1331197

Figure captions

Figure 1. Schematic representation of the study protocol.
CON: 15 min of seated rest trial, RW30: 3-min RW at 30% of $\mathrm{VO}_{2 \max }$ trial, RW90: 1$\min \mathrm{RW}$ at 90% of $\mathrm{VO}_{2 \max }$ trial, CISP: The Cycling Intermittent-Sprint Protocol.

Figure 2. The mean work (a), RMS (b) and MDF (c) during sprint for the CISP among three trials.

CON: 15 min of seated rest trial, RW30: 3-min RW at 30% of $\mathrm{VO}_{2 \text { max }}$ trial, RW90: 1\min RW at 90% of $\mathrm{VO}_{2 \text { max }}$ trial, RMS: root mean square, MDF: median frequency, CISP: The Cycling Intermittent-Sprint Protocol. $(\mathrm{n}=12$, mean \pm SD)
Means were compared by using a repeated-measures two-factor analysis of variance. Mean work: trial $\mathrm{p}=0.002$, RMS: trial $\mathrm{p}=0.024$, MDF: trial $\mathrm{p}=0.004$.

Figure 3. VO_{2} (a), VCO_{2} (b) and RER (c) of the mean values during the CISP. CON: 15 min of seated rest trial, RW30: 3-min RW at 30% of $\mathrm{VO}_{2 \max }$ trial, RW90: 1$\min \mathrm{RW}$ at 90% of $\mathrm{VO}_{2 \max }$ trial, VO_{2} : oxygen uptake, VCO_{2} : carbon dioxide production, RER: respiratory exchange ratio. $(\mathrm{n}=12$, mean \pm SD)
Data are displayed as 30 -s averages. Means were compared by using a repeatedmeasures two-factor analysis of variance. VO_{2} : trial $\mathrm{p}=0.298$; interaction $\mathrm{p}<0.001$, VCO_{2} : trial $\mathrm{p}=0.016$; interaction $\mathrm{p}<0.001$, RER: trial $\mathrm{p}=0.002$; interaction $\mathrm{p}<0.001$. * Significant difference between the CON and RW30 trials ($\mathrm{p}<0.05$) \# Significant difference between the CON and RW90 trials (p <0.05) \dagger Significant difference between the RW90 and RW30 trials ($\mathrm{p}<0.05$)

Figure 4. Changes in oxy- Hb (a), deoxy- Hb (b) and total- Hb (c) from the rest period before the standardised warm-up and SmO_{2} (d) of the mean values during the CISP.

CON: 15 min of seated rest trial, RW30: 3-min RW at 30% of $\mathrm{VO}_{2 \max }$ trial, RW90: 1\min RW at 90% of $\mathrm{VO}_{2 \text { max }}$ trial, $(\mathrm{n}=9$, mean $\pm \mathrm{SD}$)

Data are displayed as 30 -s averages. Means were compared by using a repeatedmeasures two-factor analysis of variance. $\Delta \mathrm{oxy}-\mathrm{Hb}$: trial $\mathrm{p}=0.051$; interaction $\mathrm{p}=$
0.004 , Δ deoxy- Hb : trial $\mathrm{p}=0.859$; interaction $\mathrm{p}=0.004, \Delta$ total -Hb : trial $\mathrm{p}=0.318$; interaction $\mathrm{p}=0.001, \mathrm{SmO}_{2}$: trial $\mathrm{p}=0.651$; interaction $\mathrm{p}=0.447$. \# Significant difference between the CON and RW90 trials ($\mathrm{p}<0.05$)

1 Table 1. Rectal $\left(T_{r}\right)$, mean skin $\left(T_{s}\right)$ and estimated muscle $\left(T_{m}\right)$ temperatures at each measurement point among three trials.

Variables	Trials	Pre (before first intermittent exercise)	40 (after first intermittent exercise)	(min) (before the CISP)	(after the CISP)
$\mathrm{T}_{\mathrm{r}}\left({ }^{\circ} \mathrm{C}\right)$	CON	37.2 ± 0.2	38.0 ± 0.2	37.8 ± 0.3	37.8 ± 0.3

2 Means were compared by using a repeated-measures two-factor analysis of variance. CON: 15 min of seated rest trial, RW30: 3-min RW at 30% 3 of $\mathrm{VO}_{2 \max }$ trial, RW90: 1-min RW at 90% of $\mathrm{VO}_{2 \max }$ trial, CISP: The Cycling Intermittent-Sprint Protocol. ($\mathrm{T}_{\mathrm{r}}: \mathrm{n}=11$, mean T_{s} and estimated T_{m} :
$4 \mathrm{n}=10$, mean \pm SD)
5 * Significantly different from the CON trial ($\mathrm{p}<0.05$)

Figure 1

Figure 2

Figure 3

(b)

Figure 4

