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Thiomers	and	their	potential	applications	in	drug	delivery 

Abstract: 

Introduction: Thiomers are the product of the immobilization of sulfhydryl-bearing ligands onto the 

polymer backbone of a conventional polymer, which results in a significant improvement in 

mucoadhesion, in situ gelation and efflux inhibition compared with unchanged polymers. Because of thiol 

groups, thiomers have more reactivity and enhanced protection against oxidation. Since the late 1990s, 

extensive work has been conducted on these promising polymeric excipients in the pharmaceutical field.  

Areas Covered: This review covers thiomers, their classification and their different properties. Various 

techniques for the synthesis, purification and characterization of thiomers are described in detail. This 

review also encompasses their various properties such as mucoadhesion, permeation enhancement, in situ 

gelation and efflux inhibition, as well as different formulations based on thiomers. In addition to the use 

of thiomers as multifunctional excipients, this review also encompasses their use as drugs.  

 

Expert Opinion: The synthesis is realized by linkage of sulfhydryl-bearing ligands but reported methods 

give low yields. Higher degrees of modification are not necessary and would probably lead to extreme 

changes in properties. Nevertheless, an accurate characterization of the final product is important. The 

scale-up procedure for industrial manufacturing has been adapted to produce GMP materials; Lacrimera® 

eye drops have already entered the European market. 

Keywords: Mucoadhesion, Oral delivery, Preactivated thiomers, S-nitrosothiomers, Thiomers,  

 

Article highlights 

• Several methods have been described to produce thiomers, but the yields of these reactions are 

low 

• An accurate characterization of the final products is important 

• Thiomers have good mucoadhesive properties 

• Thiomers have been used to enhance the permeation of drugs across biological barriers 

• Thiomers have efflux pump inhibiting properties 

• Some thiomers have in situ gel properties 

• Some thiomers can be used to produce tablets, nanoparticles or microparticles 

• From these thiomers, S-nitrosothiomers have been synthesized and proposed as new NO donors 
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1. Introduction 

Thiolated polymers, also referred to as thiomers, have encouraged the development of various fields of 

polymer-based medicine [1-3]. Thiomers or thiolated polymers are macromolecules bearing free thiol 

groups on the polymer backbone. The immobilization of sulfhydryl-bearing compounds (SBC) onto the 

backbone of well-developed polymeric excipients such as chitosan (CS) and poly (acrylates) may lead to 

the generation of these thiomers [4-6] as illustrated in figure 1. The formation of inter- and intra-

molecular disulfide bonds gives strong cohesive properties to thiomers, leading to comparatively 

advanced stability and consequently extended disintegration times and drug release from different dosage 

forms such as tablets, micro particles and gels [7]. In contrast to unmodified polymers, thiomers illustrate 

advantages in mucoadhesion and enzyme and efflux inhibition. The use of thiolated polymers or thiomers 

might overcome some prominent challenges in the applications of macromolecules as therapeutic agents 

including deficiencies in efficiency, safety and detailed delivery approaches [8].  

There has been substantial growth in the number of commercially available bioactive macromolecular 

therapeutic agents, such as proteins and peptides, due to current improvements in the 

pharmaceutical/biotechnology field. Due to their cost, these drugs are used in the treatment of major 

conditions such as acquired immunodeficiency syndrome (AIDS), cardiovascular disorders, hepatitis and 

cancer etc.[9]. Macromolecules have poor oral bioavailability, and parenteral routes are necessary. 

Because this latter approach is often linked with pain, fear and risks, it is of particular importance for 

pharmaceutical companies to make alternative routes available for drug administration. This is especially 

important for long-term treatments [8]. To overwhelm the targeted body diffusion barrier, drug delivery 

systems must possess specific properties. The bioavailability of macromolecular drugs has certain 

limitations due to the diffusion barriers offered by the mucosal gel layer wrapping mucosal membranes 

followed by the absorption barriers surrounding epithelial layers and efflux pumps, which are aided by 

enzymatic barriers. The polymeric excipients for drug delivery must possess certain prominent features to 

overwhelm these barriers, including mucoadhesive [10-12] and protective activity [13; 14], drug release 

control [15; 16], improved solubility [17; 18], and permeation and uptake enhancing properties [19-21]. 

However, thiols groups are unstable in solution (oxidized at pH ≥ 5) and some authors have demonstrated 

that protective substructures can be introduced to overcome this shortcoming [22]. This idea has recently 

led to a second generation of thiomers (“preactivated thiomers”) with improved properties (e.g., 

mucoadhesive properties) [23] (Figure 1).  

Finally, thiomers can be bound to nitric oxide to act as new NO donors [24; 25] (Figure 1). 

Insert Figure 1 
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2. Types and synthesis of thiomers 

2.1. First generation 

Numerous naturally occurring polymers, such as CS [26; 27], cellulose [28], hyaluronic acid [29], gelatin 

[30], collagen [31], and synthetic polymers, such as poly(acrylic acid) (PAA) [32], are commonly used as 

thiomer precursors. Thiomers are characterized as cationic, anionic and non-ionic based on the chemical 

structure of these parent molecules.  

Cationic thiomers are prepared by immobilizing SBCs onto the 2-amino position of the glucosamines in 

the polymer chain. These thiomers are based on CS, such as chitosan-cysteine (CS-Cys) and 

chitosanthioglycolic acid (CS-TGA) etc. [33]. The carboxylic acid group of Cys or thioglycolic acid 

(TGA) can react with the –NH2 group of CS, but the reaction has to be mediated by a carbodiimide. Other 

SBCs, such as N-acetylcysteine, 6-mercaptonicotinic acid and glutathione, can form amide bonds with 

chitosan [34; 35]. The cationic property not only comes from various groups of the SBCs (e.g., NH3/NH4
+ 

from amino acids) but also from the unreacted NH3 groups of the glucosamine. To date, described 

procedures have had a low yield (e.g., 25% for chitosan – GSH = 558 µmol/g) [24]). Amino acids can be 

affected by unintended reactions [36] that could be limited by protection of the carboxylic group. 

Nevertheless, some authors have used TGA as the SBC, and because this SBC is not an amino acid, 

unintended reactions are not possible; however, there is also a very low yield (< 40 µmol/g) [37]. 

Furthermore, there is a second method that is sometimes used to modify CS. With the chemical reaction 

between CSs and 2-iminothiolane (Traut’s reagent), a cationic amidine conjugate chitosan-4-

thiobutylamidine (CS-TBA) is produced [38]. In another study, to achieve better stability and properties 

similar to those of chitosan-4-thiobutylamidine, chitosan-thioethylamidine (TEA) was synthesized by a 

similar mechanism [39]. All the procedures gave quite similar yields. Hence, it is possible that this issue 

is due to limited accessibility to the amine groups (i.e., steric hindrance). 

For anionic thiomers, carboxylic acid groups are present on the polymeric substrates. Hence, the 

immobilization of the SBCs on these polymers can also be mediated by carbodiimides and is possible if 

the SBC bears a primary amine group. Examples include carboxymethylcellulose-cysteine (CMC-Cys) 

and alginate-cysteine (ALG-Cys) [40]. The reaction yields are also very low. 

To date, these reactions are widely used to obtain thiomers and their low yields are probably not so 

important. It is supposed that higher degrees of modification would probably lead to extreme changes in 

properties. 
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Finally, to achieve thiolation of polysaccharides exhibiting neither carboxylic acid nor primary amino 

groups (e.g., nonionic polymers), other methods can be used: 

Insert Figure 2 

1) Periodate cleavage of vicinal thiol followed by conjugation with amino acids is an advantageous 

technique (Figure 2). Thiomers are synthesized under fairly simple and mild conditions by covalently 

attaching SBCs bearing a –NH2 to the polymer backbone. Recently, Madgulkar et al. [41; 42], 

synthesized a novel mucoadhesive derivative of xyloglucan via oxidation of xyloglucan followed by 

conjugation with the amino groups of Cys as shown in figure 2. Sodium periodate was used to oxidize the 

hydroxyl groups located at carbon 2 and 3, resulting in the formation of different reactive groups having 

more rotational autonomy along the polymer backbone. The authors found that compared with the 

glucose remaining on the key chain, the xylose and galactose deposits on the lateral chains were more 

ideal for oxidation, which may be due to the dexterity of pendant side sugar deposits compared to glucose 

residues on the main chain. It was also found that the vicinal –OH group of the β- (1→4) - linked D-

glucopyranose backbone was in the trans state, which was kinetically less promising for periodate 

oxidation compared with the prime (cis) conformation detected in galactose and xylose residues. 

2) A nonionic polysaccharide such as hydroxyethylcellulose (HEC) can be transformed into a positively 

charged thiomer after oxidation of the proximal hydroxyl groups to aldehyde followed by conjugation of 

Cys to the same aldehyde groups using reductive amination reactions [43]. Bromination of HEC is also 

used to synthesize non-ionic thiomers, and then, the bromine of bromohydroxyethylcellulose (Br-HEC) is 

substituted with thiol groups by treating Br-HEC with thiourea yielding 131.58 ± 11.17 µmol of thiol 

groups per gram of polymer [44]. The synthesized thiomers are primarily purified using dialysis followed 

by freeze-drying under reduced pressure. These polymers can also be precipitated using organic solvents, 

such as Ellman’s reagent, for quantification of the immobilized thiol groups [35].  

 

2.2. Second generation: preactivated thiomers 

The synthesis of preactivated thiomers was recent reviewed by Ijaz et al. [35]. The protective 

substructures are pyridyl thiol groups derivatives: they are known to react very rapidly and quantitatively 

with sulfhydryl groups over a broad pH range	 to form disulfide bounds [45]. Since vitamin B3 

(nicotinamide/nicotinic acid) has this structure and a low toxicity, 2 of its derivatives were used as 

protective substructures: 6-mercaptonicotinamide (6-MNA) and 2-mercaptonicotinic acid (2-MNA). For 

example, Iqbal et al. described a method in 2 steps: 2-MNA was first oxidized to dimer and then it was 
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coupled to PAA-Cys via a disulfide exchange reaction to give a conjugate (PAA-Cys-MNA). This 

method was used in other studies [23; 46-50]. Besides, a quite similar methods was described with 6-

MNA [45]. 

 

2.3. Thiomers as drugs: S-nitrosothiomers 

Thiomers are not only used as drug excipients but can also be used as drugs. Because thiomers have free 

thiol (-SH) groups, active groups can be attached to these thiols for their therapeutic activities. Nitric 

oxide (NO) is an endogenous molecule and is a free radical having a very short half-life in vivo. 

However, the biological half-life of NO can be increased by its chemical attachment to a free thiol group 

available on glutathione (GSH), and an NO-donor S-nitrosoglutathione (GSNO) is obtained with an 

increased half-life [24]. Similarly, these NO-donor thiomers can be further linked to polymers for 

enhanced bioavailability and improved pharmacokinetics. In a study reported by Katsumi et al., a NO-

donor was synthesized by the chemical attachment of SATA (N-succinimidyl-S-acetylthioacetate) to 

polyethylene glycol (PEG) and bovine serum albumin [51]. More recently, a new NO-donor was 

synthesized by the covalent attachment of chitosan to GSNO [24] and alginate to GSNO [24], with better 

values observed for NO-linked to the polymer backbone. 

 

Consequently, a variety of thiomers can be modified to achieve desired properties and therapeutic effects 

using simple reactions with minimal steps.  

 

 

3. Properties of thiolated polymers 

3.1. Mucoadhesive properties 

Various research groups have verified the mucoadhesive properties of first generation thiomers for many 

polymer backbones, showing a more than 100-fold enhancement of mucoadhesive properties. For 

instance, the mucoadhesive properties of chitosan were enhanced 140-fold by the immobilization of thiol 

groups [38]. Thiomers, in contrast with other polymers, are proficient at developing covalent bonds with 

Cys-rich glycoprotein subdomains through thiol/disulfide interchange reactions. The produced covalent 

linkages are reportedly much stronger than the non-covalent polymer-anionic substructure interactions of 

the mucous layer [8]. 
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As depicted in table 1, in contrast with unchanged polymers, the thiomers show stronger adhesion, thus 

leading to increased oral bioavailability, subsequent reductions in dosing frequency and increased patient 

compliance [52]. 

Insert Table 1 	 

 

3.2. Permeation enhancement 

Different approaches have been taken to overcome absorption barriers, primarily through the use of 

permeation enhancers [56]. Different classes of low-molecular weight permeation enhancers, such as 

ethylene-diamine-tetraacetic acid (EDTA) and phospholipids, have been confirmed to be valuable in 

enhancing the permeation of crosswise integral epithelial membranes [57]. On the other hand, permeation 

and bioavailability also depend on a drug’s physicochemical properties [58]. In addition to the 

physicochemical properties of the drug, bioavailability also depends on formulation design and GIT’s 

physiological conditions [59]. Some other factors affecting bioavailability include enzymes, transit time, 

food material and other drugs [60]. In most circumstances, inadequate uptake from the mucosa is the main 

obstacle to the oral bioavailability of hydrophilic macromolecules, and this mucosal uptake can be 

favored by either trans-cellular or para-cellular routes of administration [35]. Thiomers, compared with 

most low-molecular weight permeation enhancers, provide the benefit of not being absorbed by the 

mucosal membrane and thus maintain their permeation enhancement properties for long periods of time 

[4]. The most probable mechanism for this enhanced permeation has been credited to claudin and 

occludin proteins present in tight junctions that regulate cell adhesion and ion selection [60-62]. This 

mechanism further proposes that inhibition of the enzyme PTP is responsible for the dephosphorylation of 

the tyrosine subunits of occludin, leading to the opening and closing of tight junctions and hence a greater 

permeation-enhancing effect. The phosphorylation and opening of tight junctions is caused by compounds 

such as reduced GSH, but due to fast oxidation on the mucosal membrane, its effect is restricted [8]. The 

presence of thiolated polymers on the mucosal surface to prevent the oxidation of GSH is vital. Many 

thiomers, such as PAA-Cys [63], polycarbophil-Cys (PCP-Cys) [64], CS-TGA [65] and CMC-Cys, have 

been reported to have a greater permeation-enhancing influence on some in vitro model compounds, as 

shown in table 2. The degree of thiolation has also been reported to have a significant impact on 

permeation-enhancement properties [63; 66]. We can simply assume that the higher the degree of 

thiolation, the higher the permeation-enhancement effect.  

Insert Table 2                  
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3.3.  Efflux pump inhibiting properties 

The ATP binding layer belongs to a superfamily of transmembrane-situated transporter proteins known as 

ABC, including P-Glycoprotein (Pgp) and multidrug-resistance protein in apical enterocytes membrane 

(MRP2), which are known to be efflux pumps. These pumps are the limiting factors for the oral 

bioavailability of many drugs and are involved in xenobiotic transport of nutrients etc. back from the 

serosa to the mucosa of epithelial tissue (out of the cell membrane), thus acting as a protective shield [8; 

69; 70]. Cationic drugs are largely blocked by Pgp, whereas in contrast, anionic drugs are usually effluxed 

by MRP2. Therefore, the inhibition of these transport proteins is of high interest and has been 

accomplished by the use of polymers, such as thiomers, polyethylene-glycols (PEG)[71] and pluronic 

block copolymers [72], which restrict transport by the formation of disulfide linkages [73]. Palmberger et 

al. investigated the effect of thiolated anionic biopolymers in vitro and in vivo as efflux inhibitors to 

improve intestinal trans-cellular drug uptake. Three thiomers, pectin-cysteine (Pect-Cys), 

carboxymethylcellulose-cysteine (CMC-Cys) and ALG-Cys, were synthesized and tested on rat small 

intestine using sulforhodamine 101 (SR-101) as the MRP2 model substrate. It was found that SR-101 

transport in the presence of Pect-Cys, CMC-Cys and ALG-Cys improved by 1.5, 1.8 and 3.0-fold, 

respectively, in vitro; unmodified alginate improved by 3.8-fold, and the AUC0 ≥ 12 of SR-101 improved 

by a factor of 1.9 in vivo. It was suggested that thiolated alginate can act as a favorable auxiliary agent for 

different drugs by being an anionic efflux pump substrate, thereby greatly enhancing oral MRP2 substrate 

bioavailability [74]. Grabovac et al. investigated the effect of the molecular mass and thiol group content 

of poly (acrylic acid) – cysteine conjugates (PAA-Cys) on sulforhodamine and penicillin G permeation by 

acting as an MRP2 efflux pump inhibitor in rat small intestine. Using a 250-kDa PAA-Cys conjugate, 

sulforhodamine exhibited a 3.85-fold permeability improvement from 3.93 to 355.9 ± 39.5 µmol/g, and 

penicillin G exhibited a 1.59-fold improvement. It was proposed that thiolated PAA constrains MRP2-

mediated transport and that the extent of inhibition was dependent upon molecular mass and the amount 

of polymer thiolation [32]. 

 

3.4. In situ gelling properties 

An important limiting factor for a drug’s efficacy is rapid clearance from the site of drug administration, 

whether ocular, nasal or vaginal mucosa. It has been generally accepted that bioavailability of drug 

moieties can be enhanced by increasing the drug’s viscosity and subsequently limiting its clearance. In 

situ-based drug formulation is hence a very favorable approach to acquiring drug formulations of the 
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desired viscosity [62]. As a consequence of some physicochemical changes due to the physiological 

environment such as temperature [75-77], pH [78-80], electrolyte concentrations [81-83] and the 

formation of inter- and/or intra-molecular disulfide bonds by oxidation, extensive crosslinking results in 

sol-to-gel transitions. Hintzen et al. synthesized three thiomers, i.e., pectin-cysteine (Pec-Cys), sodium 

carboxymethylcellulose-cysteine (NaCMC-Cys) and poly(acrylic acid)-cysteine (PAA-Cys), and 

measured the rheological properties of 1% (m/v) thiomer solutions with oxidizing agents and compared 

the oscillatory measurements over time (120 mn). It was observed that Pec-Cys and NaCMC-Cys with 

carbamide peroxide and hydrogen exhibited a 13,000-fold increase in dynamic viscosity, and the reason 

for the increase in viscosity was attributed to the formation of inter- and/or intra-molecular disulfide 

linkages [84]. It was also found that thiomers exhibiting a polysaccharide backbone showed significant 

viscosity increases (p < 0.05) [85]. Gyarmati et al. investigated in situ gelling poly(aspartic acid) (PASA) 

thiomers to determine their potential in the development of injectable preparations. It was found that time 

of gelation and gel strength were related to polymer concentration, but the time of gelation was controlled 

independently of gel strength by changing the oxidizing agent concentration. Gelation time could be 

altered by between 2-6 min, making thiomer PASP a good candidate for injectable drug delivery 

formulations [3]. In another study, Iqbal et al. measured the viscoelastic properties of poly(acrylic acid)-

cysteine-mercaptonicotinamide (PAA-Cys-2MNA; 100, 250 and 450 kDa), related thiomers and 

unmodified PAAs in pH 6.8 phosphate buffer. It was found that with an increase in molecular mass and 

pre-activation of thiolated PAAs, the dynamic viscosity was enhanced [22]. The obtained results thus 

confirm the hypothesis that an increase in the proportionality of viscosity is associated with molecular 

mass and the number of sulfhydryl moieties on the polymer [86]. Table 3 depicts a comparison of some of 

the dynamic viscosity improvement ratios of various thiomers in the presence of mucous.  

Insert Table 3        

 

4. Different routes of drug administration using thiomers as drug carriers  

4.1. Oral matrix tablets 

Different routes of drug administration with thiomers as a carrier have emerged in the past few years. 

Among these, the oral route is considered the safest and most effective route of drug administration [88]. 

Matrix tablets with mucoadhesive thiomers show great potential for oral, intra-oral and vaginal drug 

administration [40; 47; 55; 63; 89]. The swollen polymer matrix offers enhanced stability and 

cohesiveness in situ because of inter- and intra-molecular disulphide bond generation [66]. Disintegration 

studies performed on tablets with PAA in its modified and un-modified thiolated forms to investigate 
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overall stability revealed that tablets with un-modified polymer disintegrated within 2 h, whereas for 

those with PAA-Cys, no disintegration was observed after 48 h [90]. The swelling properties of matrix 

tablets can be reduced by the incorporation of a hydrophobic ligand such as oxidized MNA, providing 

preactivated polymers [45]. This protection is very significant for prolonging mucoadhesion [35; 91] 

because thiolated polymers, upon excessive water uptake, attain unnecessary weight and cause the 

detachment of matrix tablets from the mucosal surface. In another study, the oral bioavailability of antide 

tablets (i.e., a peptide that acts as an LHRH antagonist), including both thiolated and S-protected thiolated 

chitosan, was assessed. If the antide is incorporated in chitosan-thioglycolic acid-6-mercaptonicotinic acid 

(CS-TGA-MNA), the peptide reaches an absolute bioavailability of 1.4%, resulting in a 421-fold 

increased area under the plasma concentration time curve compared with the antide solution [23; 35; 45]. 

In a follow-up study, the potential of a preactivated thiolated pectin derivative (Pec-Cys-MNA) to act as a 

mucoadhesive excipient for gastric cavity delivery was assessed. Mini-tablets were developed and 

evaluated for mucoadhesion, disintegration, swelling and release of rosuvastatin calcium. Adhesion 

increased by more than 5-fold, disintegration time was prolonged by more than 2-fold, weight gain for 

Pec-Cys-MNA was at least 16-fold higher, and sustained release of rosuvastatin calcium was observed 

over 36 h [47]. 

 

4.2. Microparticles and nanoparticles 

Multiple unit dosage forms such as micro- and nanoparticles, in contrast with single unit dosage forms 

such as tablets, have extended residence time in small intestine [23]. In one study, the tablet formulation 

left the small intestine completely after 3 h, whereas in the case of particles, more than 50% were still 

present after the same time [92]. Barthelmes et al. revealed that thiolated nanoparticles have enhanced 

mucoadhesive properties compared with unmodified nanoparticles on intravesical mucosa [93]. Lee et al., 

during studies on the transfection efficiency of chitosan-4-thiobutylamidine (CS-TGA/DNA) 

nanoparticles, observed that higher gene expression was induced by these thiolated chitosan nanoparticles 

(TCS-NPs) compared with unmodified chitosan nanoparticles (CS-NPs); CS-TGA/DNA with 

crosslinking nanoparticles exhibited prolonged DNA release and, after transfection, uninterrupted 

expression for up to 60 h [94]. Bari et al. conducted an in vivo evaluation of thiolated chitosan 

nanoparticles (TCS-NPs) of buspirone hydrochloride (BUH) for delivery into the brain through the 

intranasal route using bovine nasal cavity tissue. It was found that TCS-NPs had 15% more binding 

efficiency than unmodified CS-NPs, which could be due to the low amount of CS and TCS interacting 

with mucin, increased particle size of BUH-loaded CS and TCS nanoparticles and absorption of drug 

molecules on the NP surface, leading to low NP mucosal layer penetration [27]. Improved TCS binding 
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efficiency could be due to covalent attachment of TGA to CS generating a thiol group that interacts with 

mucin [37]. After 12 h, the cumulative % of drug permeated through the nasal mucosa by CS-BUH-NPs 

and TCS-BUH-NPs was found to be 62.52 and 76.21%, whereas 20.97% permeated from pure drug 

solution, as depicted in figure 3a. The formulation (i.e. TCS-BUH-NPs) was also tested in vivo in Wistar 

rats: a comparatively higher brain concentration (797.46 ± 35.76 ng/ml; tmax 120 min) was achieved after 

intranasal administration of TCS-NPs compared with that achieved after nasal administration of the pure 

drug solution (417.77 ± 19.24 ng/ml; tmax 60 min), as shown in the figure 3b [27] . 

Insert Figure 3a - Insert Figure 3b  

 

5. Gels, liquids and other routes 

Thiolated liquid formulations are commonly used in ocular [95-97] and nasal [98-101] preparations, as 

low viscosity formulations are very easy to introduce and more tempting esthetically for patients. Due to 

comparatively higher viscosity, hydrogels provide a sustained residence time at the site of application; 

therefore, lidocaine hydrogels for buccal delivery using preactivated thiolated pectin were developed, and 

a sustained release of lidocaine was observed [55]. Laffleur et al. modified hyaluronic acid with cysteine 

ethyl ester (HA-Cys-EE) for the treatment of dry eye syndrome and showed a 3.81-fold increase in 

swelling capacity, 30.5-fold improvement in mucoadhesion and 9.72-fold higher stability [102]. Hintzen 

et al. synthesized S-protected thiolated pectin (Pec-Cys-MNA) resistant to oxidation in solutions above 

pH 5. The obtained results depicted a 1.8-fold increase in disintegration time at pH 6.8 and a 6.7-fold 

increase in dynamic viscosity compared with unmodified pectin. Long-term stability for a liquid 

formulation based on Pec-Cys-MNA was also demonstrated in a 6-month experiment [103]. In another 

study, thiolated polydimethylaminoethylmethacrylate (PDCys) was synthesized and exhibited higher 

force and work of adhesion and a 3.9-fold permeation improvement in Caco-2 cells compared with the 

parent polymer [104]. Similar results were found in follow-up studies [22; 85; 105]. In a study on 

enhanced vaginal mucoadhesion, hyaluronic acid was thiolated and then pre-activated with 6-

mercaptonicotinamide to develop HA-Cys-MNA. Prolonged mucoadhesion, higher stability (3.6-folds 

prolonged disintegration time) and no toxicity were observed [29].  

 

6. Conclusion 

This review shows that there are many possibilities to produce thiomers. These thiomers are 

promising excipient for the development of novel formulations including tablets, microparticles 
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and nanoparticles. Actually, thiolation dramatically increase very specific properties: in drug 

delivery, mucoadhesion, efflux inhibition, permeation enhancement and in situ gelation are the 

advantageous properties of these thiomers. Due to their properties, -SH groups can in turn link to 

other compounds and give rise to preactivated thiomers. Finally, thiomers have been used to 

produce NO-donors, which we have named S-nitrosothiomers. These polymers are potential 

drugs and have been proposed for the treatment of Crohn’s disease. 

 

 

7. Expert opinion 

Synthesis of thiomers is realized by linkage of sulhydryl bearing compounds (SBC). Several methods 

have been published leading to a wide selection of polymers.  

Although this review can help to compare each of these polymers, making a choice can be a complex 

matter. The number of-SH groups and the variations of « ratio of improvement » that have been studied 

are important parameters but physiochemical parameters (e.g. viscosity, hydrophilicity, ability to 

produces particles tablets or gels, etc.) are also critical for the final formulations. In most studies, 

polymers are partially modified and the final thiomers could be easily compared to the starting 

compound: similar formulations are usually made with the thiomer and its corresponding unmodified 

polymer. 

To date, some toxicological data show that thiomers don’t show more in vitro cytotoxicity than 

unmodified polymers [84]. Even preactivated polymers that can release 2-MNA or 6-MNA did not show 

more toxicity [105]. 

For a further development, it is important to take in account that thiomers usually correspond to mixtures 

of various structures. For example, oxidation of the free thiols can lead to the formation of disulfide 

bounds [84] and an increased viscosity . In many cases, the oxidized thiomers have been reduced by 

NaBH4 [24]. This method can give « 100%-free thiols » polymers but add another step for the production 

of thiomers and a necessity to purify the formulation from NaBH4. 

Additively, if amino acids are used as SBC, other unintended reactions can occur [36] leading to the 

formation of chains of 2, 3 or more amino acids. Nevertheless this kind of reaction should be put in 

perspective, as yield of the reaction (i.e. SBC linkage) is usually low. At a first sight, these action are not 

considered to be an issue but this might lead to variations in molecular weights and physicochemical 
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properties. The use of a protecting group (also used for the synthesis of peptides) has never been tested 

but could probably better control the reaction of amino acids. Traut’s reactant doesn’t have this 

shortcoming. 

However, obtained polymers have very interesting properties; higher degrees of modification are 

probably not necessary and would lead to extreme changes in properties. After rigorous characterization, 

they can be considered promising tools in the development of different formulations. To overcome the 

challenges faced in the field of drug delivery (e.g., poor bioavailability), the use of these multifunctional 

polymeric excipients may be a favorable approach. 

To date, a medical device (Lacrimera®: chitosan-N-acetylcysteine conjugate) has been marketed and 

proposed in the treatment of dry eye syndrome. 
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Legends 

 

 

Figure 1. Thiolated polymer (Thiomers) with possibilities of further reactions on the –SH 

groups 

 

Figure 2. Thiolation of hexosans with sulfhydryl bearing compounds (SBC) – NBS: N-

Bromosuccimide; PPh3: Triphenylphosphine; EDAC: 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide ; TGA : thioglycolic acid. 

 

Figure 3. (a) Ex-vivo permeation of optimized CS-NPs and TCS-NPs. (b) Comparative BUH 

concentration in blood and brain at different time intervals by BUH-TCS-NP solution given 

intranasally. From [26] 

 

 

 
 
 











 

 

 

 

Table 1. Ratio of improvement of thiomers with their original unmodified polymers 

Polymer Property Ratio of Improvement of 

Polymers 

Reference 

Preactivated             Thiomer 

    thiomer 

AC 1030-Cys-2MNA*  TWA                             5.7                         3.4             [23]                 

 Adhesion Time             18.0                       4.0 

 MDF 2.9                         2.8 

CS-TGA-MNA-660*    Adhesion Time  9.0                         1.8   [45] 

CS-TBA-MNA*          TWA  79.3                       14.1   [53] 

                                      Adhesion Time  150                        94.5 

HA-Cys-MNA*          TWA  18.0                       2.8   [54] 

 Adhesion Time  10.0                       2.6 

Pec-Cys-MNA*          TWA  8.9                         4.8   [89] 

 MDF 1.6                         1.8 

PAA450-Cys-MNA*     TWA  3.0                         1.9              [22] 

                               MDF                               2.5                         1.4 

 
AC 1030-Cys-2MNA: Cross-linked hydrophobically modified Poly (acrylic acid) Cysteine- mercaptonicotinamide; CS-

TGA-MNA-660: Chitosan 660 kDa-thioglycolic acid-mercaptonicotinamide; CS-TBA-MNA: Chitosan-thiobutylamidine-

mercaptonicotinamide; HA-Cys-MNA: Hyaluronic acid-cysteine ethyl ester-mercaptonicotinamide; Pec-Cys-MNA: Pectin-

cysteine-mercaptonicotinamide; PAA450-Cys-MNA: Poly(acrylic acid) 450 kDa-cysteine-mercaptonicotinamide; TWA: Total 

work of adhesion; MDF: Maximum detachment force. *: preactivated polymers 

 



 

 

 

Table 2. Permeability enhancement in in vitro models and permeability difference 

between thiomers and their corresponding original polymers  

Thiomer (Permeation 

Enhancer) 

Test 

Compound 

R Value 

(Enhancement 

Ratio) 

Apparent permeability 

Coefficient cm/s (x10-6) 

Ref. 

Anionic Thiomers                             

PCP-Cys                                         Na-Flu                   1.63                  11.85 ± 0.5                                         [63] 

PCP-Cys/GSH                               Na-Flu                  2.93                14.64 ± 0.93                                       [105] 

CMC-Cys                                      Na-Flu                   1.8                  12.92 ± 0.41                                       [106] 

PAA250-Cys-2-MNA*                     Na-Flu                   0.81                4.68 ± 0.80                                         [66] 

PAA250-Cys-2-MNA/GSH*            

PSSA-MA 

PC1608-2MNA* 

Na-Flu                  

Na-Flu 

Na-Flu 

1.32                

1.11 

1.60 

7.67 ± 0.23                                         

2.54 ± 0.17 

1.00 ± 0.05 

[66] 

[67] 

[67] 

PCP-Cys                                        SH 101                 1.27               1.60  ± 0.28                                       [32] 

PAA450-Cys                                SH 101                 1.95               2.41 ± 0.25                                        [32] 

PCP-Cys                                        Penicillin G          1.09               1.30 ± 0.31                                        [32]                        

PAA450-Cys                                Penicillin G          1.17               1.41 ± 0.93                                        [32] 

Cationic Thiomers     

CS-TGA-340*                       Rhodamine 2.7 3.79 ± 0.99                                         [107] 

CS-TGA-980*                       Rhodamine 4.1 5.64 ± 1.15                                         [107] 

CS-TGA-MNA-340*           Rhodamine 3.7 5.19 ± 0.93                                        [107] 

CS-TGA-MNA-980*            Rhodamine 6.7 9.26 ± 2.30                                         [107] 

CS-TBA                              Rhodamine 1.8 1.5 ± 0.7                                             [64] 

CS-TBA/GSH                     Rhodamine 3.6 3.0 ± 1.2                                             [64] 
Na-Flu: sodium fluorescein; PCP-Cys: Polycarbophil-Cysteine; PCP-Cys/GSH: Polycarbophil-Cysteine /Glutathione; CMC-Cys 

carboxymethylcellulose-cysteine; PAA250-Cys-2-MNA: Poly(acrylic acid) 250 kDa-cysteine-mercaptonicotinamide; PAA250-Cys-2-

MNA/GSH: Poly(acrylic acid) 250 kDa-cysteine-mercaptonicotinamide/glutathione; PSSA-MA: Poly(styrene sulfonic acid-co-maleic acid), 

PC1608-2MNA: Poly(styrene sulfonic acid-co-maleic acid)-cysteamine thiomers preactivated with 2-mercaptonicotinic acid; PAA-450-Cys: 

Poly(acrylic acid) 450 kDa-cysteine; CS-TGA-340, CS-TGA-980, CS-TGA-MNA-340 and CS-TGA-MNA-980: Chitosan-thioglycolic acid, 

protected; CS-TBA: chitosan-4-thiobutylamidine; CS-TBA/GSH chitosan-4-thiobutylamidine/glutathione; *: preactivated polymers. 

 



 

 

 

 

 

 

 

 

 

 

Table 3. Dynamic viscosity improvement of thiomers 

Polymer Dynamic Viscosity ή (Pa*s) Improvement Ref. 

 Without Mucus With Mucus   

Pec-Cys-MNA 

CS-TGA 

317.68 ± 33.90 

56.93 ± 13.30  

453.95 ± 64.20 

417.15 ± 2.71 

1.4 

7.3 

[89] 

[87] 

CS-TGA-MNA 95.81 ± 18.63 553.92 ± 44.34 5.8 [87] 

PAA-Cys-2MNA (100 kDa) 50 ± 10 55 ± 10 1.1 [22] 

PAA-Cys-2MNA (250 kDa) 80 ± 10 318 ± 69 4.0 [22] 

PAA-Cys-2MNA (450 kDa) 12860 ± 80 58872 ± 3227 4.5 [22] 

Pec-Cys-MNA: Pectin-Cysteine-Mercaptonicotinamide; CS-TGA: Chitosan-Thioglycolic Acid; CS-TGA-MNA: Chitosan-

Thioglycolic Acid-Mercaptonicotinamide; PAA-cys-2MNA: Poly(acrylic acid)-Cysteine-Mercaptonicotinamide. 

 


