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XXI.  Stability of Fluid Motion (continued from the May and 
June numbers).--Reetilineal Motion of Viscous Fluid between 
two _Parallel _Planes% By Sir W. Trro~rso~, LL.D.~ F.R.S. 

27. ,~I~TCE the communication of the first of this series of 
k.) articles to the Royal Society of Edinburgh in April~ 

and its publication in the Philosophical Magazine in May and 
June~ the stability or instability of the steady motion of a 
viscous fluid has been proposed as subject fbr the Adams 
Prize of the University of Cambridge for 1888 ~. The pre- 
sent communication (§ § 27-40) solves the simpler of the two 
cases specially referred to by the Examiners in their announce- 
ment~ and prepares the way for the investigation of the less 
simple by a preliminary laying down~ in § § 27-29~ and equa- 
tions (7) to (12) below, of the fundamental equations of 
motion of a viscous fluid kept moving by gravity between 
two infinite plane boundaries inclined to the horizon at any 
angle I, and given with any motion deviating infinitely little 
from the determinate steady motion which would be the 
unique and essentially stable solution if the viscosity were 
sufficiently large. It seems probable~ almost certain indeed, 
that analysis similar to that of §§ 38 and 39 will demonstrate 
that the steady motion is stable for any viscosity, however 
small; and that the practical unsteadiness pointed out by 
Stokes forty-four years ag% and so admirably investigated 
experimentally five or six years ago by Osborne Reynolds~ is 
to be explained by limits of stability becoming narrower and 
narrower the smaller is the viscosity. 

Let OX be chosen in one of thg bounding planes, parallel 
to the direction of the rectilineal motion ; and O¥ perpen- 
dicular to the two planes. Let the x-~ y-~ z-~ component 
velocities~ and the pressur% at (x~ y~ z~ t), be" denoted by 
U + u~ v, w, and p respectively ; U denoting a function of (y~ t). 
Then, calling the density of the fluid unity~ and the viscosity 
/~ we have~ as the equations of motion ~ 

du + dv + dw 
d--x dy dzz --0 . . . . .  (1); 

• Communicated by the Author, having been read before the Royal 
Society of Edinburgh, July 18, 1887. 

t See Phil Mug. July 1887, p. 142. 
:~ Stokes's Collected Papers, vol. i. p. 93. 
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d u) + (U du d dw ~7(u+ +u)~  +vTy(U+u)+wT;=~z~(U+u)- ~ +gsinI, 
/ 

dv dp dv +(U+u) dv +v~y + w de dy d~ , ~x - - =  ~ 7 ~  - g c o s I ,  ~ (~);  

dw + ( U + U ) d ~  + v ~  + dw dp J dt w -~z "~"  I~ V~w - -  d z  ' 

d ~ d ~ d ~ where ~7 ~ denotes the " Laplaeian" ~ + ~ + ~-~. 

28. If  we have u=O, v=O, w=O; p = C - g c o s I y ;  the 
four equations are satisfied identically ; except the first of (2), 
which becomes 

dU d~U 
- - = g ' d 7  +g  sin I dt . . . . .  (3). 

This is reduced to 

if we put 

d l l  d 2 u  
- - i  z ~ ~ 

dt a:q 
. . . . . .  (4), 

U = v + ½g sin I/ft. (b ~ - ~ )  (5). 
For terminal conditions (the bounding planes supposed to be 
y=O and y=b) ,  we may have 

1)----- F(t)  when y = O }  - . . . .  ((;), 
=~(t) ,, y=b 

where F and ~ denote arbitrary functions. These equations 
(4) and (6) show (what was found forty-two years ago by 
Stokes) that the diffhsion of velocity in parallel layers, provided 
it is exactly in parallel layers, through a viscous fluid, follows 
Fourier's law of the " l inear"  diffusion of heat fhrough a 
homogeneous solid. Now, towards answering the highly 
important and interesting question which Stokes raised,--Is 
this laminar motion unstable in some cases ?--go back to (1) 
and (2), and in them suppose u, v, w to be each infinitely 
small: (1) is unchanged; (2), with U eliminated by (5), 
become 

du ~ ~ du [ ' ~ d v  dp [o+½c(b 
- ~ +  dx " " (7), 

dv . . . .  ~ ~. ~ dv 
d-i + Lv+~c(b --Y )Jdx =/~V% dp d y ' "  (S), 

d~ [~ + ½ c(b'-~/~)] d,o 
--d[ + d-x =t~7~ w dp (9); 

d z  " " 

.where 
¢=g sin I/t~ . . . . . . .  (10) 
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and, for brevity; iv now denotes, instead of as before the pres- 
sure, the pressure +g  cos Iy. 

We still suppose v to be a function ofy  and t determined 
by (4) and ( 6 ) .  Thus (1) and (7), (8), (9) are four equa- 
tions which, with proper initial and boundary conditions, 
determine fl~e four unknown quantities u, v~ w~ p ; in terms 
of x, y,  z, t. 

29. It  is convenient to eliminate u and w;  by taking 
d d d 

dxx' dy'dzz of (7), (8), (9), and adding. Thus we find, in 

virtue of (1), 2 ( d u  

This and (8) are two equations for the determination of v 
and p. Eliminating p between them, we find 
d V %  + = , p , ,  

dt \ d y  ~ ] dx  " " 

a single equation which, with proper initial and boundary 
conditions, determines the one unknown, v. When v is thus 
found, (8), (7), (9) determine p, u, and w. 

30. An interesting and practically important case is pre- 
sented by supposing one or both of the bounding planes to be 
kept oscillating in its own plane ; that is, F and ~ of (6) to 
be periodic functions of t. For example, take 

F---aces ~t, -~---0 . . . . .  (13) 
The corresponding periodic solution of (4) is 

u = a  a J ~ -a ~/~- cos ~ t - - y  . . 
e 2t~ - -  ~. 2t~ 

In connexion with this case there is no particular interest 
in supposing a current to be maintained by gravity; and we 
shall therefore take c----0, which reduces (7), (8), (9), (11), 
(12), to du du . d r  dp 

dt-- + v - ~  t ~yy--V=tZV2u - ~-~ . (15), 

dv dv dp (16), 
d-t + v dx  = t ~ 7 %  --  

dw dw dp (17), 
d--[ + v d-x = l~7~w- d'-z~ 

2 dv dv 
dy dx  = - - V ' P  . . . . .  (18), 

d~7% d~v dv d~7% ~ (19) ; 
dt dy ~ dx  + v ~ = / ~ V  v . . . . .  

in all of which u is the function of (y, t) expressed by (14). 
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Those equations (15) . . .  (19) are of course satisfied by 
u=0 ,  v=0,  w=0,  p = 0 .  The question of stability is, Does 
every possible solution of them come to this in time ? It  
seems to me probable that it does ; but I cannot, at present 
at all events, enter on the investigation. The case of b = ~  
is specially important and interesting. 

31. The present communication is confined to the much 
simpler case in which the two bounding planes arc kept moving 
relatively with constant velocity ; including as sub-case, the 
two planes held at rest, and the fluid caused by gravity to 
move between them. But we shall first take the much simpler 
sub-case, in which there is relative nmtion of the two planes, 
and no gravity. This is the very simplest of all cases of the 
general question of the Stability or Instability of the Motion 
e ra  Viscous Fluid. i t  is the second of the two cases pre- 
scribed by the Examiners for the Adams Prize of 1888. I 
have ascertained, and I now give (§§ 32 . . . 39  below) the 
proof, that in this sub-case the steady motion is ~holly stable, 
however small or however great be the viscosity; and this 
without limitation to two-dimensional motion of the admis- 
sible disturbances. 

32. In our present sub-case, let/% be the relative velocity of 
the two planes; so that in (6) we may take F = 0 , ~ = / 3 b ;  and 
the corresponding steady solution of (4) is 

v = #~ . . . . . . .  ( 2 0 ) .  

Thus equation (19) becomes reduced to 

. . . .  (21) ; 
where [ 

~ = V : v  j 
and (18), (15), (16), (17) become 

dv 

du ^ dtt dp 
- +t~y ~ +#o=t,V~u - ~  (23), 

dt . . . .  

d ,  + , ,  d ,  @ ( 2 4 ) ,  
d-/ V$' ~xx = gX7 ~v-- @ . . . .  

dw+~,  dw =ttV~w_ ~_~pz (25). 
d-/ vyy~- . . . .  

I t  may be remarked that equations (22) . . .  (25) imply (1), 
and that any four of the five determines the four quantities 
u~ v~ w, p. It will still be convenient occasionally to use (l) .  



192 Sir W. Thomson on the Reetillneal Motion of 

We proceed to find the complete solution of the problem 
before us, consisting of expressions for u, v, w, p satisfying 
(22 ) . . .  (25) for all -values of x, y, z, t ; and the following 
initial and boundary conditions : -  

when t = 0: u, v, w to be arbitrary functions "( (26) ; 
of x, y, z, subject only to (1) J 

u=O, v=O, w=O, for y = 0  and all values of x, z, t'~ 
u=O, v=O, w=0,  for y = b  ,, , 1 
33. First let us find a particular solution u, v, w, p~ which 

shall satisfy the initial conditions (26), irrespectively of the 
boundary conditions (27), except as follows : - -  

v=0,  when t = 0  and g = 0  ) 
v=O, when t=O and y = b  .f " 

Next, find another particular solution, tt, v, ro~ I~ satisfying 
the following initial and boundary equations : - -  

t t=0,  V=0, gO=0, when t=O (29); 

t t+~t=0, V + v = 0 ,  W+w=O, when y = 0  ) (30). 
and w h e n y = b  f " 

.The required complete solution will then be 

u=ll+rt,  v = V + v ,  w=lV+w (31). 

34. To find u, v, w, remark that, if /x were zero, the com- 
plete integral of (21) would be 

a = arb. rune. (x--l~yt) ; 

and take therefore as a trial for a type-solution with /~ not 
zero, 

~- = Te 4"~+(~-"~t)u+q~l (32) ; 

where T is a function of t, and t denotes ~/-~-1. Sub- 
stituting accordingly in (21), we find 

dT 
. ( 3 3 ) ;  

whence, by integration, 

T = ~  ~ - (3~) .  

By the second of (21), and (32), we find 
eL[ma:+ (n  - m~t)y h-qz] 

. . . .  ( 3 5 ) ;  
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whene% by (22), 
e~[mx+(a--m[~t)y+qz] 

p = --2~m,T [m ~ + (n--refit) ~ + q~]~ (36). 

Using this in (25), and putting 

w = W e  '["'+("-"at)u+~z] . . . . .  (37), 
we find 

_ 2BmqT 
d W  1L[m,+(n_ml3 t )~+~]W_.m .~+(n_m~t ) .~+q2]  dt 

which, integrated~ gives W. 
Having thus found v and % we find u by (1), as follows:-- 

( n - m B t )  v + qw 
u---- - -  . . . . .  ( 3 9 ) .  

?Yt 

35. Realizing, by adding type-solutions for +_ t and +_-n, 
with proper values of C, we arrive at a complete real type- 
solution with, for v, the following--in which K denotes an 
arbitrary constant : 

{ ~. -t~t[m2+n2+q~-nm~t +½ra2~2t2] COS 

v = ~ K  m'Z+ (n-m[3t)z+~t 2 sin [mx+(n - -m/3 t ) y+qz]  

--i~t[m2+n ~- +~2+nm~t + ~m2fl2t2] COS ) 
m "~ + (n + m/3t) 2 + q'~ sin [mx--  (n + mflt)y + qz] 

This gives, when t=O, 

~ K  . sin (mx+qz)  (41), 
v =  ,, ~ . s l n n f f c o s  

which fulfils (28) if we make 

= i v/b . . . . . . .  (42); 
and allows us, by proper summation for all values of i from 1 
to ~ ,  and summation or integration with reference to m and 
qF' with properly determined values of K, after the manner of 

ourier, to give any arbitrarily assigned value to v,= 0 for 
every value of x, g, z, 

from x = - - c v  to x = + ~ ¢ , ]  
. y = O  . y=b ,  I (43). 

The same summation and integration applied to (40) gives 
v for all values of t, x, y, z ; and then by (38), (37), (39) we 
find corresponding determinate values of w and u. 

36. To give now an arbitrary initial value, w0, to the 
_Phil. ~Iag. S. 5. Vol. 24. No. 147. Auqust 1887. O 

(38), 

(4o). 
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z-component of velocity, for every value of x, y, z, add to the 
solution (u, v, w)~ which we have now found, a particular 
solution (u I, v', w') fulfilling the following conditions : - -  

v '=  0 for all values of t, x, g, z ; "{ 
(44), 

wt=wo--wo for t-=-O~ and all values of x, y, z f 

and to be found fi'om (25) and (1), by remarking that v'=O 
makes, by (22), pt=O, and therefore (23) and (25) become 

du-- r 

. . . . .  ( 4 5 ) ,  dt 

dw'+ ~ dw' 
- ~  NY d x = ~ V ' w  ' . . . . .  (46). 

Solving (46); just as we solved (21), by (32), (33), (34) ; and 
then realizing and summing to satisfy the arbitrary initial 
condition, as we did for v in (40), (41), (42), we achieve the 
determination of u/;  and by (1) we determine the corre- 
sponding u I, ipso facto satisfying (45). Lastly, putting 
together our two solutions, we find 

a = u + u ' ,  v=v ,  w = w + w  t (47) 

as a solution of (26) without (27), in answer to the first 
requisition of § 33. It remains to find tt, v, lV, in answer to 
the second requisition of § 33. 

37. This we shall do by first finding a real (simple harmonic) 
periodic solution of (21), (22), (23), (25), fulfilling the 
condition 

u = A cos tot + B sin tot / "~ 
v = C cos tot + D sin tot J when y = 0 i w = E  cos tot + F sin tot 
u = 9[ cos tot + ~ sin tot ] ~. (48), 

v=@eos tot + ~ sin tot ~ when y - -b  ! 

,,,= ff cos tot + sin tot J j 
where A, B, C, D, E, F, ~2[, ~ ,  ~ 9 ,  @~ ~ are twelve 

So arbitrary functions of (x, z). Then~ by taking dtof(to) 

of each of these after the manner of Fourier, we solve the 

~ roblem of determining the motion produced throughout the 
uid, by giving to every point of' each of its approximately 

plane boundaries an infinitesimal displacement of which each of 
the three components is an arbitrary function of x, z, t. Lastly, 
by taking these functions each =O from t=--Q¢ to t=0 ,  and 
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each equal to minus the value of u, v, w for every point of 
each boundary, we find the 11, v, Iv of § 33. The solution of 
our problem of § 32 is then completed by equations (31). To 
do all this is a mere routine after an imaginary type solution 
is provided as follows. 

38. To satisfy (21) assume 
t) ~ e t(~t +mz+qz)  g~) 

= e '(~t+m'+qz) { H d  ¢(m,+q,) + K-y,~(m,+q,) + L/(y) + MF(y) }. (49),  
where H, K, L, M are arbitrary constants and f ,  F any two 
particular solutions of 

4 0  + m Z ~ ) * = ,  U ~*_ Ldy ~ (m'÷q~)~] (50). 
This equation, if we put 

m/3/t~ = % an d m ~ ÷ q2 + tco//~ = X ( 51), 
becomes 

d 2 0  " - . 

= . . . . .  (52); 

which, integrated in ascending powers of (X + ,~/y), gives two 
particular solutions, which we may conveniently take for our 
f and F, as follows : ~  

f(y)  = 1 -- ~' (~ + ~/y) + + &c. { 

7-~(x +~y)~ ~-~(x+,~y) 7 ~-~(x+,~.~) ~° 
FQu)=x+~Ty-.  4 . 3  + 7 . 6 . 4 . 3  1 0 . 9 . 7 . 6 . 4 . 3  t-&c. ) 

39. These series are essentially convergent for all values e l y .  
Hence in (49) we have a solution continuous from y.----0 to 
y = b ;  and by its four arbitrary constants we can give any 

prescribed values to ~,  and d ~  for y = 0  and y=b.  This 

done, find p determinately by (24); and then integrate (25) 
for w in an essentially convergent series of ascending powers of 
k + ~TY, which is easily worked out, but need not be written 
down at present, except in abstract as follows : ~  

w = q~e(~*+m~+q') . . . . .  (54) " 
where 

q/J= H~,(~. + 'TY) + K~ (k + 'TY) + L~.(k + 'TY) } 
+ M~(X + 'TY) + Pe~4(~'+q2) + Qe_~,~(,,,+q,), (55). 

Here P and Q are the two fresh constants, due to the inte- 
gration for w. By these we can give to ~ any prescribed 

0 2  
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values for y = 0  and y=b.  Lastly, by (1), with (49), w~ 
have 

u = ~e '(~'t+'~+q~) "~ 
/ 

where 
~¢ { 1 d~Y ~ . . . .  (56). 

Our six arbitrary constants, It,  K, L, M, P, Q, clearly 
allow us to give any prescribed values to each of ~//, ~J, ~/?, 
for y = 0  and for y=b.  Thus the completion of the realized 
problem with real data of arbitrary functions, as described in 
§ 37, becomes a mere affair of routine. 

40. Now remark that the (u, v, w) solution of § 34 comes 
essentially to nothing, asymptotically as time advances, as we 
see by (33), (34), and (38). Hence the (~, v, W) of § 37, 
which rise gradually from zero at t=0 ,  comes asymptotically 
to zero again as t increases to ~ .  We conclude that the 
steady motion is stable. 

[To be conti~ued.] 

XXII .  On Evaporation and.Dissociation.--Part VI.(continued). 
On the Continuous Change from the Gaseous to the Liquid 
State at all Temperatures. By WILLIAM RAI~SAY, .P]t.D,~ 
and SYD]~EY YOUNG, .l).Sc.* 

[Plates III.-V.] 

T HE following pages give a further proof of the correctness 
of the relation p = bt-- a, where v = constant, applicable 

both to gases and liquids. The data for methyl alcohol apply 
solely to the gaseous state, for the very high pressures which 
its vapour exerts precluded measurements at temperatures 
above its critical point. With ethyl alcohol the determinations 
of the compressibility of the liquid are more complete than 
with ether ; the experimental observations in the neighbour- 
hood of the critical volume are, however, not very nmnerous, 
for the highest temperature for which an isothermal was con- 
structed is 246 ° , the critical temperature being 243°'1. The 
values of a and b at volumes near the critical are con- 
sequently somewhat uncertain: The data for the gaseous 
condition ar% however, pretty full. We have also a consider- 
able rmmber of data for acetic acid (Trans. Chem. Soc. 1886, 
p. 790). Here the temperature at which the highest iso- 
thermal was measured was the highest conveniently attainable 
by our method, viz. 280 °. But as the critical temperature 

" Communicated by the Physical Society : read April 23, 1887. 


