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Abstract

Introduction: There is a persisting global burden and considerable public health challenge by the 

plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative 

bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, 

non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor 

infertility, and interstitial pneumonia. The failures in screening and other prevention programs led 

to the current medical opinion that an efficacious prophylactic vaccine is the best approach to 

protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine 

despite successful veterinary vaccines. A major challenge has been the effective delivery of 

vaccine antigens to induce safe and effective immune effectors to confer long-term protective 

immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted 

derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future.

Areas covered: This review focuses on the current status of human chlamydial vaccine 

research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious 

Chlamydia vaccines in the near future.

Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental 

vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would 

suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine 

testing in animal models could lead to human vaccines against trachoma and reproductive diseases 

simultaneously.
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1. Introduction

1.1. Chlamydia diseases as a public health challenge and need for a vaccine

1.1.1. Chlamydia and human diseases—The Gram-negative intracellular bacterial 

species of the genus Chlamydia are of high clinical interest and pose considerable global 

public health concerns. All Chlamydia spp. (e.g. C. trachomatis, C. psittaci, C. pneumoniae, 
and C. pecorum) have common developmental cycle, comprising two prominent 

morphologically distinct forms, the infectious elementary body (EB) stage, and an obligate 

intracellular, non-infectious and vegetative form, the reticulate body. Among the common 

species, C. trachomatis, a major pathogen in humans, is composed of approximately 15 

serovars (serotypes) or genovars (genotypes), designated as A through K and L1 –L3, based 

on the antigenic or sequence variation in the major outer membrane protein (OmpA) [1–5]. 

These different chlamydial species cause ocular, genital, and respiratory infections whose 

major complications include blinding trachoma, reproductive dysfunctions, and respiratory 

diseases with considerable morbidities and exerting huge socioeconomic burdens on human 

healthcare.

Trachoma is a major human ocular disease caused by C. trachomatis serovars A, B, Ba, and 

C, and it is the most common preventable blinding disease; it is of epidemic proportion in 

several developing nations in Africa, South East Asia, and the Middle East. There is a global 

estimate of 150 million C. trachomatis infected people, of which 6 million are severely 

visually impaired or irreversibly blinded by trachoma [6,7]. Unlike trachoma that is 

presently mostly prevalent in developing societies, human genital C. trachomatis infections 

and their clinical outcomes are endemic in both industrialized and under-developed nations 

and therefore constitute a major worldwide concern. In fact, the epidemiologic data from 

essentially all international disease monitoring, control, and prevention agencies, including 

the WHO and CDC have ranked genital C. trachomatis infections as the most common 

bacterial cause of sexually-transmitted diseases (STDs) worldwide since the late 1970s [8–

11]. Genital infection by the different oculogenital serovars of C. trachomatis (specifically 

serovars D through L) accounts for over 100 of the 500 million annual new STDs globally 

out of which females are disproportionately affected (~60%) [8,9,11]. Diseases caused by 

genital chlamydial infection include self-limiting urethritis in both males and females, 

cervicitis in women, and epididymitis and proctitis in men; in addition, pelvic inflammatory 

disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal factor infertility (TFI) are 

major long-term complications of untreated female genital chlamydial infection, and PID 

may precede the onset of the other reproductive complications [12–14]. Besides, neonatal 

ocular chlamydial infection may occur during birth by mothers harboring a genital infection, 

and the infected infants may develop conjunctivitis and respiratory disease that could 

progress to pneumonia. Furthermore, Reiter′s syndrome is a complication of genital 

chlamydial infection with self-limiting arthropathic (joint disease) manifestation.
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Human respiratory infections by Chlamydia spp. are mostly associated with C. pneumoniae, 
which are rampart, with approximately over 60%–80% of most American, European, and 

Asian societies being exposed. The infection presents as mild to acute respiratory diseases, 

such as pharyngitis, bronchitis, and even pneumonia which accounts for over 10% of 

community-acquired pneumonia [15]. It remains uncertain whether there is a causal 

association between C. pneumoniae infection and certain chronic diseases such as 

atherosclerosis and some age-related autoimmune diseases on the basis of initial correlative 

data [16– 18] because the links are yet to be substantiated clinically and experimentally. A 

psittacosis-like disease that may in rare cases become systemic or may evolve into fatal 

pneumonia in humans has been associated with exposure to the zoonotic C. psittaci [19], an 

occupational hazard for workers in the poultry and farming industry, and persons exposed to 

infected avian species [20]. Thus, although different species of Chlamydia may cause 

disease in humans, perhaps the highest burden of chlamydial diseases that have caused much 

of the public health concerns are caused by C. trachomatis. Most human prevention and 

control strategies as well vaccine research are focused on C. trachomatis diseases.

1.1.2. Control and prevention strategies—The history, global prevalence, and 

distribution of trachoma indicated that improvements in sanitary and hygienic conditions 

could substantially control the disease by preventing transmission of ocular chlamydial 

infection through person-to-person, flies, and fomites. Thus, in 1993 the WHO led the 

implementation of the SAFE strategy with the goal to eradicate trachoma by 2020 through 

Surgery (S) for cases of trichiasis, Antibiotic (A) treatment of active disease, Facial (F) 

cleanliness for personal hygiene, and Environmental (E) improvement through provision of 

clean water supply and toilets that reduce the flies acting as vectors in the areas [7,14,21]. 

After two decades of implementation of the WHO′s SAFE initiative, some achievements 

have been made in controlling trachoma worldwide; however, there are significant pockets 

of trachoma-endemic regions around the world, especially in developing societies, partly 

because several countries have not responded adequately to the E portion of SAFE and the 

slow pace of implementation in other countries due to socioeconomic, political, or 

sociocultural reasons. Under these challenging circumstances, a one-shot strategy is needed 

to eradicate trachoma from the human population.

The control of genital chlamydial infections and the complications has presented serious 

challenges that continue to cause great concerns in the medical community and colossal 

burden to public health. Among these challenges are the rampant asymptomatic infections, 

especially in women, the ineffectiveness of mass screening programs, the continuing spread 

of chlamydial infections among at-risk groups and locations around the world, and the 

apprehension that resistant variants may emerge from the excessive use of antibiotics. First, 

the established clinical experience is that early detection of chlamydial infections can result 

in successful treatment with antibacterial agents, such as tetracycline deri-vatives (e.g. 

doxycycline) and the macrolides or azalides (e.g. erythromycin and azithromycin) [17]; 

however, the high proportion of asymptomatic infections (over 60% in women) often result 

in severe and sometimes irreversible complications as the first symptoms of an infection 

[22,23]. Second, up to 40% of untreated chlamydial genital infections in women lead to 

sequelae such as PID and TFI [12,24,25], and the frequent asymptomatic infections in 
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women contributes to these complications and the associated enormous morbidity and 

socioeconomic burden [12,25–27]. Third, screening and treatment programs have not been 

very effective, but actually causing what has been described as ′arrested immunity′ 
whereby premature antibiotics treatments prevent host natural immunity against infection 

and contributing to the rising cases of chlamydial infections worldwide [24,28–35]. In fact, 

it has been suggested that a significant proportion of treated genital or ocular infections may 

lead to persistence [36–39], and the recognition that persistence plays a role in the 

pathogenesis of the Chlamydia disease, makes the long-term value of certain chemotherapies 

questionable [36–38,40–44]. Besides, genital chlamydial infection could predispose to HIV-

related AIDS either due to the ulcerative presentation of some of the infections, 

inflammation or by other yet unknown microbial interactions mechanism [45–48]; and 

importantly, genital chlamydial infection is an established co-factor for human papilloma 

virus-associated cervical carcinoma [49], which have combined to heighten these concerns 

and the urgency to control chlamydial infections. Furthermore, according to the CDC, the 

United States is spending over $3 billion annually on an estimated 4 million reported clinical 

cases of human genital chlamydial infections [9,10].

Thus, considering these morbidity and socioeconomic issues, and the inadequacy of the 

different prevention and control strategies so far developed against Chlamydia, the current 

medical opinion is that a vaccine strategy is likely to be the most reliable and cost effective 

to make the greatest impact in controlling rising infections, global prevalence of chlamydial 

infections and the associated complications [17,30,31,50,51]. This medical opinion is 

supported by a computer modeling and prediction analysis of the impact of a protective 

prophylactic chlamydial vaccine which revealed that even a partially protective vaccine that 

prevents certain severe sequelae in a sub-optimal vaccination program would constitute an 

acceptable short-term goal to reduce chlamydial infections, morbidity, and associated costs 

[52]. Unfortunately, even after over three decades of active research, there is no acceptable 

human chlamydial vaccine to date due to a number of challenges ranging from safety 

considerations, suboptimal or inadequate immunogenicity of vaccine candidates, lack of 

effective delivery systems and potent adjuvants, and knowledge gap on how to induce long-

term immunity [14,53,54]. Furthermore, while both prophylactic and therapeutic vaccines 

are needed, there is a focus on the prophylactic vaccine strategy that will more likely prevent 

further spread of chlamydia in the population, an imperative in any vaccine-dependent anti-

chlamydial strategy.

1.2. Essential features of a potentially efficacious human chlamydia vaccine

The lessons from historical challenges in human Chlamydia vaccine development, and 

recent advances in vaccine antigens, immunomodulation, and protective immunity correlates 

that constitute the key requirements for designing and evaluating a potentially efficacious 

human chlamydial vaccine have been recently reviewed [14,54,55]. To briefly summarize 

the relevant issues and requirements, the following statements can be made about the current 

status of human chlamydial vaccine research: First, the experience with the early trachoma 

vaccine efforts of the 1960′s indicated that conventional vaccinology technical approaches 

using inactivated or attenuated microbial agents produced results that were described as 

inadequate, at best inconclusive, and unacceptably exacerbated the disease in some trials; 
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thus no further human clinical vaccine effort or trials have been undertaken since the late 

1960s [56–62]. However, conventional vaccinology led to the successful production of 

veterinary chlamydial vaccines [63–68]. For example, the veterinary vaccines comprising 

live attenuated or inactivated C. psittaci and feline strains successfully protected ewes from 

chlamydia-induced abortion and cats from feline pneumonic chlamydial disease, 

respectively [65,68,69]. It is important to note that these veterinary vaccines did not prevent 

infectivity and their veterinary standards may not meet human use standards; but their 

efficacy would suggest that a safe and efficacious human vaccine is a possibility, therefore 

fueling the impetus and hope for future human vaccines. Second, the correlates of protective 

chlamydial immunity, as described in animal models and humans, are primarily CD4 + T 

cells that secrete IFN-γ among other Th1-associated cytokines such as TNF-α, and an 

accessory antibody of IgA and IgG isotype response especially in the relevant mucosal 

locations [14,54,55]. Third, the candidate vaccine antigens should be subunits, such as intact 

proteins, assembled epitope fragments, or combinations, in case the intact Chlamydia might 

contain components that can induce immunopathogenic responses and because of the earlier 

challenges in generating live-attenuated chlamydial variants [14,53]. Also, such subunit 

vaccine antigens should induce broadly genusspecific protective immune responses to cover 

the multiple serovars/genovars and strains of C. trachomatis. The several candidate subunit 

vaccine antigens described so far were recently reviewed [14,67,70]: briefly, they include 

outer membrane proteins (OMPs), such as are the 40, 60, and 15 kDa proteins encoded by 

the Omp-1 (omc A), Omp-2 (omp C) and Omp-3 (omp B) genes, respectively [71]; the 

polymorphic outer membrane proteins (pmp) and the conserved P or B family of membrane 

proteins [71–73], as well as an ADP/ATP translocase [74], immunogenic plasmid protein 

(pgp3) [75], proteasome/protease-like activity factor (CPAF) [76], a toxin mapped to the 

plasticity zone of several strains [77], certain members of the chlamydial type III secretory 

machinery [78], and a number of cloned hypothetical proteins [67,79,80] that have been 

evaluated in animal models of specific chlamydial diseases [66,67,70,81 –84] and showing 

promising results with a certain degree of protection immunity characterized by a reduction 

of infection burden or prevention of certain complications, including acute inflammation and 

infertility [82,85–87]. Fourth, while these promising pre-clinical results and outcomes of 

vaccine efficacy evaluations continue to inspire and accelerate the momentum toward a 

human vaccine, they have also brought to the fore the need to develop effective vaccine 

delivery systems, vehicles, vectors, and potent human-compatible adjuvants; also important 

are the choice of an appropriate route of vaccine administration, especially mucosal (i.e. 

nasal or sub-lingual) versus subcutaneous, as well as testing vaccine candidates for efficacy 

and toxicity in other animal models, including pigs and non-human primates [55]. These 

conditions are predicted to optimize the induction of protective immune effectors at the 

mucosal sites of chlamydial infection, achieve a high degree of protective, even sterilizing, 

long-term immunity. Fifth, effective delivery systems and adjuvants are needed for 

immunomodulation, especially for the subunit vaccines to induce the required immune 

effectors and achieve long-lasting protective immunity. Perhaps the significance of effective 

delivery and route of administration for an optimal chlamydial vaccine efficacy was recently 

underscored by the phenomenal ability of the formulation containing the poorly 

immunogenic UV-inactivated C. trachomatis EBs mixed with the charge-switching adjuvant 

particles (cSAP) to induce protective immunity when delivered mucosally (nasal or 
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intrauterine), not parenterally (subcutaneous, s.c.) [88]. The effectiveness of this delivery 

system was the ability of cSAP to target UV-inactivated EBs to and preferential presentation 

of UV-Ct-cSAP by immunogenic CD103− dendritic cells (DCs), while UV-Ct was primarily 

acquired by tolerogenic CD103+ DCs, and the induction of critical tissue-resident memory T 

cells (Trm) with genital mucosal tissue homing characteristics [55,89]. These remarkable 

results should prompt greater use of the cSAP-related vehicle platforms for subunit vaccine 

delivery against Chlamydia. Besides, the results further emphasized the role of the local 

factors, such as epithelial-DC interaction with mucosally-acquired antigens that regulate 

immunity at mucosal sites of infection. Importantly, the results have underscored the point, 

that poor delivery can compromise the efficacy of the best vaccine candidate. This review 

focuses on members of a class of vaccine delivery vehicles called biodegradable polymeric 

nanoparticles that cSAP belongs [88].

2. Biodegradable nanoparticles formulations and their potential as 

vaccine delivery vehicles

Vaccine delivery systems include vaccine vectors and vehicles that function primarily as 

carriers for targeting vaccine antigens to appropriate antigen-presenting cells and immune 

inductive sites [90], and secondarily to furnish the necessary immunomodulation to boost 

effectors [91], if the carriers possess adjuvant properties [92]. Adjuvanticity is thus a 

desirable property in a number of delivery systems if present [93]. Until the recent 

introduction of biodegradable polymeric nanoparticles [94], the vast majority of the delivery 

vehicles previously used for experimental chlamydial antigens had produced mixed results 

in various animal models, as recently reviewed [14,85,90,95,96]. Table 1 shows an updated 

list of common and promising delivery systems and adjuvants for chlamydial vaccine and 

the effectiveness of some of them in promoting the induction of protective chlamydial 

immunity as recently reviewed [14,54,90,97]. Unfortunately, most of the promising 

adjuvants for potentially efficacious chlamydial vaccines are still in their pre-clinical or 

initial phases of clinical trials [98,99]. However, the dawn of the era of biodegradable 

polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the 

dream of human vaccine in the foreseeable future [53,100,101].

The use of synthesized biodegradable polymeric nanoparticles to deliver biomolecules have 

been explored in the past two decades [102] for potential use in biomedical applications that 

include in vivo antibiotic and drug therapies [103], as well as vaccines [94,104,105]. The 

cross-linking of polymer matrix allows the encapsulation of biomolecules and facilitates 

their release upon degradation of matrix (Figure 1) [106–108]. Biodegradable polymers offer 

safety, flexibility in nanoparticles sizes in fabrication, and controlled release of encapsulated 

biomolecules in targeted or non-targeted forms [94,108]. In addition, developing vaccines by 

encapsulating antigens into biodegradable polymeric nanoparticles afford safer and reliable 

approaches for vaccines design with or without adjuvants [104,109,110]. Biodegradable 

polymeric nanoparticles-based vaccine candidates against Chlamydia are still under pre-

clinical developmental stages, as reported in recent years and are emerging as potentially 

efficacious vaccine candidates [88,100,109,111]. Biocompatibility and biodegradation are 

desirable characteristics that attract these polymers for vaccine developmental efforts against 
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various organisms [105]. Diverse biodegradable polymers are used to develop nano vaccines 

[14]: PLGA {poly (lactic-co-glycolic acid)} [112], PLA-PEG a copolymer of polylactic acid 

(PLA) and polyethylene glycol (PEG) [113] and their adjuvanted derivatives will be 

discussed in this review. Since adjuvanted nanoparticles are primarily delivery vehicles that 

possess adjuvant properties, they are not just adjuvants, and as such, they cannot and should 

not be described simply as adjuvants.

2.1. PLGA

PLGA is the most popular biodegradable co-polymer for the sustained release and delivery 

of biomolecules [107–109,114,115]. The encapsulation efficiency and drug loading are 

dependent on the physiochemical properties of the drug and preparation method. Its 

biodegradation profile is controlled by balancing the poly components (PLA and PGA) in 

different ratios [115] forming a solid structure of polymer matrix (Figures 2 and 4(a)) [106] 

which provides high encapsulation of vaccine antigens [114]. The safety and fabrication 

flexibility of PLGA have been substantiated in reported biomedical applications [94]. 

Attempts at using peptides as vaccine candidates against C. trachomatis have not been 

entirely successful [55] perhaps due to inefficient delivery systems [111,116] and rapid 

degradation caused by proteases [114] at the site of administration, thus decreasing their 

cellular uptake and immunogenicity [117,118]. The immunogenic major outer membrane 

protein (MOMP) of Chlamydia combined with biodegradable polymeric nanoparticles for 

vaccine delivery has been investigated in recent years in pursuit of an efficacious vaccine 

[109,119–121]. A study by Taha et al. [114], revealed that encapsulation of a recombinant 

peptide of MOMP (termed rMOMP-187) within PLGA (85/15) by the double emulsion 

process, when used to pulse the mouse J774 macrophage cell line resulted in enhanced Th1 

cytokines (IL-6, IL-12p40) and nitric oxide production at low peptide concentrations. The 

physico-structural characterizations of PLGA-encapsulated rMOMP-187 nanoparticles 

disclosed that protecting the peptide′s integrity and facilitating its sustained release has the 

potential to trigger robust immune responses. Thus, in the study by Fairley et al. [109], the 

encapsulation of full-length recombinant MOMP (rMOMP) into PLGA (50/50) 

nanoparticles showed that T cells from subcutaneously immunized BALB/c mice secreted 

elevated levels of IFN-γ as well as antigen-specific serum IgG2a (Th1) antibodies. Of 

significance was the finding that PLGA-encapsulated rMOMP nanoparticles triggered a 64-

fold higher level of Th1 versus Th2 antibody titers in immunized mice; whereas rMOMP 

mixed with Freund′s adjuvant only provided a four-fold increase of Th1 over Th2 antibody 

titer, thus validating the self-adjuvanting property of the PLGA polymeric nanoparticles.

2.2. PLA-PEG

PLA-PEG is a copolymer of polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a 

synthetic biodegradable polymer that possesses low stimulating potential and high 

mechanical strength [113]. However, PLA alone has a limitation of low hydrophilicity, long 

degradation time, and low drug loading of hydrophilic compounds [113]. Also, PLA 

polymers show inadequate interaction with cells and can even form aggregates after 

displaced by serum proteins [122]. On the other hand, PEG shows high hydrophilicity, 

phagocytic escape, resistance to immunological recognition, lack of binding with serum 

proteins [113,123], low cytotoxicity, and high cell permeability [124]. These properties 
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make PEG an efficient modifier in polymer synthesis [124,125]. Polymerization of PLA and 

PEG to obtain PLA-PEG as block copolymer forms a solid PLA core surrounded by PEG 

attachment (Figures 2 and 4(b)) provides the advantage of improved hydrophilicity, 

increased drug-loading capacity, and a reduced burst effect [113]. Therefore, providing 

prolonged in vivo released time for encapsulated biomolecules [113] along with an extended 

biodegradation profile makes PLA-PEG an improved delivery system for vaccine 

candidates. The potential of PLA-PEG as a desirable vaccine delivery system against 

Chlamydia was demonstrated by Dixit et.al. [111], by encapsulating a recombinant peptide 

of MOMP (named M278) and demonstrating its pattern of potentiating the immune 

response, which corroborated the results from using PLGA as reported by Taha et al. [114], 

and Fairley et al., [109]. PLA-PEG-encapsulated M278 further potentiated adaptive immune 

responses in subcutaneously immunized mice by triggering enhanced production of T-cell 

specific Th1 cytokines (IFN-γ, IL-2) and serum Th1 (IgG2a) and Th2 (IgG1, IgG2b) 

antibodies in comparison to non-encapsulated M278. Furthermore, the M278-encapsulated 

construct induced serum anti-chlamydial neutralizing antibodies as evidenced by the reduced 

infectivity and expressions of TLR2 and CD80 in mouse J774 macrophages. These studies 

demonstrated that biodegradable polymeric nanoparticles with extended biodegradation and 

self-adjuvanting properties are potential alternative delivery systems to develop efficacious 

vaccines against Chlamydia. The limitations of the administration routes, especially for 

mucosal administration of vaccine candidates can be advantageous with synthetic polymers, 

since they protect the encapsulated biomolecules [88,121]. Ongoing studies are investigating 

the protective efficacy of PLGA- and PLA-PEG-containing recombinant proteins of 

Chlamydia in mice infected intra-vaginally with C. trachomatis.

2.3. Charge-switching adjuvant particle

cSAPs surface charge-switching biodegradable nanoparticles consisting of poly (D, L-lactic-

co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG) recently 

have been developed to deliver encapsulated antibiotics to bacterial surfaces for treating 

bacterial infections [126]. This triblock copolymer was formulated using a polymer end 

grafting strategy where PLH consisting of 20 or 30 repeats of L-histidine with an N-terminal 

lysine and a C-terminal cysteine was synthesized to facilitate the conjugation reactions. The 

developed PLH-SH and orthopyridyl disulfide (OPSS) modified PEG blocks were reacted to 

form a diblock copolymer followed by PLGA conjugation to the NH2-PLH-PEG diblock 

copolymer resulting in formation of charge-switching synthetic particles having a 

hydrophobic core (PLGA) and a bilayered hydrophilic surface of PLH (inner) and PEG 

(outer) polymers [126]. These cSAPs carry a moderate negative charge at a pH of 7.4 but 

convert to a cationic charge due to protonation of the PLH imidazole group when exposed 

below pH 6.5, thus facilitating their attachment to the surfaces of cells. Stary et al. [88], 

constructed a conjugate structure where UV-Ct was surrounded with cSAPs (Figure 3) with 

a ring opening reaction for charge switching and for releasing the UV-Ct. A slight 

modification in the formulation, by adding PLA coupled with a potent TLR7/8 agonist 

(resiquimod), enhanced the efficacy of mucosal immunization of mice with long-term 

protective immunity. Production of IFN-γ, robust antibody responses and CD4 + T cell 

responses strongly suggested Th1 specificity. However, activation of CD8 + T and CD4 + T 

cells induced by intrauterine immunization suggested that clearance of Ct infection requires 
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mixed immune responses not just CD4 + T cells memory. As previously mentioned, the 

effectiveness of this delivery system was the ability of cSAP to target UV-inactivated EBs to 

and preferential presentation of UV-Ct-cSAP by immunogenic CD103− DCs, while UV-Ct 

was primarily acquired by tolerogenic CD103+ DCs, and the induction of critical tissue-

resident memory T cells (Trm) with genital mucosal tissue homing characteristics. These 

remarkable results underscored the significance of effective delivery vehicles, the role of the 

local factors, such as epithelial-DC interaction with mucosally-acquired antigens in the 

regulation of mucosal immunity at mucosal sites of infection, and should prompt greater use 

of the cSAP-related vehicle platforms for subunit vaccine delivery against Chlamydia.

3. Conclusion

Overall, developing an efficacious subunit vaccine [53,127] against Chlamydia will require 

several prerequisites [55]: the selective routes of administration, antigens to cover serotypes, 

an efficient delivery vehicle such as the biodegradable polymeric nanoparticles providing 

sustained release and possibly the inclusion of TLR agonists [92,128,129]. Recently, 

nanoparticle adjuvants, e.g. lipid nanoparticles [130], montanide-based nanoparticle (IMS 

3012, IMS 1313 N VG PR) [131–133], CpG-Ficoll [134], and KALA modified lipid 

nanoparticle (KALA-MEND) [135] have gained considerable interest in nano vaccinology 

due to their immunomodulatory effects. Hence, these nanoparticle adjuvants can also be 

incorporated in polymeric nano vaccine formulations and tested for their efficacy against C. 
trachomatis. In addition, a long-lasting protective immunity against chlamydial infections 

may require more than one route of administration, suggesting the simultaneous 

administration of vaccines via the mucosal and systemic routes [88,136–138]. The polymer 

having prolonged biodegradation properties and can bind especially to mucosal surfaces will 

be more desirable. Even though, PLGA seems to be the likely selection currently due to 

being biocompatible and efficient in delivery [107,108,115,139], the inclusion of PEG in the 

synthesis of polymer formulations may provide an advantage in the extended release of 

biomolecules [123]. Therefore, polymers with PEG [123,125] as a component like PLA-

PEG or PEG-coated PLGA may be recommended in the future to develop nanoparticles for 

vaccine delivery. Another possibility for consideration is co-administration or simultaneous 

administration of more than one polymeric formulation encapsulated with the same or 

different biomolecules to generate robust immune responses. Consequently, biodegradable 

nanoparticles are highly recommended delivery systems for chlamydial antigens to obtain a 

robust and desired efficacious protective immune responses.

4. Expert commentary

Considering the morbidity and socioeconomic issues, and the inadequacy of the different 

prevention and control strategies so far developed against Chlamydia, the current medical 

opinion is that a vaccine strategy is likely to be the most reliable and cost effective to make 

the greatest impact in controlling rising infections, global prevalence of chlamydial 

infections and the associated complications. Biodegradable polymeric nanoparticles offer 

safety, flexibility in nanoparticles sizes in fabrication, and controlled release of encapsulated 

biomolecules in passively or actively targeted forms. More detailed basic immunobiological 

analysis of the mechanism of immunostimulation by adjuvanted nanoparticles that involves 
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targeting immunogenic DCs will contribute to our knowledge of the cellular interactions and 

role of the mucosal microenvironment in mucosal immunity. This will greatly impact 

vaccine design strategies against mucosally-acquired microbial pathogens.

5. Five-year view

An efficacious human chlamydial vaccine is a public health imperative. The safety of 

biodegradable polymeric nanoparticles-based experimental vaccines with or without 

adjuvants and the array of available chlamydial vaccine antigen candidates would suggest 

that clinical trials in humans may be imminent in the next 2 years. It is possible that a 

trachoma vaccine based on biodegradable polymeric nanoparticles may be realized 

simultaneously with the reproductive disease targeted vaccine. In either case, the 

biodegradable polymeric nano vaccines against human C. trachomatis infections may be in 

the horizons as a potent weapon to control chlamydial diseases in the next 5 years.
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Key issues

• Infections and complications of C. trachomatis in the human population 

continue to cause considerable morbidity and economic stress on the public 

healthcare system of several countries.

• The failure of the screening programs has led to the medical opinion that an 

efficacious vaccine will be the best approach to control the myriad of ocular, 

genital and respiratory infections and diseases caused by Chlamydia.

• The research imperatives to develop effective vaccine delivery systems, 

vehicles, vectors, and potent human-compatible adjuvants, are crystallizing 

the biodegradable polymeric nanoparticles as safe and effective methods to 

develop nanovaccines against Chlamydia.
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Figure 1. 
Schematic representation of biomolecules packaging in polymer matrix. The cross-linking of 

polymer matrix allows the encapsulation of biomolecules and facilitates their release upon 

degradation of matrix.
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Figure 2. 
Schematic representation of PLGA and PLA-PEG nanoparticles, and encapsulated protein. 

PLGA is the most popular biodegradable co-polymer for the sustained release and delivery 

of biomolecules. Polymerization of PLA and PEG to obtain PLA-PEG as block copolymer 

forms a solid PLA core surrounded by PEG attachment provides the advantage of improved 

hydrophilicity, increased drug-loading capacity and providing prolonged in vivo released 

time for encapsulated biomolecules as well an extended biodegradation profile, making 

PLA-PEG an improved delivery system for vaccines.
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Figure 3. 
Schematic representation of cSAP and UV-Ct conjugate. The constructed conjugate has UV-

Ct was surrounded with cSAPs with a ring opening reaction for charge switching and for 

releasing the UV-Ct.
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Figure 4. 
Scanning electron microscopy (SEM) of (a) PLGA-encapsulated rMOMP and (b) PLA-

PEG-encapsulated M278. Targeted antigens were encapsulated in biodegradable polymeric 

nanoparticles using the water/oil/water double emulsion-evaporation technique, and samples 

were analyzed using high resolution SEM.
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