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ABSTRACT
Genome-wide association studies (GWAS) aim to assess relationships between single nucleotide polymor-
phisms (SNPs) and diseases. They are one of the most popular problems in genetics, and have some pecu-
liarities given the large number of SNPs compared to the number of subjects in the study. Individuals might
not be independent, especially in animal breeding studies or genetic diseases in isolated populations with
highly inbred individuals. We propose a family-based GWAS model in a two-stage approach comprising a
dimension reduction and a subsequent model selection. The first stage, in which the genetic relatedness
between the subjects is taken into account, selects the promising SNPs. The second stage uses Bayes fac-
tors for comparison among all candidate models and a random search strategy for exploring the space of
all the regressionmodels in a fully Bayesian approach. A simulation study shows that our approach is supe-
rior to Bayesian lasso for model selection in this setting. We also illustrate its performance in a study on
Beta-thalassemia disorder in an isolated population from Sardinia. Supplementary Material describing the
implementation of the method proposed in this article is available online.

1. Introduction

Genome-wide association studies (GWAS) collect data on single
nucleotide polymorphisms (SNPs)—genetic markers—across
the genome with the aim to identify causal variants related to
diseases (Balding 2006; Wagner 2013). These relationships are
statistically represented by regression models which usually
incorporate a large number of SNPs. Additional issues arise
when individuals from the observed cohort are linked by family
ties, the framework in which we focus on.

The number of SNPs is generally much larger than the
number of subjects studied (p ≫ n), which is known as an
ill-posed problem. These problems originated in mathematical
settings and are well known in the scientific literature. Once
disseminated to the statistical world, they providedmany differ-
ent approaches and concepts (Wahba 1990; Girosi, Jones, and
Poggio 1993; Nychka 2000) which generally aim to reconstruct
a whole function from noisy observations. One of the most
popular approaches to the subject is regularization (O’Sullivan
1986; Eilers and Marx 1996; Ruppert, Wand, and Carroll 2003)
which relies on controlling overfitting through a roughness
penalty. The lasso, introduced by Tibshirani (1996), is a widely
used shrinkagemethod for linear regressionmodels whichmin-
imizes the sum of squared errors with a smoothing parameter
λ > 0 on a penalty defined as the sum of absolute values of the
regression coefficients. Lasso shrinks some coefficients but also
sets others to zero, thus providing a subset of predictors that are
the outcome of the lasso model selection procedure. There are
other proposals to penalize the likelihood in these large p prob-

lems such as ridge regression (Hoerl and Kennard 1988), bridge
regression (Frank and Friedman 1993; Fu 1998), the elastic
net regularization method (Zou and Hastie 2005), etc. Most of
these methods have been implemented in well-used software as
MERLIN (Abecasis et al. 2002), glmnet (Friedman, Hastie, and
Tibshirani 2010), and many others cited in applied and review
studies in genetics that are not focused on the fundamentals
of the statistical methods developed herein. Some examples of
these can be found in Benyamin, Visscher, and McRae (2009),
Ott, Kamatani, and Lathrop (2011), and Herold et al. (2016).

Bayesian reasoning accounts for penalization through the
prior distribution for the parameters of the model. Several
articles discuss and analyze the Bayesian version of the reg-
ularization methods mentioned above, as the Bayesian lasso
introduced in Park and Casella (2008) or the Bayesian elastic
net in Li et al. (2010). Other Bayesian solutions to this problem
propose a different type of sparse priors, for example, the spike
and slab prior (George and McCulloch 1993; Ishwaran and Rao
2005) or the general class of sparse priors proposed in Castillo,
Schmidt-Hieber, and van der Vaart (2015), and references
therein. However, Castillo, Schmidt-Hieber, and van der Vaart
(2015) also pointed out that the lasso regularization is essen-
tially non-Bayesian in the sense that the corresponding full
posterior distribution is useless for uncertainty quantification.
For this reason, we have avoided this technique and propose,
in this article, a fully Bayesian second stage after a first stage of
dimension reduction.
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GWAS can be viewed as a model selection problem. The
procedure for model comparison within the Bayesian reasoning
is the Bayes Factor (BF) (Kass and Raftery 1995). As a part of
the framework of linear regression models, results using BF
are very sensitive to the specified prior distribution over model
parameters, especially to those parameters that are not common
to all the models, such as the regression coefficients. This prop-
erty was studied by Kass and Raftery (1995) and Berger and
Pericchi (2001), showing that the above-mentioned sensitiv-
ity does not vanish as the sample size grows. Furthermore,
improper prior distributions, frequently used in estimation
theory, are invalidated for BF and the use of “arbitrary” proper
vague priors is not advisable for model selection (see sec. 1.5
in Berger and Pericchi 2001). Bayarri et al. (2012) explored this
question and proposed a desideratum of properties that prior
distributions over parameters must verify for model compari-
son. In addition, they also propose the robust prior distribution
that verifies these properties for model comparison in the linear
regression model. Besides, when considering a large number
of explanatory variables, multiplicity issues can be accounted
for by choosing an adequate prior over the model space, like
the hierarchical prior, proposed by Scott and Berger (2010).
Moreover, in GWAS, enumerating all possible models becomes
cumbersome due to the size of the model space. García-Donato
and Martínez-Beneito (2013) reviewed some of the strategies
proposed in the literature, showing that the empirical search
strategy based on Gibbs sampling (George and McCulloch
1997) produces the best results.

Yazdani and Dunson (2015) proposed a multi-stage design
to manage the intractability of variable selection in GWAS,
by accounting, at the same time, for family relationships in
the sample. Family-based GWAS deal with studies where
individuals are linked by kinship ties. A clear example of this
occurs in animal breeding studies or genetic diseases in isolated
populations with highly inbred individuals. As the usual linear
regression model assumes independence between subjects,
random effects can be added to the model to connect the related
individuals and assess the relevance of the latent elements in
the variability of the data. The most commonly used measure of
relatedness between two individuals is the kinship coefficient,
which is defined as the probability that two genes sampled at
random from each individual are identical (Malecot 1948).

We propose a family-based two-stage GWAS. In the first
stage, the genetic relatedness between individuals is taken into
account to reduce the dimension of the problem by selecting
promising SNPs through individual regression analyses. This
selection procedure is based on credible intervals and not
BF because the inferential processes are based on improper
objective prior distributions. We refine the SNP selection in
the second stage. We propose a fully Bayesian regression model
and BF for model selection with a random search strategy for
exploring the space of all models. Our reasons for working
with a fully Bayesian alternative to lasso in the second stage are
two-fold. On the one hand, the lasso is essentially non-Bayesian
as mentioned above. On the other hand, the fact that the lasso
uses an identical penalization on each regression coefficient can
produce bias in the resulting estimates (Lee et al. 2012).

This article is organized as follows. Section 2 contains the
proposed statistical model and details about its inferential

process. Section 3 discusses the two-stage model on a study
about the beta-thalassemia—an inherited blood disorder—a
toy example to better illustrate the two-stage proposal, and a
simulation study. This section also includes a comparison of our
approach with the Bayesian lasso and GEMMA software (Zhou,
Carbonetto, and Stephens 2013), and an evaluation of the inclu-
sion of a family effect. Conclusions are presented in Section 4.

2. The Statistical Model

Let y = (y1, . . . , yn)′ be the vector of values of the response vari-
able representing the amount of disease for a sample of n indi-
viduals. A GWAS for n related individuals can be expressed as
a linear mixed model that describes y as a function of p SNPs
and somemeasurement on the familiar dependencies among the
sampled individuals in the form

y = 1β0 + X̃β +W + ϵ, (1)

where X̃ is the (n × p)matrix containing the information in the
p SNPs for all subjects, β is the vector of the unknown regres-
sion coefficients associated with the SNPs,W is an (n × 1) ran-
dom effect vector which describes the family relations among
the individuals in the sample, and ϵ is a normally distributed
vector of measurement error. Information provided by the three
possible values for each SNP, {aa, aA,AA}, is encoded in X̃ as
the number of A’s. The dimension of the typical GWAS makes
it impossible to estimate this full model. So we proceed in two
stages.

2.1. First Stage: Dimension Reduction

We will study the association of the disease with each SNP sep-
arately taking into account the family relationship of the indi-
viduals in the sample. Thus, for the jth SNP, we consider the
regression model

y = 1β ( j)
0 + X̃ ( j)

β ( j) +W ( j) + ϵ( j), (2)

where X̃ ( j) is now the vector that only includes information
about the value of the jth SNP for each individual in the sam-
ple (i.e., the jth column of the X̃ matrix in (1)) with unknown
regression coefficient parameter β ( j) and ϵ( j) ∼ N (0, σ 2

j I) is an
(n × 1) vector of random errors. Here vectorW ( j) is also a ran-
dom effects vector for modeling the family relations of the indi-
viduals in the sample.We chose it as a GaussianMarkov random
field with mean 0 and covariance matrix σ 2

w jK which contains a
general element variance, σ 2

w j, and a matrix K accounting for
the kinship coefficient between all the pairs of individuals in the
sample.

The kinship coefficient is the simplest measure of the rela-
tionship between two relatives. It varies between 0 and 1/2.
The kinship coefficient is 0 for unrelated individuals, 1/2 for
individuals with themselves, 1/4 between parent and child, 1/8
between aunt/uncle and nephew/niece and grandparents and
grandchildren, etc. Figure 1 represents the kinship matrix for
individuals in the toy example, in which the family structure is
depicted in Figure 3. The kinshipmatrix defines a neighborhood
structure in the population studied that can be naturally incor-
porated into the model. In fact, with this variance-covariance
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Figure . Kinship matrix corresponding to individuals in the toy example depicted
in Figure . In this example, themainpattern is a twoblock structure, that individuals
fall into two kinship groups.

matrix we can assume that the variability of the random effects
associated with related individuals is greater than unrelated
individuals, hoping to reduce the possible confounding effect
on the response and accounting for the dependence between
the subjects in the sample.

We elicit a prior distribution for the parameters and hyper-
parameters of the model to complete the Bayesian model. We
assume a prior independence default scenario with marginal
objective prior distributions

π (β ( j)) ∝ 1,

π (σ 2
j ) ∝ 1

σ 2
j
,

π (σ 2
w j) ∝ 1

σ 2
w j

, j = 1, . . . , p. (3)

The improper condition of these prior distributions makes BF
not adequate for SNP selection in this case (see sec. 1.5 in Berger
and Pericchi 2001). We use INLA (Rue, Martino, and Chopin
2009)—the R-INLA package (www.r-inla.org)—to make infer-
ence about the unknown quantities of the model. The 95%
credible intervals for the regression coefficients corresponding
to each SNP are used to select the promising SNPs. Only SNPs
whose interval does not contain the 0 will be included in the
second stage.

2.2. Second Stage: Model Selection

Weapproachmodel selection considering all possible regression
models constructed through all the 2ps subsets of the set of ps

selected SNPs in the first stage.We define a latent random vector
of binary variables γ = (γ1, . . . , γps )

′, where γ j = 1 indicates
that SNP j, j = 1, . . . , ps, is present in model Mγ , and γ j = 0
otherwise. For each γ , we consider kγ =

∑
γ j as the number of

SNPs in modelMγ , and Xγ as the design matrix corresponding
to modelMγ , which is more precisely defined as

Mγ : y = 1β0 + Xγ βγ + ϵ, γ ∈ {0, 1}ps , (4)

with ϵ ∼ N (0, σ 2I). In addition, we define the null model,M0,
as y = 1β0 + ϵ. Parameters (β0, σ ) are common to all models,
while βγ are model specific.

Under model M0 the prior distribution for (β0, σ )
′ is

π (β0, σ ). We express the prior distribution for (β0,βγ , σ )
′

under modelMγ as

πγ (β0,βγ , σ ) = πγ (βγ | β0, σ )π (β0, σ ).

We use the “robust prior distribution” proposed in Bayarri
et al. (2012) based on the group invariance criterion and pre-
dictive matching criterion. It specifies improper priors over the
common intercept and standard deviation, π (β0, σ ) = 1/σ ,
and robust priors for the conditional prior distribution
πγ (βγ | β0, σ ) that cannot be improper or vague to obtain
appropriate BF (Berger and Pericchi 2001). Especially

πγ (βγ | β0, σ ) =
∫ ∞

0
N (βγ |0, g&γ ) fγ (g)dg, (5)

where &γ = cov(β̂γ ) = σ 2(X t
γ (I −n−111t )Xγ )

−1 is the
variance-covariance matrix of the maximum likelihood estima-
tor of βγ , and

fγ (g) =
1
2

( n+ 1
kγ + 1

)1/2
(g+ 1)−3/21{g> n+1

kγ +1−1}.

The posterior probability for each model Mγ , can be
expressed as

P(Mγ | D) = Bγ0

1+
∑

γ ′ Bγ ′0Pγ ′0
, (6)

where D represent the data, Pγ0 is the prior odds
Pγ0 = P(Mγ )/P(M0), and Bγ0 is the Bayes factor of model
Mγ toM0. We adopt the proposal by Scott and Berger (2010),

Pγ0 =
(
ps
kγ

)−1

,

for the selection of these prior odds. One of the advantages of
the election of the “robust prior” is that it provides closed-form
expressions for BFs, which is suitable for the analysis of a large
number of models. In particular, the BF ofMγ toM0 is

Bγ0 =
1

kγ + 1

( n+ 1
kγ + k0

)−kγ/2
Q−(n−k0 )/2

γ0
SHγ , (7)

whereQγ0 = SSEγ/SSE0 is the ratio of the sum of squared errors
of modelsMγ andM0, and SHγ is the standard hypergeometric
function (Gradshteyn and Ryzhi 1965)

SHγ = 2F1

(
kγ + 1

2
; n −k0

2
; kγ + 3

2
;
(1 −Q−1

γ0
)(kγ + k0)

n+ 1

)

.
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Even after the dimension reduction stage, if the number of
possible models when exploring ps SNPs is very large (2ps), it
will be practically impossible to enumerate all possible models
and compute all the relevant BFs. For this reason, we adopt
an empirical search strategy for exploring the model space
that avoids the problem of computing the posterior probability
associated with each of the 2ps models (George and McCulloch
1997). This procedure uses the Gibbs sampler to generate a
sample from the posterior distribution π (γ | D). In particular,
we consider the sampling scheme proposed by García-Donato
and Martínez-Beneito (2013), which takes advantage of the
expression of the BF in (7) to obtain a sample of models which
converges to P(Mγ | D). This method has been implemented
using the R library BayesVarSel” (Garcia-Donato and Forte
2017). Throughout the article we will refer to it as Bayesian
Variable Selection (BVS) method.

The vector γ that maximizes P(Mγ | D) leads to the highest
posterior probabilitymodel, that is, themost probable according
to data. There are other quantities of interest than can provide
not only a complementary vision of the problem but they could
also play a major role in the final SNP selection. Such are the
cases of the inclusion probabilities and the median probability
model. For a given explanatory variable, the inclusion prob-
ability is defined as the

∑
P(Mγ | D) for all the models that

contain that covariate. This is a very useful probability when
the number of models is large and the posterior probability
associated with the different models is very small. The median
probability model is the model having covariates with inclusion
probability greater than 0.5 (Barbieri and Berger 2004). (See the
supplementary material for a comprehensive description of the
method’s implementation.)

The method proposed here assumes that ps < n after the
dimension reduction stage, as it is not defined when the final
number of selected SNPs is greater than the number of individ-
uals in the sample. In this case, we recommend using a different
prior distribution on the odds for each model that in a certain
way prevents the Gibbs sampler from visiting models, Mγ ,
where kγ > n. For example, Shin, Bhattacharya, and Johnson
(2018) studied the performance of nonlocal priors for variable
selection in p ≫ n settings by reducing the search space to
those models with kγ covariates, where kγ < n.

3. Results

3.1. Beta-Thalassemia Data

Beta-thalassemia is a genetic disorder caused by a mutation
inside the beta-hemoglobin gene (Trecartin et al. 1981). Only
homozygous individuals for the mutation manifest the clinical
traits of the disease. Carriers are completely healthy but show a
reduced mean cell volume (MCV) of red blood cells (Rosatelli
et al. 1992), which is the variable usually used to identify them.

Beta-thalassemia is prevalent in Mediterranean countries,
the Middle East, Central Asia, India, Southern China, and the
Far East as well as countries along the north coast of Africa and
in South America. The highest carrier frequency is reported
in Cyprus, Sardinia, and Southeast Asia (Galanello and Origa
2010). In Sardinia, beta-thalassemia carriers make up about
15% of the population and a single mutation accounts for 95%

Figure . Dendrogram representing family tree (on the left) and kinship matrix
(on the right) of all individuals in the beta-thalassemia dataset. Shading in the kin-
ship matrix indicates the degree of relatedness between two individuals, where
the darker the color the stronger the relationship between individuals. The kinship
matrix defines a neighborhood structure in the population studied that can be nat-
urally incorporated into the model.

of the beta-thalassemia mutations (Rosatelli et al. 1992; Cao
et al. 2008).

The dataset studied here comes from Talana, a town in the
province of Ogliastra, Sardinia, Italy. It is an isolated population
characterized by a great deal of homogeneity in lifestyle and
eating habits as well as a high endogamy and consanguinity. We
had data on MCV, in logarithmic scale, of 306 related individ-
uals originating from two common ancestors and from 6097
SNPs (more details on the dataset can be found in Cabras et al.
2011). The kinship matrix and the family tree in the sample are
depicted in Figure 2.

We applied our two-stage procedure for GWAS for these
data. We selected 129 SNPs in the first stage thus reducing the
original dimension of the problem from 6097 to 129 SNPs. To
assess the influence of the random effects in the SNP selection,
we also estimated the regressionmodel without the kinship data
on the individuals in the sample. In this case, the number of
selected SNPs was far greater, 271, showing that the inclusion of
that kinship information into the model is relevant with regard
to the efficiency of the model selection procedure. In the second
stage, we used the selected 129 SNPs in the first stage and ran
the random search algorithm 100 times, using 10,000 iterations
for the Gibbs sampling in each run and starting from a different
random initial model.

We also used a Bayesian lasso (BL) approach for model in
Equation (4) and GEMMA software approach (Zhou, Car-
bonetto, and Stephens 2013) for comparison purposes. The
parameters for the BL approach were estimated using the
Gibbs sampling proposed in Park and Casella (2008) based on
5000 iterations. The penalty parameter was estimated using an
empirical Bayes marginal maximum likelihood implemented in
each Gibbs step using 500 simulations for each fixed parameter
vector. Finally, a given SNP was selected by BL if the subsequent
95% credible interval did not contain the zero. GEMMA is
the software implementing the Genome-wide Efficient Mixed
Model Association algorithm (Zhou and Stephens 2012) and
specifically, we used the Bayesian sparse linear mixed model
that implements a spike and slab prior on regression coefficients



Table . Most frequently selected SNPs in the beta-thalassemia dataset, first, third
quartile andmedian of the posterior distribution of the probability of inclusion; the
last column is  or whether the SNP is selected or not with BL.

SNP N. times selected Pincl0.25 Pincl0.5 Pincl0.75 BL

rs10837540  . . . 
rs11036238  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 
rs  . . . 

NOTE: The highlighted SNPs are known to be related to the disease.

(George and McCulloch 1993; Ishwaran and Rao 2005) which
also incorporates the kinship matrix for individual random
effects (Zhou, Carbonetto, and Stephens 2013). The default
setup and priors specified in Zhou, Carbonetto, and Stephens
(2013) were used.

Code was implemented in R (R Core Team 2017) and the
following libraries were also required: BayesVarSel (Garcia-
Donato and Forte 2017), kinship2 (Therneau and Sinnwell
2015), INLA (Rue, Martino, and Chopin 2009), LearnBayes
(Albert 2014), MCMCpack (Martin, Quinn, and Park 2011),
plyr (Wickham 2011), and statmod (Giner and Smyth
2016).

Table 1 summarizes the results of this second stage through
the number of times (from the total of the 100 simulations) that
each SNP is selected, the first, median and third quartile of the
posterior distribution of the subsequent probability of inclusion
described above, and the results of the BL selection. The table
shows only those SNPs for which that first quartile is greater
than 0.5. Remarkably, the two SNPs with highest probabilities

are already known to be related to similar diseases: rs10837540
is mentioned in a specific GWAS beta-thalassemia study (Uda
et al. 2008), while rs11036238 is located near the HBB gene
which is directly related with hemoglobin and beta-thalassemia,
and it has also been found to be related to malaria (Jallow et al.
2009). Results of the BL selection in the last column indicates
whether the subsequent SNP was selected (value 1) or not
(value 0). They indicate that 36 SNPs are related to the MCV
variable, 34 of them are in Table 1. There is a great concordance
between our results and those obtained from BL selection,
mainly in the first 35 SNPs with higher values in the first quar-
tile of the inclusion probabilities where there were only three
discrepancies. The first 43 SNPs reported by GEMMA do not
match with those reported by our approach or by BL, except
for one SNP, rs8069352, which does not appear to be related
to thalassemia. This could be due to the small sample available
here (306 individuals) with respect to the 6097 SNPs analyzed,
which again calls for a two-step procedure as proposed here.

3.2. A Toy Example

We discuss a toy example to exemplify the modeling features
behind the two-stage method proposed and how it performs
with respect to GEMMA and BL, focusing on the explanation
of relevant scientific questions in easy terms.

Consider a simple genealogy tree with n = 10 individuals
from two different families, as in Figure 3. A quantitative trait, y,
for each individual was observed, as well as the number of dom-
inant alleles in p = 3 SNPs. Figure 3 represents the structure of
both families, parents, and children (three in both cases). The
numerical information associated with each individual includes
an identification number, his/her SNP information (a vector of
dimension p = 3), and the value of the response variable, y. The
gender of each individual is represented by a rectangle (male)
or a circle (female).

Note that values of y for the family on the left are higher than
the ones for the family on the right. The first SNP is strongly
associatedwith the trait: 0 for all relatives in the first family and 2
for all members in the second. A similar situation occurs for the
second SNP, always 0 in the second family, and 1 or 2 in the first
one. SNP3 does not seem to be clearly related with the trait. In
this example, we expect that the probability of association with
the trait is higher in the case of SNPs 1 and 2 and lower for SNP3.

Table 2 shows the posterior inclusion probability for each
SNP in each stage of our proposal as well as for the GEMMA
software with the kinship information and all SNPs, and for the
Bayesian lasso regression model with the two SNPs selected in

Table . Posterior probability of inclusion for SNP, SNP, and SNP from the
first and second stage of our proposal, GEMMA software, and Bayesian lasso (BL)
regression.

Model SNP SNP SNP

First stage . . .
GEMMA . . .
Second stage . .
BL . .

NOTE: Although all methods are able to select the related SNPs ( and ), our pro-
posal provides a discrimination of the degree of that relationship (SNP more
clearly related than SNP).
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Figure . Family trees of the individuals in the toy example. The gender is represented by rectangles (male) and circles (female). The value of the three SNPs, x, and of the
response variable, y, for each individual are indicated below each identification number. The family on the left is clearly affected by the disease whereas the family on the
right is not. Only SNP and SNP are related to the disease.

our first stage. Our proposal, in the first stage, considered three
independent regression models for explaining the trait. Each
of the models includes the family tree information and the cor-
responding SNP information. Posterior 95% credible intervals
discarded SNP3 for the second stage. Consequently, only SNP1
and SNP2 were included in the objective Bayes model selection
process of the second stage, which considers jointly SNP1 and
SNP2. It should be pointed out that, in the first stage, the pos-
terior inclusion probability for SNP2 (1.00) is higher than the
one corresponding to SNP1 as a result of the higher relevance
of the kinship information in the presence of SNP1 than SNP2.
Results from the second stage provided posterior inclusion
probabilities 0.78 and 0.49 for SNP1 and SNP2, respectively,
as expected. These are very conservative probabilities due to
the small sample size which finally avoid large false discovery
rates.

Results from GEMMA are similar to the ones obtained with
the first stage in the sense that focus is on SNP1 and SPN2—the
main relationships with the trait—but do not discriminate
between them. Outcomes are not conclusive with regard to
SNP3, showing a result close to 0.5. BL only applies to SNPs in
the second stage and yields results in the same direction that
ours with higher inclusion probabilities but without a clear
distinction between them.

3.3. Comparing ApproachesWith a Simulation Study

We used some of the information from the beta-thalassemia
dataset to conduct a simulation study to compare the Bayesian
variable selection procedure (BVS) described in the second stage
of our proposal with the Bayesian lasso (BL), with and without
kinship information, and GEMMA software approaches. The
Bayesian model implemented in GEMMA software always
includes a kinship matrix (either provided or estimated) and
thus a family effect. Therefore, the improvement in including
the family effect is only assessed for BVS and BL. The objective
of this design was twofold: to assess the effect of the family rela-
tionship in the first stage and the performance of our approach

in the second stage with regard to Bayesian lasso regression and
the GEMMA software.

Simulated data consisted of 100 replications of a regression
dataset with a design matrix, a vector of regression coefficients,
and a vector of 306 values of the response variable. In each
replica, r, the design matrix X (r) was defined from p = 1000
SNPs randomly selected from the original set of 6097 SNPs, the
vector of regression coefficients β(r) are all zero except for 10
SNPs randomly selected from the 1000 above whose coefficient
values were randomly assigned from the set {−5,−2, 2, 5},
and the vector of response variable values generated from a
normal distribution with vector of meansX (r)β(r) and variance-
covariance matrix equal to the identity matrix.

The results of those analyses are presented in Table 3 through
the sample mean and standard error of the empirical false dis-
covery rate (FDR) and the false nonrejection rate (FNR) in 100
replications.

The modeling procedure which includes the family relation-
ship among individuals in the sample has a shrinkage effect,
improving the performance of the first stage. There are no
differences among the methods with respect to the FNR, surely
due to the large dimension of p. This is not the case for the
FDR between BL and BVS: with and without familiar effects,
differences in mean are lower for the BVS procedure. GEMMA

Table . Mean and standard error (in parenthesis) of the false discovery rate (FDR)
and of the false nonrejection rate (FNR) produced by our proposal which includes
the results of the two-stageprocedure (first stage and second stageBVS in the table)
with andwithout family information in the first stage, GEMMA software with family
information, and Bayesian lasso (BL) regression which only uses the selected SNPs
from the first stage, with and without family information.

Model FDR FNR

Family effect
First stage . (× 10−4) . (× 10−4)
GEMMA . (× 10−3) . (× 10−3)
Second stage BVS . (× 10−4) . (× 10−4)
BL . (× 10−4) . (× 10−4)

No family effect
First stage . (× 10−4) . (× 10−4)
Second stage BVS . (× 10−4) . (× 10−4)
BL . (× 10−4) . (× 10−4)



provides similar values of FDR and FNR, albeit with a larger
variability, which may justify the differences obtained in the
beta-thalassemia dataset.

4. Conclusions

Wepropose a two-stage approach for GWAS in which the family
relationships between individuals are known. In the first stage,
this information is included as a random effect in the regression
model defining the relation between the response and each SNP.
The promising SNPs selected in this stage are only considered
in the second stage, which compares all possible models with
the null model via BF to select the best model. As the space
of all possible models is too large, a random search strategy
is used for estimating the inclusion probabilities for each
SNP.

The inclusion of the family relationship in the data by a
random effect modeled with a Gaussian Markov random field
has a shrinkage effect, as it is shown in the results of a simula-
tion study. The lower FDR indicates that it facilitates a greater
dimension reduction and a finer SNP selection. Additionally,
in light of the results shown, our approach seems to be more
effective in model selection than the Bayesian lasso.

We only use kinship information in the first stage but it
could also be incorporated into the second one (as in Yazdani
and Dunson 2015). It surely depends on the particular study
analyzed: our benchmark study dealt with human populations
and despite the fact that the family information was relevant
it was not very strong thus producing identifiability problems.
This is not the case in the article by Yazdani and Dunson (2015)
within the framework of animal breeding, with a strong pedi-
gree structure. Additionally, although the relatively moderate
number of SNPs is shown in the example, the model proposed
is valid for higher dimension problems.

A line of future work, for this kind of data, would be to
use the familiar effect coupled with sparse priors as spike and
slab (Ročková and George 2015) and/or nonlocal priors (Shin,
Bhattacharya, and Johnson 2018) to approach the p ≫ n
problem in a one-step analysis.

SupplementaryMaterial
Appendix: Details on the implementation to enable readers to apply the
article’s proposed method to their own data. (supplem.pdf)

Acknowledgments
The authors thank the editor, associate editor, and referees for their useful
comments that improved very much the original version of the article, and
also Mario Pirastu and Maria Pina Concas for providing the data.

Funding

This article was partially funded byMTM2016-77501-P research grant and
ECO2012-38442, RYC-2012-11455 projects from the Spanish Ministry of
Economy and Competitiveness, and CRP-59903 from Regione Autonoma
della Sardegna (Italy).

ORCID

Carmen Armero http://orcid.org/0000-0001-9839-6442
Stefano Cabras http://orcid.org/0000-0001-6690-8378
María Eugenia Castellanos http://orcid.org/0000-0001-7920-2307
Alicia Quirós http://orcid.org/0000-0001-5259-4793

References

Abecasis, G., Cherny, S., Cookson, W., and Cardon, L. (2002), “Merlin-
Rapid Analysis of Dense Genetic Maps Using Sparse Gene Flow Trees,”
Nature Genetics, 30, 97–101. [1]

Albert, J. (2014), LearnBayes: Functions for Learning Bayesian Infer-
ence, R Package Version 2.15, available at https://CRAN.R-
project.org/package= LearnBayes. [5]

Balding, D. J. (2006), “A Tutorial on Statistical Methods for Population
Association Studies,” Nature, 7, 781–791. [1]

Barbieri, M. M., and Berger, J. O. (2004), “Optimal Predictive Model Selec-
tion,” The Annals of Statistics, 32, 870–897. [4]

Bayarri,M., Berger, J., Forte, A., andGarcía-Donato, G. (2012), “Criteria for
Bayesian Model Choice With Application to Variable Selection,” The
Annals of Statistics, 40, 1550–1577. [2,3]

Benyamin, B., Visscher, P. M., and McRae, A. F. (2009), “Family-Based
Genome-Wide Association Studies,” Pharmacogenomics, 10, 181–190.
[1]

Berger, J. O., and Pericchi, L. R. (2001), “Objective Bayesian Methods for
Model Selection: Introduction and Comparison,” in Model Selection
(Vol. 38), ed. P. Lahiri, Beachwood, OH: Institute of Mathematical
Statistics, pp. 135–207 [2,3]

Cabras, S., Castellanos, M. E., Biino, G., Persico, I., Sassu, A., Casula, L., del
Giacco, S., Bertolino, F., Pirastu, M., and Pirastu, N. (2011), “A Strat-
egy Analysis for Genetic Association StudiesWith Known Inbreeding,”
BMC Genetics, 12, 63–74. [4]

Cao, A., Congiu, R., Sollaino, M., Desogus, M., Demartis, F., Loi, D., Cau,
M., and Galanello, R. (2008), “Thalassemia and Glucose-6-Phosphate
Dehydrogenase Screening in 13- to 14-Year-Old Students of the Sar-
dinian Population: Preliminary Findings,” Community Genetics, 11,
121–128. [4]

Castillo, I., Schmidt-Hieber, J., and van der Vaart, A. (2015), “Bayesian Lin-
ear Regression With Sparse Priors,” The Annals of Statistics, 43, 1986–
2018. [1]

Eilers, P. H., and Marx, B. D. (1996), “Flexible Smoothing With b-Splines
and Penalties,” Statistical Science, 11, 89–102. [1]

Frank, L. E., and Friedman, J.H. (1993), “A StatisticalViewof SomeChemo-
metrics Regression Tools,” Technometrics, 35, 109–135. [1]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for
Generalized Linear Models via Coordinate Descent,” Journal of Statis-
tical Software, 33, 1–22. [1]

Fu,W. J. (1998), “Penalized Regressions: The Bridge Versus the Lasso,” Jour-
nal of Computational and Graphical Statistics, 7, 397–416. [1]

Galanello, R., and Origa, R. (2010), “Beta-Thalassemia,” Orphanet Journal
of Rare Diseases, 5, 1–11. [4]

Garcia-Donato, G., and Forte, A. (2017), BayesVarSel: Bayes Factors, Model
Choice and Variable Selection in LinearModels, R Package Version 1.7.1,
available at https://CRAN.R-project.org/package= BayesVarSel [4,5]

García-Donato, G., andMartínez-Beneito,M. (2013), “On Sampling Strate-
gies in Bayesian Variable Selection Problems With Large Model
Spaces,” Journal of the American Statistical Association, 108, 340–352.
[2,4]

George, E. I., and McCulloch, R. E. (1993), “Variable Selection via Gibbs
Sampling,” Journal of the American Statistical Association, 88, 881–889.
[1,5]

——— (1997), “Approaches for Bayesian Variable Selection,” Statistica
Sinica, 7, 339–373. [2,4]

Giner, G., and Smyth, G. K. (2016), “statmod: Probability Calculations for
the Inverse Gaussian Distribution,” R Journal, 8, 339–351. [5]

Girosi, F., Jones, M., and Poggio, T. (1993), “Priors Stabilizers and
Basis Functions: From Regularization to Radial, Tensor and Additive
Splines,” C. B. C. L. Paper No. 75, Artificial Intelligence Laboratory
Massachusetts Institute of Technology. [1]

http://orcid.org/0000-0001-9839-6442
http://orcid.org/0000-0001-6690-8378
http://orcid.org/0000-0001-7920-2307
http://orcid.org/0000-0001-5259-4793
https://CRAN.R-project.org/package=LearnBayes
https://CRAN.R-project.org/package=BayesVarSel


Gradshteyn, I. S., and Ryzhi, I. M. (1965),Table of Integrals, Series and Prod-
ucts, Boston, MA: Academic Press Inc. [3]

Herold, C., Hooli, B. V., Mullin, K., Liu, T., Roehr, J. T., Mattheisen, M., Par-
rado, A., Bertram, L., Lange, C., and Tanzi, R. E. (2016), “Family-Based
Association Analyses of Imputed Genotypes Reveal Genome-Wide
Significant Association of Alzheimer’s Disease With Osbpl6, ptprg and
pdcl3,”Molecular Psychiatry, 21, 1608–1612. [1]

Hoerl, A. E., andKennard, R.W. (1988), “RidgeRegression,” inEncyclopedia
of Statistical Sciences (Vol. 8), eds.N. L. Johnson, S. Kotz, andC. B. Read,
New York: Wiley, pp. 129–136. [1]

Ishwaran, H., and Rao, J. S. (2005), “Spike and Slab Variable Selection:
Frequentist and Bayesian Strategies,” Annals of Statistics, 33, 730–
773. [1,5]

Jallow, M., Teo, Y. Y., Small, K. S., Rockett, K. A., Deloukas, P., Clark, T.
G., Kivinen, K., Bojang, K. A., Conway, D. J., Pinder, M., Sirugo, G.,
Sisay-Joof, F., Usen, S., Auburn, S., Bumpstead, S. J., Campino, S., Cof-
fey, A., Dunham, A., Fry, A. E., Green, A., Gwilliam, R., Hunt, S. E.,
Inouye, M., Jeffreys, A. E., Mendy, A., Palotie, A., Potter, S., Ragoussis,
J., Rogers, J., Rowlands, K., Somaskantharajah, E., Whittaker, P., Wid-
den, C., Donnelly, P., Howie, B., Marchini, J., Morris, A., SanJoaquin,
M., Achidi, E. A., Agbenyega, T., Allen, A., Amodu, O., Corran, P.,
Djimde, A., Dolo, A., Doumbo, O. K., Drakeley, C., Dunstan, S., Evans,
J., Farrar, J., Fernando, D., Hien, T. T., Horstmann, R. D., Ibrahim, M.,
Karunaweera, N., Kokwaro, G., Koram, K. A., Lemnge, M., Makani,
J., Marsh, K., Michon, P., Modiano, D., Molyneux, M. E., Mueller, I.,
Parker, M., Peshu, N., Plowe, C. V., Puijalon, O., Reeder, J., Reyburn,
H., Riley, E. M., Sakuntabhai, A., Singhasivanon, P., Sirima, S., Tall,
A., Taylor, T. E., Thera, M., Troye-Blomberg, M., Williams, T. N., Wil-
son,M., Kwiatkowski, D. P.,WellcomeTrust Case Control Consortium,
andMalaria Genomic Epidemiology Network. (2009), “Genome-Wide
and Fine-Resolution Association Analysis of Malaria in West Africa,”
Nature Genetics, 41, 657–665. [5]

Kass, R., and Raftery, A. (1995), “Bayes Factors,” Journal of the American
Statistical Association, 90, 773–795. [2]

Lee, A., Caron, F., Doucet, A., and Holmes, C. (2012), “Bayesian Sparsity-
Path-Analysis of Genetic Association Signal Using Generalized t Pri-
ors,” Statistical Applications in Genetics andMolecular Biology, 11, Arti-
cle 5. [2]

Li, Q., and Lin, N. (2010), “The Bayesian Elastic Net,” Bayesian Analysis, 5,
151–170. [1]

Malecot, G. (1948), Les Mathematiques de l’Heredire, Paris: Masson et Cie.
[2]

Martin, A. D., Quinn, K. M., and Park, J. H. (2011), “MCMCpack: Markov
Chain Monte Carlo in R,” Journal of Statistical Software, 42, 22. Avail-
able at http://www.jstatsoft.org/v42/i09/ [5]

Nychka, D.W. (2000), “Spatial-Process Estimates as Smoothers,” in Smooth-
ing and Regression: Approaches, Computation, and Application, ed. M.
G. Schimek, New York: Wiley, pp. 393–424. [1]

O’Sullivan, F. (1986), “A Statistical Perspective on Ill-Posed Inverse Prob-
lems,” Statistical Science, 1, 502–518. [1]

Ott, J., Kamatani, Y., and Lathrop, M. (2011), “Family-Based Designs for
Genome-Wide Association Studies,”Nature Reviews Genetics, 12, 465–
474. [1]

Park, T., and Casella, G. (2008), “The Bayesian Lasso,” Journal of the Amer-
ican Statistical Association, 103, 681–686. [1,4]

R Core Team (2017), R: A Language and Environment for Statistical Com-
puting, Vienna, Austria: R Foundation for Statistical Computing. [5]
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