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Abstract 

A new data-driven reference vector guided evolutionary algorithm has been successfully 

implemented to construct surrogate models for various objectives pertinent to an 

industrial blast furnace. A total of eight objectives have been modeled using the 

operational data of the furnace using twelve process variables identified through a 

principal component analysis and optimized simultaneously. The capability of this 

algorithm to handle a large number of objectives, which has been lacking earlier, results 

in a more efficient setting of the operational parameters of the furnace, leading to a 

precisely optimized hot metal production process. 

 

KEYWORDS: blast furnace, ironmaking, metamodeling, multi-objective optimization, 

model management, data-driven optimization, Pareto optimality 

 

1. INTRODUCTION 

Iron blast furnace is an immensely complex reactor and running it in an optimized 

fashion is a very complex task 
[1]

. Although analytical models exist for this type of 



 

 2 

reactors that produces hot metal 
[2]

, such models are often quite cumbersome and of 

limited applicability in a real-life industrial scenario. In addition, a complete 

understanding of the blast furnace process involves handling several objectives together, 

which so far has been only marginally successful 
[3]

. Thus, it is extremely complex, if not 

impossible, to build a simulator for blast furnace optimization and one has to rely upon 

limited amount of noisy data collected in daily operations to perform optimization.  

 

Another challenge in optimization of blast furnaces is that it involves multiple conflicting 

objectives, which is often known as multiobjective optimization 
[4]

. The  evolutionary 

algorithms have been widely used to solve multiobjective optimization problems 
[5]

. 

However, the efficacy of most multiobjective evolutionary algorithms deteriorates as the 

number of objectives becomes more than four 
[4]

, which makes them less suited for blast 

furnace optimization. Fortunately, many-objective optimization to solve problems with 

more than three objectives, has received increasing attention recently and many 

evolutionary algorithms have been developed for such problems 
[3,6]

. 

 

Purely data-driven evolutionary optimization has received little attention with few 

exceptions. Most recently, Wang et al. 
[7]

 have also categorized data-driven optimization 

into two types: on-line and off-line. In on-line optimization, small amount of new data is 

available during the optimization while in off-line optimization, no extra data other than 

those in hands is available. The authors have also proposed a surrogate-based data-driven 

approach, capable of optimizing a trauma system involving two conflicting objectives in 

an evolutionary way. Although trauma system optimization belongs to offline data-driven 
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optimization 
[7]

, there are a large amount of data available. By contrast, as indicated by 

Guo et al. 
[8]

, off-line optimization becomes extremely challenging, when amount of 

historical data is small and noisy. Unfortunately, blast furnace optimization that is being 

studied here requires off-line optimization where a very limited amount of data is 

available. 

 

Data-driven evolutionary optimization when conducted off-line with a small amount of 

information must address the following two major challenges. First, how to construct a 

reliable surrogate model based on the limited amount of data and how to manage the 

surrogates without a true objective function, which are two most important questions in 

surrogate assisted evolutionary optimization 
[9]

. Second, how to handle the several 

objectives simultaneously, in order to efficiently obtain a set of representative Pareto 

optimal solutions. 

 

Many real-world complex problems do not have any analytical functions or simulation 

model, and optimal solutions can only be obtained based on the available data. Moreover, 

collecting the data is usually very expensive and may involve a higher-level information, 

e.g. from a decision maker. In such cases, getting incremental data or online data can be 

cumbersome and expensive. Therefore, surrogates are built for the limited amount of 

offline data to generate the Pareto optimal solutions. In addition, solutions obtained via 

the offline approach can further be used to generate more incremental or online data 

based on the performance of the algorithm. 
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This article presents an application of a new off-line data driven evolutionary many-

objective optimization algorithm to blast furnace optimization to address the above 

mentioned two main challenges in off-line data-driven optimization. To this end, a new 

surrogate management strategy is incorporated in a recently proposed surrogate assisted 

many-objective evolutionary algorithm. Details of the algorithm will be presented below.  

 

2. METHOD 

2.1 The Strategy For Implementingpareto Optimality For Many Objectives 

In many problems, like the blast furnace problem studied during the present investigation, 

optimization leads to set of multiple optimal solutions, each representing its own trade-

off between the objectives. This set of solutions is  known as a Pareto optimal solution 

and locus connecting them constitutes the Pareto front 
[10]

. Evolutionary multiobjective 

optimization (EMO) algorithms that imitate the evolution process in nature to evolve a 

population of candidate solutions to generate a representative set of Pareto optimal 

solutions are commonly used for this purpose 
[11]

. But the efficacy of most evolutionary 

multiobjective optimization algorithms, judged in terms of their ability to generate a 

diverse set of representative Pareto optimal solutions, in general, is limited to problems 

with up to two or three objectives 
[9]

. 

 

In  many practical problems ranging from aircraft design 
[12]

 to molecular design 
[13]

 the 

number of objectives often exceeds three. Such optimization problems in the literature 

are referred to as many-objective optimization problems 
[6]

. Traditional EMO algorithms 

developed cannot be simply used to solve problems with many-objectives due to 
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difficulties in managing convergence and diversity. Recently many-objective 

optimization has received increased attention and several high performing algorithms 

have been proposed 
[6,14]

. But often such algorithms are tested on benchmark problems 

with a substantial number of function evaluations. In real-world problems, where 

evaluating an objective function usually take a substantial amount of computation time, 

applicability of such algorithms is often not possible or recommended. To tackle this 

problem, several surrogate-assisted evolutionary algorithms 
[15]

 have been proposed in the 

literature to obtain solutions in few function evaluations. Despite the existence of such 

algorithms, problems with only two or three objectives are solved 
[9]

. To elevate the scope 

of the surrogate assisted optimization to many-objective problems, recently, an algorithm 

called K-RVEA 
[16]

 was developed for computationally expensive problems, where 

Kriging models 
[17]

 are used in part of the computationally expensive objective functions. 

This algorithm is based on a recently proposed evolutionary algorithm called RVEA 
[18]

. 

However, K-RVEA algorithm assumes that a small number of candidate solutions can be 

evaluated using the expensive fitness evaluation method during optimization. Therefore, 

we implement a data-driven RVEA to handle many objectives. The essential details of 

the data-driven RVEA approach are presented below. 

 

2.2 RVEA: The Data-Driven Reference Vector Guided Evolutionary Algorithm 

RVEA algorithm is adapted to optimize the problem where objective functions are built 

using Kriging models. In contrast to other many-objective evolutionary algorithms e.g. 

NSGA-III 
[19]

 and MOEA/D 
[20]

 which use a set of reference points and weights, RVEA 

adopts a set of reference vectors. Another important component in RVEA which makes it 
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efficient for many-objective problems is its selection strategy. In RVEA, selection is 

based on a criterion known as angle penalized distance (APD) to balance between 

convergence and diversity. A pseudo-code of the algorithm is presented in Figure 2. The 

algorithm consists of four major components, generation of reference vectors, assignment 

of individuals to reference vectors, selection and adaption of reference vectors.  

 

In RVEA, the canonical simplex-lattice design method 
[21]

 is used to generate a set of 

uniformly distributed reference vectors in the objective space. An illustration of reference 

vectors is presented in Figure 1 for a two objective optimization problem, where the dots 

represent the reference points generated on a unit hyperplane. These points are then 

projected from the hyperplane to hypersphere to obtain the reference vectors. After 

generation of the reference vectors, objective values of all individuals at the current 

generations are translated to make sure that initial point of all reference vectors is origin 

and the translated values lie inside the positive orthant. Translated individuals are then 

assigned to the reference vectors and form subpopulations based on the acute angle 

measurement between the individual and the reference vector. In this way, population at 

the current generation is partitioned into a number of subpopulations.   

 

Selection in RVEA performed afterward in each subpopulation. The selection criterion 

consists of convergence and diversity and to combine these two, the following angle 

penalized distance (APD) is defined: 

1j j jd P f , 
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where jf  is the distance from the translated objective vector corresponding to the j
th

 

individual to the origin, and 
j
 is the angle between the j

th 
individual and the reference 

vector it is assigned to and jP  is the penalty function. After calculating APD for all 

individuals in each subpopulation, one individual with the minimum APD value is 

selected from each subpopulation for the next generation. In addition, reference vectors 

generated are made adaptive to handle the problems with different scales of objective 

function values. For a detailed description of RVEA, see 
[18]

. We also create an archive of 

nondominated solutions in running RVEA which is used to obtain the final solutions. 

 

2.3 The Blast Furnace Problem Description 

As indicated before, during this study the data obtained from an industrial blast furnace 

was used for an off-line data driven evolutionary optimization algorithm to generate a 

representative set of Pareto optimal solutions for more than three objectives. The data 

pertaining to several months of actual operation of the furnace was used to create the 

surrogate models of a total of eight objectives using a total of twelve process variables for 

simultaneous optimization, as shown in Table 1.  The total number of process variables in 

an actual industrial blast furnace is actually formidably large. This set of 12 variables is 

deemed to be significant in this study on the basis of a Principal Component Analysis 

(PCA), already in use in the materials domain 
[22]

. The blast furnace always uses a surplus 

amount of coke. As explained in the standard texts 
[23]

, in this reactor coke is not just the 

reducing agent for the iron oxides;  above the melting temperature of the ore, in the so 

called melting and softening zone of the furnace, it remains solid and supports the 

enormous total weight of the charge materials above it.  It also acts as a filter for soot and 
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dust. A large excess of ore free coke is usually present at the center of the furnace, which 

effectively acts like a chimney and ensures optimum gas distribution throughout the 

furnace. The presence of excess amount of coke in the blast furnace thus is not negotiable 

and does not lead to any environmental concerns. Therefore, the amount of coke charged 

in the furnace is excluded from the list of variables considered in this study. 

 

The data obtained from the blast furnace expectedly was noisy and contained outliers. To 

make the function landscape smooth with less peaks and troughs, local regression 

smoothing was used. In local regression smoothing a locally weighted linear regression is 

used to smoothen the data and each data point is associated with regression weights. The 

smoothened data point is calculated using the values of its neighboring data points. 

Further information is available elsewhere 
[24]

. 

 

3. RESULTS AND DISCUSSION 

During this study, numerical experiments were conducted with the algorithm 1 on the 

current blast furnace problem with eight objectives and 12 decision variables. Extra five 

percent of the extreme values of each variable from the original data are used as the 

bounds for each decision variable. During the optimization runs, the number of reference 

vectors (population size) was taken as 156, a maximum of 10000 function evaluations 

with a training data set of size210.  
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A plot of nondominated solutions using parallel coordinatesis presented in Figure 3. To 

normalize objective function values obtained using Algorithm 1, we use maximum and 

minimum objective function values for i
th

 objective function in following way: 

min

i i
i max min

i i

f f
f

f f
 

where the maximum and minimum objective function values of i
th

 objective function are 

represented by fi
max

 and fi
min

. To be able to show the efficiency of the algorithm, we count 

the number of solutions obtained which dominate the objective function values in the 

original data. We observed that 763 solutions obtained with the present algorithm 

dominate the ones in the original data. This not only provides the decision maker with a 

very large number of options, but also opens the possibilities of further upgrade of the 

current practice. Some representative optimized solutions obtained using k-means 

clustering 
[25]

 are presented in Table 2. The blast furnace for which the current surrogate 

models were derived, apparently function at a substantially high coke rate. The optimized 

results indeed suggest that the coke rate can indeed be lowered even when a higher 

productivity is targeted. The higher productivity expectedly would require a higher 

volume of gas flow and a larger gas velocity at the tuyere and the optimized results 

indeed follow such trends.  

 

We also present a surface plot in Figure 4 using the nondominated solutions obtained, 

where relationship between gas flow (shown in the legend) (f2) and other three objectives 

productivity (f5), coke rate (f6) and tuyere heating loss (f1) is shown. As different 

objectives have different ranges of values, we present them on a normalized scale. As can 

be seen, a true conflicting nature is visible between gas glow and tuyere heat loss. In 
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other words, heat loss will be increased to achieve a high blast furnace gas flow. On the 

other hand, one can also see that productivity increases and coke rate decreases with the 

increase in the blast furnace gas flow.  

 

Another surface plot is presented in Figure 5 to show the effect on productivity (f5) with 

tuyere velocity (f3), heat loss (f4) and carbon rate (f8).  As can be seen, to achieve a high 

productivity, one has to compromise on heat loss. Another interesting observation in 

Figure 5 is that a high productivity is achieved with the increase in the tuyere velocity 

and decrease in the carbon rate which is desirable. The studies show importance of the 

burden distribution on the coke rate and the present study points towards the burden 

composition as well. The slag basicity and flux consumption are also known factors 

controlling it, which are also corroborated in the present study. 

 

A running blast furnace routinely collects information on numerous process parameters 

and it is always not readily known which of them actually affect any targeted objective. 

In this study the significant process variables were successfully identified. Since blast 

furnace is a fully developed process, where any additional technological breakthrough is 

very unlikely, the major challenge is to run its operation optimally keeping in mind the 

environmental and economic requirements. Because of the increasingly stiff economic 

challenges and environmental regulations, an urgent requirement however remains in this 

field in terms of fine tuning the decision variables, so that a number of objectives, which 

are very often mutually conflicting, could be simultaneously optimized. This however is a 

very complicated task. For example, if one attempts to solve an eight objective 
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optimization problem as reported here, through the numerical solution of the pertinent 

fluid flow, heat transfer or thermodynamic equations, it would be computationally 

prohibitive and very likely to go out of hand. The major advantage of the present 

approach is to replace those theoretical equations by simple surrogate models derived 

from the available data, which can be computed very fast without any significant loss of 

accuracy. The results reported here are fully reproducible and verifiable through the 

RVEA algorithm described in this paper.    

 

4. CONCLUSIONS 

The conventional blast furnace modeling strategies are based upon transport phenomena, 

thermodynamics or for that matter statistical techniques and RIST diagram based 

approaches 
[26,27,28,29]

. Recently the efficacy of data-driven approaches involving 

strategies like neural network, support vector machine, fuzzy logic and certainly various 

evolutionary algorithms are gaining ground, as evidenced  in a huge volume of blast 

furnace related articles in these areas, some of which are referred here 
[30,31,32,33,34,35,36,37]

. 

The present work extends a newly developed evolutionary algorithm to data-driven blast 

furnace optimization. The major contributions are the following:  

 An efficient algorithm is proposed that have successfully reduced noise and 

removed outliers from the raw data generated from an operational blast furnace. 

 A total of twelve most significant process variables were identified, for the first 

time, out of a very large set of possible alternates that are most relevant to the eight 

objectives to be optimized. 
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 A major difficulty for the operational blast furnaces is to run the process 

optimally, in particular when a large number of conflicting objectives need to be 

optimized simultaneously. Even with an evolutionary approach, handling a large number 

of objectives simultaneously for the optimization purpose and many of the previous 

studies 
[32,33,34]

 could only handle less than three objectives at a time. This work presents 

an efficient and novel evolutionary algorithm that is able to solve problems having eight 

conflicting objectives. Unlike a previous work that used the notion of k-optimality 
[36]

 to 

deal with a large number of objectives, the present work could implement the condition 

of Pareto optimality and can be further utilized in blast furnace research. 

 The present approach uses simple surrogate models for optimization, which 

makes the computation very fast and quite acceptable accurate. Data-driven models are 

becoming increasingly popular in other areas of ferrous production metallurgy 
[38]

, where 

again till date only a small number of objectives could be handled for simultaneous 

optimization. The present approach therefore is of very high relevance in many practical 

problems in the metallurgical and materials domain discussed earlier 
[39]

 where the 

relevance of an evolutionary approach 
[40,41]

 is already well established. 
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Table 1 The objectives and the decision variables 

(i) Objectives 

Sr. No. Task Objective 

1 Minimize Tuyere cooling heat loss (GJ/hr) 

2 Maximize Total BF gas flow (Nm
3
/hr) 

3 Maximize Tuyere velocity (m/s) 

4 Minimize Heat loss (GJ/hr) 

5 Maximize Corrected productivity (WV) (t/m
3
/day) 

6 Minimize Coke rate  (Dry) (kg/tHM) 

7 Minimize Plate cooling heat loss (GJ/hr) 

8 Minimize Carbonrate(kg/tHM) 

(ii) Decision variables 

Sr. No. Decision variable  

1 Pellet  (%)  

2 Sp.Flux consumption (kg/tHM)  

3 Limestone (kg/tHM)  

4 Dolomite (kg/tHM)  

5 LD slag (kg/tHM)  

6 Quartzite (kg/tHM)  

7 Mn (%)  

8 Alkali – additives (kg/tHM)  

9 Alumina-additives (kg/tHM)  

10 FeO ore (%)  
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11 SiO2(%)  

12 CaO (%)  
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Table 2 Decision variable values 

Sr. 

No. 

Pelle

t 

(%) 

Sp.Flu

x 

consu

mption 

(kg/tH

M) 

Lime

stone 

(kg/t

HM) 

Dolo

mite 

(kg/t

HM) 

LD 

slag 

(kg/t

HM) 

Quar

tzite 

(kg/t

HM) 

Mn 

(%) 

Alkali 

– 

Additi

ves 

(kg/t

HM) 

alum

ina-

Addi

tives 

(kg/t

HM) 

FeO 

ore 

(%) 

SiO2 

(%) 

CaO 

(%) 

1 12.55 84.79 0.35 11.28 1.83 75.29 0.40 0.09 0.58 0.71 3.88 0.10 

2 13.70 87.34 0.00 10.48 0.24 75.28 0.44 0.24 0.58 0.84 3.73 0.09 

3 13.85 70.74 8.61 0.31 4.15 68.79 0.13 0.54 0.43 0.72 3.07 0.05 

4 13.82 84.53 0.00 1.04 0.00 61.53 0.43 0.26 1.00 0.93 3.11 0.09 

5 12.58 87.34 0.07 9.53 0.13 72.29 0.47 0.23 0.61 0.79 3.58 0.09 

6 12.43 67.79 0.00 2.30 0.00 66.43 0.29 0.37 0.46 0.73 2.15 0.22 

7 25.16 89.84 8.24 0.00 10.73 70.82 0.12 0.53 1.32 0.63 1.83 0.09 

8 12.54 87.17 0.07 15.61 0.64 76.42 0.44 0.18 0.63 0.55 3.73 0.09 

9 11.95 87.80 0.35 9.84 0.71 71.79 0.36 0.41 0.59 1.44 3.91 0.04 

10 12.76 87.92 1.34 11.44 0.29 72.84 0.45 0.18 0.62 0.58 3.73 0.05 

11 12.59 90.04 0.32 11.27 1.50 83.79 0.33 0.18 0.53 0.78 3.72 0.09 

12 12.76 87.28 1.95 11.48 0.34 79.87 0.44 0.49 0.53 0.70 3.73 0.07 

13 12.48 81.80 0.55 11.66 1.81 75.82 0.47 0.31 0.61 0.98 3.90 0.07 

14 13.01 84.33 0.37 10.66 2.48 72.32 0.39 0.20 0.69 0.82 3.89 0.04 

15 12.50 79.41 0.35 12.12 5.21 75.25 0.46 0.41 0.59 1.49 3.90 0.07 

16 12.67 87.29 0.34 9.72 2.74 75.29 0.47 0.50 0.57 0.64 3.73 0.07 
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17 12.98 85.87 0.25 10.62 0.08 80.48 0.44 0.42 0.53 0.55 3.73 0.09 

18 13.08 87.39 0.02 13.72 0.03 76.45 0.47 0.29 0.57 0.65 3.73 0.09 

19 12.26 80.96 1.23 9.86 0.68 74.59 0.47 0.34 0.59 1.47 4.08 0.10 

20 12.45 79.64 0.35 9.41 0.65 71.84 0.46 0.41 0.60 1.49 3.79 0.05 
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Table 3 Objective function values (absolute scale) 

Sr

. 

N

o. 

Tuyere 

cooling 

heat 

loss 

(GJ/hr

) 

Total 

BF gas 

flow 

(Nm3/h

r) 

Tuyerevelocity(

m/s) 

HEA

T 

LOS

S 

(GJ/

hr) 

Corrected 

productivit

y (WV) 

(t/m
3
/day) 

Coke 

rate      

(Dry) 

(kg/tH

M) 

Plate 

cooling 

heat 

loss 

(GJ/hr) 

Carbo

n rate 

(kg/tH

M) 

1 19.40 255180 195.3 67.57 2.72 467.61 28.13 463.51 

2 18.34 181420 131.66 53.15 2.65 549.56 35.93 511.72 

3 36.10 270440 213.75 88.59 2.65 438.66 48.60 461.75 

4 19.92 272810 207.48 82.98 2.91 422.81 60.32 452.73 

5 19.45 209450 149.48 56.51 2.68 536.25 34.80 506.21 

6 25.15 276890 210.39 75.87 2.74 426.09 48.10 453.05 

7 36.19 270880 206.86 67.74 2.69 431.97 29.83 456.91 

8 22.66 252870 193.07 58.37 2.57 452.50 28.65 471.00 

9 19.60 244830 182.77 62.84 2.34 460.13 30.23 483.40 

10 16.15 226500 165.42 56.23 2.27 508.16 28.68 481.68 

11 19.80 253360 183 61.10 2.71 489.57 29.78 473.80 

12 19.48 254670 195.16 70.14 2.72 430.91 32.09 456.00 

13 18.27 197650 143.76 51.80 2.49 535.14 27.08 520.24 

14 17.94 213840 157.66 54.85 2.21 525.44 25.82 487.10 

15 20.05 232260 174.77 61.61 2.60 473.30 28.75 477.98 

16 21.18 267530 203.76 74.23 2.77 409.55 32.39 451.13 
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17 18.81 228300 174.44 65.82 2.69 456.17 34.54 473.16 

18 19.36 208240 152.45 51.96 2.60 515.46 32.51 515.19 

19 21.22 220080 165.29 60.17 2.74 491.03 35.08 499.92 

20 19.77 244730 186.8 64.77 2.52 437.52 32.03 463.48 
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Figure 1 An illustration of reference vectors for a biobjective optimization problem 
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Figure 2 A pseudo-code of the data-driven reference vector guided evolutionary 

algorithm 
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Figure 3 A parallel coordinate plot of nondominated solutions obtained with Algorithm 1 

on a normalized scale 
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Figure 4 A surface plot showing the relationship between total blast furnace gas flow (f2) 

and other three objectives, namely productivity (f5), coke rate (f6) and tuyere heat loss (f1) 
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Figure 5 A surface plot showing the relationship between productivity (f5) and other three 

objectives, namely tuyere velocity (f3), heat loss (f4) and carbon rate (f8) 

 


