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Any surface of human interest can serve as a substrate for biofilm growth, sometimes with 

detrimental effects. The social and economic consequences of biofilm-mediated damage to 

surfaces are significant, the financial impact being estimated to be billions of dollars every year. 

After describing traditional biocide-based approaches for the remediation of biofilm-affected 

surfaces, this review deals with more recent developments in material science, focusing on non-

toxic, eco-sustainable nature-inspired biomaterials with anti-biofilm properties superior to the 

conventional biocide-based approaches in terms of addressing the biofilm problem. 
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Introduction 

Any surface of human interest can serve as a starting ground for biofilm 

development, limiting material application and increasing health risks and costs. The 

inclination of microorganisms to become surface bound is ubiquitous, suggesting that 

surface dwellers have a strong survival and/or selective advantage tendency greater than 

their free-floating counterparts, i.e. a certain degree of shelter and homeostasis that 

helps them persist in the environment (Dunne, 2002).  

On the global scale, biofilm-related costs incur the spending of billions of 

dollars in different sectors of the economy including all clinical and industrial settings 

associated with surfaces (Plyuta et al. 2013). Most likely, the worst biofilm reputation 

belongs to biofilm associated with the medical and healthcare sectors, because they are 

responsible for more than 60% of all microbial infections in humans (Sadekuzzaman et 

al. 2015). Indeed, implantable medical devices applied to critically ill patients often 

become potential surfaces for biofilm formation, with devastating medical implications 

in terms of patient morbidity, mortality, prolonged hospitalization and increased 

healthcare costs (Hall-Stoodley et al. 2004; Darouiche 2007; Lo et al. 2014; Percival et 

al. 2015; Tenke et al. 2017).  
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The detrimental effects of biofilm can also be felt across numerous industries, 

including water treatment and distribution, food processing and marine-based industries. 

The result is a decrease in industrial productivity as well as the physical deterioration of 

industrial systems such as pipe plugging and corrosion (Stowe et al. 2011). In food-

processing environments, biofilms are of special importance as they have the potential 

to act as a persistent source of microbial contamination, which can lead to the 

threatening of the microbiological quality and safety of food products, resulting in food-

borne disease (Cappitelli et al. 2014). Approximately 95% of bacterial cells that grow in 

drinking water networks are attached to pipe walls, while less than 5% has been found 

in the water phase (Flemming 2002; Douterelo et al. 2016). Detrimental effects include 

microbe-induced corrosion, disinfectant depletion, color, odor and taste degradation and 

the microbiological deterioration of drinking water (Farkas et al. 2013).  

Biofilm also affects the surface of buildings and monuments, both historic and 

modern (Polo et al. 2012; Villa et al. 2016; Vázquez-Nion et al. 2018). As a 

consequence of complex interactions within the microbial community and its substrate 

biodeterioration processes occur (Giacomucci et al. 2011; Cappitelli et al. 2012). The 

consequences are aesthetic and structural damage. 

Historically, most strategies that attempt to mitigate the effects of biofilm focus 

on treatments aimed at killing the microbial cells in biofilm already present on solid 

surfaces. However, such strategies have limited efficacy owing to bacterial persistence 

and resistance in pre-formed biofilm (Feng et al. 2015). Indeed, sessile bacteria exploit 

features that make them up to 1,000-fold more resistant to antibiotic and biocide 

treatments than their corresponding planktonic counterparts (Stewart 2002). In vitro 

experiments have shown that young, less dense biofilm is more easily cleared away by 

antibiotic treatment than mature thicker biofilm (Stewart 2015). However, early 

diagnosis of biofilm infection is currently difficult, and most biofilm infections are 

caused by matured biofilm, thus making it difficult to eradicate them with antibiotic 

treatments (Wu et al. 2015). Additionally, biofilm treatment is hindered by the dramatic 

increase in antibiotic resistance among pathogens, reducing the possibility of treating 

infections effectively and increasing the risk of complications and a fatal outcome.  

No less important are chemical treatments that often involve considerable 

amounts of potentially dangerous substances. Sooner or later biocides and antibiotics 

are released into the environment and, if they do not break down into safer constituent 
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parts, they persist intact over prolonged periods of time, raising severe environmental 

and human risks (Young et al. 2008; Schultz et al. 2011; Sousa et al. 2014). This is 

readily seen in the growing number of policies, directives, technical reports, strategies, 

recommendations and regulatory decisions designed to reduce the consumption of 

antimicrobial agents, ensuring their prudent use, and protect human and animal health 

and wellbeing (Directive 98/8/EC; Council Recommendation 2002/77/EC; SCENIHR 

report 2009; EFSA Summary Report 2012). 

With regard to the severe adverse impact of biofilm on many human activities, 

this review provides an overview of current and advanced strategies employed to 

control and prevent unwanted biofilm on polymeric surfaces in recent years. Materials 

and coatings with antibacterial activity, as well as more recent biofilm resistant 

solutions based on non-toxic natural molecules, including advantages and disadvantages 

with respect to potential applications, are discussed (Tables 1 and 2). Finally, methods 

for assessing anti-biofilm performance of innovative polymeric surfaces are presented. 

 

Surface modification 

The resistance of biofilm cells to traditionally used antimicrobial agents has 

prompted researchers to focus on preventive strategies rather than on attempts that 

remove or kill microorganisms. The development of materials that can resist or prevent 

bacterial adhesion constitutes the most promising and emerging approach to deal with 

material-associated biofilm infection problems (Alves and Pereira 2016). These 

approaches aim at altering the polymer surface by using passive or active strategies that 

discourage microbial adhesion and thus biofilm formation (Coenye et al. 2011).  

 

Passive surfaces 

In passive strategies, the physiochemical properties of an existing material, such 

as composition, charge, hydrophobicity, roughness and porosity, are modified so as to 

minimize microbial adhesion upon contact, without releasing biocidal agents into the 

surrounding environment (Gbejuade et al. 2015; Romanò et al. 2015).  These coatings 

are called passive, because their effect is not attributed to antimicrobially active 

functional groups.   
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Surface chemistry modifications 

In the past, poly(-ethylene oxide) (Johnston et al. 1997; Roosjen et al. 2003; 

Roosjen et al. 2005), poly(ethylene glycol) (Holmberg et al. 1993; Park et al. 1998; 

Kingshott et al. 2003; Tedjo et al. 2007; Saldarriaga Fernández et al. 2007) and 

hydrophilic polyurethanes (Jansen et al. 1993; Nagel et al. 1996) were used extensively 

as passive coatings to increase surface protection against biofilm formation. Indeed, 

these anti-adhesive coatings reduce the adhesion force between the bacteria and the 

solid surface, enabling easy removal of bacteria before the formation of surface biofilm 

(Adhart et al. 2018).   

These strategies are relatively simple and economic ways to counteract 

microbial colonization. However, despite their popularity in the academic literature, few 

commercially marketed biomedical coatings are available, perhaps due to the difficulties 

in creating surface-bound thin films amenable at industrial scale (Sjollema et al. 2018).  

Additionally, these passive coatings have been shown to reduce the adhesion of 

bacteria and yeast in vitro, but after exposure to physiological fluids in vitro or in vivo, 

the reduction in microbial adhesion is usually small or soon lost (Roosjen et al. 2005; 

Saldarriaga Fernández et al. 2007). The anti-biofilm properties of the coating are 

quickly masked by an adsorbed conditioning film of bacteria-produced proteins that 

diminishes its effectiveness (Hetrick and Schoenfisch 2006) whereas coating 

degradation can also occur (e.g. hydrolysis, chain cleavage, surface removal) 

(Saldarriaga Fernández et al. 2007). Furthermore, surfaces that are non-adhesive to 

bacteria are often non-adhesive to tissue cells as well, making them less suitable for 

biomaterial implants and devices requiring tissue integration (Sjollema et al. 2018). 

Finally, the introduction of additional chemical species decreases biocompatibility 

(Dickson et al. 2015).  

 

Surface topography modifications 

Modification of surface topography with micro- and nanoscale features that 

minimize bacterial attachment is another passive strategy for preventing biofilm 

formation on abiotic surfaces. Indeed, surfaces with topographic features of dimensions 

much smaller than microbial cells, in the sub-micrometer or nanometer range, have 

been reported to inhibit attachment by reducing the contact area between bacteria and 

the surface (Hsu et al. 2013).  
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An interesting development in this area is the recognition that nature has 

developed numerous surfaces with highly optimized nanoscale topography able to 

minimize microbial attachment. Therefore, many studies have attempted to mimic the 

peculiar surfaces found in nature. Carman et al. (2006) developed engineered 

microscale surface design inspired by the topography of shark skin (with features 2 µm 

wide, 3 µm in height) able to disrupt biofilm formation on patterned 

poly(dimethylsiloxane) elastomer without the use of biocidal agents. Regularly spaced 

nanopillar structures, similar to those found on the bactericidal cicada wings, were 

reproduced on a black silicon surface by Ivanova et al. (2013) with optimal bactericidal 

effect against both Gram-positive and Gram-negative bacteria. A superhydrophobic and 

biocompatible micro/nano structure gecko skin-like surface with low adhesion, anti-

wetting, self-cleaning and antibacterial properties has been developed by Watson et al. 

(2015) and Li et al. (2016). Other examples of bio-inspired surfaces with effective anti-

adherence nanoscale feature include those resembling rose petals, lotus leaves, taro 

leaves, rice leaves and legs of water striders (Claudia et al. 2016; Barthlott et al. 2017). 

According to these researchers, bacterial cells are killed through the mechanical 

rupture of their cell wall when they are in contact with the nanostructures (Tripathy et 

al. 2017). Therefore, recruitment of additional cells and biofilm build up are both 

prevented and resistance to the nanofeatures cannot evolve (Dickson et al. 2015). 

Unfortunately, these discoveries have not been translated to technologically 

scalable processes yet. Indeed, most of nanostructuring methods available today require 

cleanroom technologies and are prohibitively expensive, slow and cumbersome for 

large-scale applications (Feng et al. 2015; Hasan et al. 2018). Additionally, although 

most studies have shown that biofilms are sensitive to nanoscale topographical details, 

no universal rules of attachment have been determined yet and some researchers have 

reported a greater level of attachment on some nanoscale surfaces compared to those 

with conventional topographies (Park et al. 2008; Hsu et al. 2013). 

 

Active antimicrobial surfaces 

In active approaches, the abatement of biofilm growth has been achieved by 

spreading a number of antimicrobials and disinfectants onto the surfaces or by 

incorporating them into synthetic polymer-based products, directly or by means of a 
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carrier. The anti-biofilm activity is the result of functional groups that interact with 

microbes in the surrounding area (Lichter et al. 2009). 

 

Antimicrobial-releasing surfaces       

In the antimicrobial-releasing surfaces, the biocidal agent is actively eluted from 

the surface when in contact with an aqueous environment (Coenye et al. 2011; Chen et 

al. 2013; Lo et al. 2014; Zanini et al. 2015). Such approaches are those most used to 

obtain devices with different antimicrobial spectra and duration. Indeed, a number of 

materials with entrapped antibiotics and disinfectants are commercially available, and 

are already used in clinical applications, especially for mitigating implant-associated 

infections (Antoci et al. 2008; Hockenhull et al. 2009; Francolini and Donelli 2010; 

Swartjes et al. 2015; Ashbaugh et al. 2016). Examples of active polymers for 

antimicrobial applications are reported in Gao et al. (2011), Chen et al. (2013) and 

Huang et al. (2016). 

Release of antibiotics by coating degradation is also possible by using 

degradable polymers, such as poly(D,L-lactide),  poly(ε-caprolactone) or 

poly(trimethylene carbonate) (Strobel et al. 2011; Guillaume et al. 2012). Shukla et al. 

(2012) found that application of vancomycin containing layer-by-layer assembled films 

increased drug loading by up to approximately 9 times the control. It is interesting to 

note that the approach enables the incorporation of different drug types in each layer, 

giving potential to engineered delivery system for drugs with a multitude release profile 

(Hammond 2012). 

However, despite the considerable effort made, over the past 30 years there has 

been little progress, few products have become available on the market, and reviews are 

not unanimous about their benefits (Johonson et al. 2006; Nowatzky et al. 2012; 

Sjollema et al. 2018). The prerequisite for the good performance of such coatings is the 

continuous and constant elution of antimicrobial molecules from the surface, with a 

release rate sufficient to deter or slow down microbial attachment to ensure the long 

service life of the coating (Barrios et al. 2005). Unfortunately, such active coatings have 

been designed to release high initial fluxes of antimicrobial agents during the critical 

short term post-implantation period (several hours) so as to inhibit initial microbial 

adhesion through a biocidal mechanism. However, continued release beyond this short-

term period (weeks to months) is not realized, making these systems less desirable for 
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long-term and extended applications (Hetrick and Schoenfisch 2006; Knetsch and 

Koole 2011; Gao et al. 2011).  

 

Antimicrobial responsive surfaces 

Several materials from which the antimicrobial substance release is triggered by 

the microorganisms approaching the surface have been proposed. Indeed, in such 

responsive approaches, both enzymes and acids excreted by the bacteria themselves 

have been used as triggers for antimicrobial release to combat their adhesion. 

Komnatnyy et al. (2014) introduced an enzyme-sensitive link into a poly(ethylene 

glycol) material. The bioactive compounds, i.e. quorum sensing signals and 

antimicrobial drugs, were only released in presence of the microorganisms that secrete 

the specific enzymes that cleave the sensitive linkage in the construction. Pavlukhina et 

al. (2014) constructed a pH/bacteria-responsive material providing a novel hydrogel-

like montmorillonite/polyacrylic acid film able to keep gentamicin safely sequestered 

for months under physiologic conditions. When challenged with bacteria, the coating 

released gentamicin because microorganisms locally acidify the environment, e.g. by 

secreting lactic or acetic acid. Similarly, Wang et al. (2017) developed a new multilayer 

film with a high loading capacity for triclosan. In this system, the permeability of the 

films is altered in response to pH changes in the environment caused by bacteria 

providing the release of the antibiotic. 

These responsive materials are supposed to provide new antimicrobial 

approaches with the following advantages: i) they exhibit the antibacterial activity only 

when and where needed; ii) they extend the useful life time of coatings, decreasing the 

premature depletion of the drug reservoir; and iii) they minimize side-effects related to 

continuous and uncontrolled molecule release, e.g. its accumulation in vital tissues. 

Though these materials are interesting, they are seldom used as antibacterial 

coatings. The main challenges are: i) to achieve release of meaningful doses over 

multiple cycles; ii) to minimize non-triggered background leaching from surfaces; iii) 

the limited effect against multiple microbial infections; and iv) the altered efficacy of 

many antimicrobials due to changes in pH during microbial growth (Cloutier et al. 

2015; Alvarez-Lorenzo et al. 2016).  
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Immobilization of antimicrobials  

Important achievements have also been made to covalently immobilize 

antimicrobials on surfaces to completely overcome the problem of constant release 

(Antoci et al. 2008; Gharbi et al. 2015; Gerits et al. 2016; Peng et al. 2017). These so-

called contact-killing surfaces are not intended to release antimicrobials into the 

surroundings, but to kill bacteria upon contact.  

The active molecule, covalently bound to the polymeric chain, reaches the site 

of action on the bacterial envelope or inside the bacterium, e.g. by penetrating its cell 

wall. Therefore, the bond with the surface is generally performed by using flexible 

spacers that allow a certain degree of freedom of the bound antibacterial agents (Nie et 

al. 2016). Indeed, chain length and chain density are important parameters for polymer 

brush anchors (Adhart et al. 2018). Jose et al. (2005) used a double 

aminoethoxyethoxyacetate linker combined with a 3-aminopropyltriethoxysilane-

modified titanium surface to provide vancomycin with a distance of about 4 nm from 

the polymer surface. 

In contrast to the release coatings, surface binding technology of antibiotic 

agents creates a high local concentration, minimizing the risk of exposing bacteria to 

sub-inhibitory concentrations and thereby reducing the likelihood of resistance 

development (Nie et al. 2016). Little is known about the possible development of 

bacterial resistance against these materials and it remains to be seen whether or not this 

occurs upon their increasing usage. Certainly, it has been well documented that the 

constant use of antimicrobial agents inevitably leads to the development of antibiotic 

resistant strains and could even promote biofilm formation (Hoffman et al. 2005; 

Andersson and Hughes 2010). Moreover, the effectiveness of such material is most 

likely limited to infections caused by bacteria that are sensitive to the specific antibiotic 

(Hetrick and Schoenfisch 2006). No less important: the application of such surface-

active systems is restricted to some surfaces for safety reasons, e.g. their use is less 

suitable for specific food contact materials as the carrying over of antimicrobials into 

food products might occur (Simões et al. 2010; Lucera et al. 2012; Cappitelli et al. 

2014). 
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Metal-based antimicrobial materials 

 

Metal coatings 

Heavy metals have been used as an anti-biofilm agent, the metal being deposited 

on biomaterial surfaces by means of a coating technology (Stobie et al. 2008; Gallo et 

al. 2014).  

Among the metals, the one that has long been the center of attention is silver 

(Knetsch and Koole 2011). There are indications that the antimicrobial activity of silver 

is dependent on the silver cation Ag+, which reacts with, and disrupts, the function of 

bacterial cell membranes, DNA molecules, crucial metabolic proteins and enzymes, and 

ultimately leads to cell death (Feng et al. 2000; Jung et al. 2008; Randall et al. 2013). 

Indeed, silver has been coated onto medical implants (Darouiche 1999; Devasconcellos 

et al. 2012), wound dressings (Heggers et al. 2005; Ip et al. 2006) and textiles (Sataev et 

al. 2014). However, such silver coating has its faults, including poor silver adhesion and 

lack of coating uniformity; it also requires special processing conditions (Kumar and 

Munstedt 2005). Furthermore, the incorporation of silver into polymers does not always 

result in efficient antimicrobial activity because of the poor solubility of most silver 

salts in polymeric materials (Knetsch and Koole 2011). 

 

Metal-nanoparticles based materials 

Over the last decade a great deal of interest has been shown in metal 

nanoparticles. This is because of the superior and unique features that make them 

particularly attractive for new and emerging nanoparticle-based anti-biofilm materials 

(Polo et al. 2011; Ahire et al. 2016; Mu et al. 2016; Qayyum and Khan 2016; 

Ramasamy and Lee 2016; Gambino et al. 2017). Among others, silver nanoparticle-

based materials have been successfully proposed to limit biofilm formation on both 

medical and industrial applications, e.g. medical implants (Roe et al. 2008), air and 

water treatment filters (Mpenyana-Monyatsi et al. 2012; Gehrke et al. 2015), clothing 

(Zhang et al. 2009; Zhang et al. 2014), food processing surfaces (Araujo et al. 2013) and 

food packaging materials (Bumbudsanpharoke et al. 2015; Souza and Fernando 2016). 

Although it seems that bacteria are less prone to develop resistance against silver than 

they do against conventional antibiotics, concerns associated with the overuse of silver 

and the consequent emergence of bacterial resistance have been raised (Hobman and 
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Crossman 2015; Ebrahiminezhad et al. 2016). Moreover, these nanotechnology-based 

emerging novel anti-biofilm strategies are still in the nascent phase and more research is 

needed to clarify a number of safety, environmental, ethical, policy and regulatory 

issues (Fabrega et al. 2011; Gottschalk et al. 2013; Sajid et al. 2015; Gambino et al. 

2015; Reed et al. 2016; Garuglieri et al. 2016; Hoseinnejad et al. 2017; Garuglieri et al. 

2018). 

 

Preventive green biocide-free surfaces 

Numerous concerns have put pressure on the scientific community to develop 

alternative, more effective strategies; strategies perceived by the public as safe, and as 

posing negligible risk to human health and the environment.  

Indeed, efforts are being directed towards developing innovative anti-biofilm 

materials with functional features targeting molecular determinants of biofilm genesis, 

instead of fighting biofilm with antimicrobial materials and coatings (Chen et al. 2013; 

Villa et al. 2013). In these approaches microorganisms are deprived of their virulent 

properties but their existence remains unaffected. Thus, selection pressure decreases, 

with the promising perspective of restoring the efficacy of traditional antimicrobial 

agents (Rasko and Sperandio 2010). 

On considering the process of biofilm formation, different key steps can be 

identified as promising targets for the development of innovative anti-biofilm products. 

The first is to avoid surface microbial adhesion: this can be done by interacting with the 

surface sensing process in order to keep the pioneering cells in a planktonic form. 

Another good point of attack that has emerged is the disruption of mature biofilm. 

Indeed, interference with cell-to-cell communication processes inevitably results in 

biofilm matrix damage, leading to the destabilization of biofilm physical integrity. 

Finally, the promotion of biofilm dispersal by forcing the planktonic state is another 

interesting target (Kaplan 2010; Kostakioti et al. 2013).  

Needless to say, the above strategies do not presume to be the solution to 

preventing biofilm development, but they could be used in combination with other 

conventional treatments to maximize the anti-biofilm performance of polymeric 

materials. Indeed, these strategies could be a step forward in applications where it 

would be advantageous to slow down contamination. Indeed, in many industrial and 

clinical activities, surface treatments that retard adhesion, and consequently biofilm 
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formation, could greatly enhance the efficiency of daily cleaning and disinfection 

procedures, because, once dispersed from the biofilm, free-floating microbes are more 

susceptible to detergents and biocides than those in the biofilm itself (Davey and 

O'Toole 2000; Dell’Orto et al. 2017). The synergic combination of antimicrobial and 

anti-biofilm agents is even recommended by the Infectious Diseases Society of America 

guidelines for the treatment of selected biofilm-associated infection (Pappas et al. 2004; 

Cui et al. 2015). 

Already, to date, a number of natural and synthetic compounds based on this 

innovative biocide-free anti-biofilm strategy have been proposed. The latter includes a 

broad range of molecules, free in solution as well as coated or immobilized on a surface, 

that interfere with quorum sensing cell-to-cell communications and promote biofilm 

dispersal (Ding et al. 2011; Wu et al. 2015; Alexander et al. 2015; Brackman and 

Coenye 2015; Abraham 2016; Chen et al. 2016), as well as matrix-targeting enzymes 

able to effectively destroy biofilm architecture (Pavlukhina et al. 2012; Villa et al. 2015; 

Spadoni Andreani et al. 2016; Sadekuzzaman et al. 2015; Meireles et al. 2016; Spadoni 

Andreani et al. 2017; Snarr et al. 2017). 

 

Surface modification with natural anti-biofilm compounds 

Present day awareness of ecological problems, together with the increased 

number of safety laws, has prompted the scientific community to address the 

development of more eco-sustainable anti-biofilm materials with non-toxic and 

biodegradable properties. Thus, there is great demand for new approaches based on 

molecules displaying suitable environmental-fate parameters such as high water 

solubility, low partition coefficient, low bioaccumulation in biological systems, and no 

ecotoxicity; such molecules used in anti-biofilm materials would give them great 

potential as safe anti-biofilm agents (Qian et al. 2010). To date, a multitude of 

compounds found in nature have revealed promising anti-biofilm properties suitable for 

the development of improved effective eco-friendly, bio-inspired anti-biofilm materials 

able to replace, or integrate with, current dominating biocide-based strategies (Villa et 

al. 2013; Sadekuzzaman et al. 2015; Qian et al. 2015; Almeida et al. 2017). However, 

compared to the great amount of work devoted to the discovery of potent natural 

biofilm inhibitors, relatively little research has dealt with the design of anti-infective 



 

12 

 

bio-hybrid surfaces based on natural products and, of these, only a few materials display 

anti-biofilm properties without biocidal activity. 

 

Passive and active natural molecule-based strategies 

Barrios and coauthors (2005) and Newby and colleagues (2006) incorporated 

zosteric acid into silicone coatings, developing different strategies to achieve its slow 

release into the surrounding area. Bryers and collaborators (2006) and Rosenberg and 

colleagues (2008) proposed salicylic acid-releasing poly(anhydride-ester) polymers able 

to inhibit Pseudomonas aeruginosa and Salmonella enterica biofilms respectively. In a 

further study, Nowatsky and coauthors (2012) developed a new salicylic acid-releasing 

polyurethane acrylate polymer. Under aqueous environments, the polymer hydrolyzed 

and released salicylic acid, leaving the backbone intact and reducing biofilm formation 

of Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, P. aeruginosa, and S. 

aureus. Others examples are reported in Table 2.  

Unfortunately, in most cases, these materials exhibited a discontinuous release, 

this release being initially high but soon followed by an exponential decrease. In 

addition, a very large number of molecules appeared close to the surface, reaching 

concentrations lethal for the microorganisms. The amount of released substance and its 

rate is influenced by factors like processing parameters, loading dose, applied 

technique, molecular size of the molecule and the physic-chemical properties of the 

polymeric material, all of which makes it arduous to carry out a strict monitoring of the 

anti-biofilm rate from the surface. Indeed, the problem of release rate in an aqueous 

medium can be attributed to the fact that most polymeric matrices and anti-biofilm 

compounds have incompatible physical characteristics. Most of the coating matrices are 

hydrophobic polymers, while some anti-biofilm compounds are hydrophilic, making 

their miscibility with the coating matrices difficult. The result is a non-uniform 

molecule distribution within the material, which increases the tendency of the surfaces 

to absorb and diffuse water through the polymer matrix; this allows the anti-biofilm 

molecules to diffuse out (Barrios et al. 2005; Newby et al. 2006; Nowatzki et al. 2012). 

To solve the problem, Barrios and coauthors (2005) investigated various techniques for 

incorporating zosteric acid into a model silicone material. When the zosteric acid 

distribution within the polymer was uniform, with small aggregates or even individual 

molecules, leaching took place at a reasonable rate, extending the material working 
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time. However, the optimal, and desired, constant rate was never reached as, at the 

beginning, the rate was quite high, reaching an almost constant value only later.  

 

Covalent immobilization of natural molecules 

The binding of natural molecules to surfaces could easily side-step the problem 

of constant release, guaranteeing the material long life as the molecules become 

permanently attached and integrated into the scaffold structure of the polymers. Indeed, 

grafting active compounds to polymers is preferred to covalent incorporation as biofilm 

development is a process that occurs at the surface and not in the bulk. This kind of 

approach requires very good knowledge of the exact functional groups required by 

molecules to exert anti-biofilm activity, identifying the molecular structure’s binding 

site needed for the group’s immobilization on the surface, without destroying the 

biological activity of the material. However, in most cases this information is not 

available.  Hume et al. (2004) proposed two different methods for the covalent 

immobilization of the furanone 3-(1’-bromohexyl)-5-dibromomethylene-2(5H) on 

biomaterials: a furanone co-polymerization with a styrene polymer and a plasma-1-

ethyl-3-(dimethylaminopropyl) carbodiimide reaction to produce furanone-grafted 

catheters. Biofilm formation by S. epidermidis in vitro was inhibited by 80% whereas in 

an in vivo sheep model immobilized furanones were found effective at controlling 

infection for up to 65 days. A study by Cattò et al. (2015) concerning the relationship 

between zosteric acid structure and anti-biofilm activity clarified that the carboxylic 

acid moiety conjugated to the double bond in trans configuration is necessary in the 

molecule to guarantee good anti-biofilm performance, while deletion of the sulphate 

ester group does not compromise molecule anti-biofilm activity. In addition, Cattò et al. 

(2017) showed that the para-position of the phenyl ring in the salicylic acid structure 

proved suitable for its immobilization on a N-hydroxysuccinimide polymeric matrix. On 

the basis of these two studies, Dell’Orto et al. (2017) covalently grafted modified 

cinnamic and salicylic acid on a low density polyethylene surface, previously activated 

by oxygen plasma treatment and using 2-hydroxymethylmetacrylate as linker. Both 

functionalized polymers displayed optimal anti-biofilm performance against E. coli, 

reducing biofilm surface coverage, thickness and cellular biovolume by more than 80%. 

Cattò et al. (2018) later confirmed that the reduction of biofilm biomass was achieved in 

both functionalized surfaces by a mechanism that did not affect bacterial viability, 
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which is an important factor in the challenge to limit the risk of developing resistant 

microbial strains. Additionally, the authors demonstrated that the functionalized 

surfaces strongly reduced polysaccharides in the biofilm matrix, maximizing the biofilm 

sensitivity to conventional antimicrobial agents. Noteworthy, the new polymers 

preserved their anti-biofilm activity over time.  

Although anti-biofilm mechanisms are still poorly understood, current findings 

document that, in most cases, anti-biofilm materials affect microbial settlement by 

acting as an environmental cue that leads bacteria to global stress, providing conditions 

by which the best microbial strategy is to escape from the adverse environment rather 

than activate drug resistant sessile mechanisms. This response is often mediated by 

reactive oxygen species, used by cells as signals in adapting to changing environments 

(Gambino and Cappitelli 2016). For example, both zosteric acid and salicylic acid affect 

the bacterial oxidative balance by interacting with NADH: quinone reductase (WrbA), 

an enzyme belonging to a family of flavoprotein quinone reductases widespread in both 

bacteria and fungi (Cattò et al. 2015; Cattò et al. 2017). The outcome of this oxidative 

imbalance is the production of signal molecules that discourage the firm adhesion of 

bacteria on surfaces (Villa et al. 2012; Cattò et al. 2015). 

 

Methods for evaluating the anti-biofilm performance of new bio-inspired 

polymeric surfaces 

After the design and creation of bio-inspired polymeric surfaces, the validation 

of the new materials’ anti-biofilm performance becomes a critical step for field 

applications. However, the in vivo testing of new anti-biofilm materials remains a 

difficult task due to the poor control over experiments and justified ethical concerns 

(Sjollema et al. 2018). Therefore, simplified in vitro systems have been developed to 

mimic different conditions encountered in vivo (Gomes et al. 2017).  

While a number of industrial standard tests are available to assess the 

antimicrobial efficacy of medical and non-medical products, no accepted standard 

methods exist to properly evaluate the anti-biofilm activity of new surfaces with a 

mechanism of action that is different from simple killing or growth inhibition. Indeed, 

available surface evaluation standard tests are mostly intended to assess the efficacy of 

surface by testing the material ability to decrease microbial viability without 

considering differences in the mechanism of action (Sjollema et al. 2018). Therefore, 
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the only way to test is by adapting the standard lab-scale devices and procedures to 

reproduce the biofilms on the functionalized biocide-free materials. 

 

Lab-scale systems for growing biofilms on anti-biofilm surfaces 

The simplest experimental system relies on the use of microtiter well plates, a 

static assay particularly useful for examining early events in biofilm formation (Merritt 

et al. 2005). Microtiter plates allow surfaces to be modified or, alternatively, new bio-

functionalized polymers can be further inserted into the wells. The general protocol 

allows for the inoculation of microtiter wells with a cell suspension for a desired period 

of time, after which the attached biomass is analyzed.  

While microtiter tray based techniques are inexpensive and appropriate for large 

scale screening purposes, the static nature of these systems leaves them prone to 

nutrient exhaustion, thus limiting the generation of mature biofilm (Azeredo et al. 

2017). As a consequence, the full effect of new tested materials on biofilm growth and 

dispersion cannot be evaluated with this system. 

The dynamic solution lies in continuous-flow systems to produce mature 

biofilms on surfaces. Indeed, continuously pumping high shear and nutrients into the 

reactor provides stress conditions that promote biofilm development on the polymer 

surfaces (Goeres et al. 2005). Standardized protocols employing the Center for Disease 

Control biofilm reactor (CDC reactor), the rotating disk reactor (RD reactor) and the 

drip flow reactor (DF reactor), have been approved by the American Society for Testing 

and Materials (ASTM E2562-12 2012; ASTM E2196-02 2012; ASTM E2871-13 2013; 

ASTM E2647-13 2013).  

The CDC reactor allowed Cai et al. (2012) to prove that diazeniumdiolate-doped 

poly(lactic-co-glycolic acid)-based nitric oxide releasing films applied in indwelling 

biomedical devices exhibit considerable anti-biofilm properties against gram-positive S. 

aureus and gram-negative E. coli. In another experiment, the CDC reactor was used to 

challenge dentin-composite and hydroxyapatite disks with multi-species oral biofilms, 

mimicking acidogenic meals and snacks (Li et al. 2014). Dell’Orto and colleagues 

(2017) tested a new anti-biofilm material obtained by the covalent grafting of p-

aminocinnamic or p-aminosalicylic acids on low density polyethylene coupons against 

E. coli biofilm grown in the CDC reactor. Sawant and colleagues (2013) tested the anti-

biofilm properties of silver nanocomposites against E. coli biofilm by the use of a DF 
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reactor. With the same device, Pérez-Díaz et al. (2016) evaluated the anti-biofilm 

capacity of chitosan gel formulations loaded with silver nanoparticles on strains of 

clinical isolates under conditions that mimic the flow of nutrients in the human skin.  

All the described continuous-flow systems offer the advantages of the 

simultaneous use of different surface materials, the possibility of analyzing samples 

noninvasively, and standardized protocols, making it possible to compare different 

materials within one laboratory alone and among different laboratories (Gomes et al. 

2017). Additionally, bioreactors allow to sample the materials aseptically at different 

time points during the sessile growth, without compromising the whole experiment.  

 

Methods for quantification and structural assessment of biofilm on anti-biofilm 

surfaces 

Once grown on a surface, the most widely used technique to estimate biofilm is 

the determination of viable cells by plate counting on agar media (Azeredo et al. 2017). 

Alternatively, flow cytometry, is a fast and precise way to count live and dead cells in a 

biofilm (Kerstens et al. 2015; Sgier et al. 2016). Quantification can be also achieved 

through colorimetric methods by staining biofilms and measuring the amount of 

desorbed dye by spectrophotometric measurement (Honraet et al. 2005; Welch et al. 

2012; Larimer et al. 2016; Sabatini et al. 2018). Depending on the stain, this method 

enables quantification of the total biofilm biomass (e.g., crystal violet), the biofilm 

matrix (e.g. dimethyl methylene blue), or the metabolic activity of the biofilm cells (e.g. 

XTT 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner 

salt and resazurin). Furthermore, quantitative polymerase chain reaction (qPCR) could 

be used to account for the uncultivable portion of the biofilm microbial community 

(Dalwai et al. 2007). 

Microscopy is one of the most powerful tools to assess the biofilm architecture 

on material surfaces. In particular, confocal Laser Scanning Microscopy (CLSM) allows 

the representation of the 3D architecture of the biofilm, and the acquisition of 

quantitative structural parameters such as biofilm bio-volume, thickness and roughness 

(Bridier and Briandet 2014) (Figure 1).  

The amount of biomass retrieved on the surface is not the only indication of the anti-

biofilm properties of a new material. In fact, functionalized materials might act by 

destabilizing biofilm organization and its physical integrity, compromising its structure 
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rather than decreasing the biomass on a surface (Villa et al. 2015). This mode of action 

might render the biofilm more prone to detachment and/or more susceptible to 

traditional antimicrobial agents. By using micro-bead force spectroscopy, it is possible 

to quantify biofilm adhesion and viscoelasticity at the micro-meter scale (Lau et al. 

2009; Angeloni et al. 2016). Additionally, Atomic Force Microscopy was used to 

determine the adhesion forces between bacteria and goethite (Huang et al. 2015), and 

between biofilms and different plastics (vinyl chloride, silicone resin, Nylon 66, 

polycarbonate, polypropylene, polyethylene and polymethylmethacrylate) 

(Harapanahalli et al. 2015; Hirai et al. 2015).  

The susceptibility of biofilms grown on functionalized materials to traditional 

antimicrobials is an important aspect to consider. In this respect, CLSM has been shown 

to be a powerful tool to analyze antimicrobial actions by a time course (minutes-to-

hours scale) visualization of live and dead cells through the biofilm structure during a 

biocidal treatment (Rani et al. 2005; Daddi Oubekka et al. 2012; Singh et al. 2016). The 

general protocol consists in staining biofilm grown on the coupon with specific 

fluorochromes in order to detect live and dead cells (e.g. LIVE/DEAD BacLight 

bacterial viability kit) or enzymatic activities (e.g. esterase activity marker CalceinAM).  

The biofilm is then exposed to the antimicrobial treatment, and any changes over time 

in fluorescent intensity due to cell inactivation are recorded under CLSM (Figure 2 and 

Video S1).  

 

Concluding remarks 

The use of surfaces that prevent or limit microbial adhesion and biofilm 

formation by depriving microorganisms of their biofilm-specific traits, without affecting 

their existence, has been proved instrumental in combating surface-associated biofilm. 

The integration of such innovative strategies with conventional approaches also appear 

to be a good strategy as, once the biofilm is destabilized, microorganisms are more 

sensitive to biocide treatments. Now, the hard part is to translate these ideas into 

commercial reality: although the value of the previously described research is 

indisputable, it is equally true that a number of issues have yet to be solved.  In contrast 

to the currently used solvent-based approaches, the design and synthesis of such surface 

materials needs to be focused on chemical approaches based on solvent-free, non-toxic 

reactions, adhering to the principles of green chemistry (Sheldon, 2016). In addition, the 



 

18 

 

diffusion of a natural-based surface commercially requires large amounts of natural 

materials, as, unfortunately, not all compounds are suitable candidates for commercial 

total synthesis due to their structural complexity (Dias et al. 2012). Advances in chemo-

informatics have partially filled previous gaps: high throughput screening has shortened 

times whereas structure-activity studies have permitted a drastic reduction in the size 

and chirality of bioactive natural products. However, these approaches are often limited 

by the general lack of information concerning the mechanism of action, the cellular 

receptors and the active chemical scaffold of many bioactive natural products. This 

understanding is also necessary to achieve more efficient and better targeted anti-

biofilm surfaces (Chen and Qian 2017). 
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Table 

Table 1. Comparison of various anti-biofilm strategies presented in the paper. 

Anti-biofilm 

strategy 

Mechanism Advantages Disadvantages 

Surface modification 
1. Passive surfaces 

1.1 Surface chemistry 

modifications 

Anti-adhesive coatings 

to reduce the adhesion 

force between bacteria 

and the solid surface. 

- Simple and economic. - Difficulties in creating 

surface-bound thin films 

amenable to industrial 

scale processing;  

- Anti-biofilm properties 

quickly masked by 

bacteria-produced 

substances; 

- Surface erosion during 

application; 

- Less suitable for long-

term applications; 

- Less biocompatibility 

with living tissue; 

- Toxicity concerns. 

 

1.2 Surface 

topography 

modifications 

Modification of surface 

topography with micro- 

and nanoscale features 

that minimize bacterial 

attachment. 

- No recruitment of 

additional cells and 

biofilm buildup; 

- No resistance against 

nanofeatures. 

- Nano-structuring 

methods expensive and 

not available for large 

scale production; 

- Discordant results 

about the efficacy. 

 

2. Active antimicrobial surfaces 

2.1 Antimicrobial-

releasing surfaces 

Biocidal agent actively 

eluted from the surface 

by contact with an 

aqueous environment. 

- Incorporation of 

different drugs in 

separate sets of layers. 

- Not controlled elution 

of antimicrobials from 

the surface; 

- Less suitable for long-

term applications; 

- Resistance against 

antimicrobials. 

- Limited applications 

for safety reason. 

 

2.2 Antimicrobial-

responsive 

surfaces 

Antimicrobial release 

triggered by 

microorganisms when 

approaching the surface. 

- Antimicrobial activity 

only when and where 

needed; 

- Extended material life 

time by decreased 

premature depletion of 

drug reservoir; 

- Limited accumulation 

of antimicrobials in vital 

tissues. 

 

- Not controlled elution 

of antimicrobials over 

multiple cycles; 

- Non-triggered 

background leaching 

from the surface; 

-Limited effect against 

multiple microbial 

infections; 

-Altered environmental 

condition by bacteria 

affect the release of 

antimicrobials. 

- Resistance against 

antimicrobials. 

- Limited applications 

for safety reason. 
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2.3 Immobilization of 

antimicrobials 

Antimicrobials 

covalently immobilized 

on a surface. 

- No release of 

antimicrobials from the 

surface; 

-Minimized risk to 

expose bacteria to sub-

inhibitory 

concentrations; 

- Reduced likelihood of 

resistance development; 

-Long-term activity. 

 

- Efficacy only against 

specific microorganism; 

- Limited applications 

for safety reason. 

 

3. Metal-based antimicrobial materials 

3.1 Metal coatings Heavy metal with 

antimicrobial activity, 

deposited on the surface 

or incorporated into a 

polymeric material. 

-Broad spectrum of anti-

microbial activity. 

- Poor solubility of metal 

into polymeric materials; 

- Poor metal adhesion to 

the surface; 

- Lack of coating 

uniformity; 

- Resistance against 

metals. 

 

3.2 Metal-

nanoparticles 

based materials 

Metals with 

antimicrobial activity, 

grouped onto 

nanoparticles and then 

incorporated into a 

polymeric material or 

coated or immobilized 

on a surface. 

- Nanosized particles 

increase the 

antimicrobial potency 

 

- Nano-structuring 

methods expensive and 

not available for large 

scale production; 

- Safety, environmental, 

ethical, policy and 

regulatory issues; 

- Resistance against 

metals. 

 

Preventive green biocide-free surfaces 
1. Surface modification with natural anti-biofilm compounds 

1.1 Passive and active 

natural molecule-

based strategies 

Natural molecules with 

anti-biofilm activity 

coated on or 

incorporated into a 

polymeric material or 

eluted from a surface. 

-No biocidal activity; 

-No development of 

resistance; 

-Enhanced efficacy of 

cleaning and disinfection 

procedures; 

-No toxicity concerns. 

 

- Discontinuous release 

of the compounds; 

- Non-uniform molecule 

distribution within the 

material  

- Incompatible physical 

characteristics of anti-

biofilm compounds and 

most polymeric 

matrices; 

- Mechanisms of action 

poorly understood. 

 

1.2 Covalent 

immobilization of 

natural molecules 

Natural molecules with 

anti-biofilm activity 

grafted on a surface or 

covalently incorporated 

into the polymer. 

- No biocidal activity; 

- No release of 

compounds from the 

surface; 

-No development of 

resistance; 

- Long-term activity; 

-No toxicity concerns; 

-Enhanced efficacy of 

cleaning and disinfection 

procedures. 

- Knowledge of the 

molecule functional 

groups required to exert 

the anti-biofilm activity; 

- Mechanisms of action 

poorly understood. 
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Table 2. Relevant examples of polymeric surfaces modified with natural anti-biofilm compounds. 

 Coating agent Polymer Coating  

method 

Target  

microorganism 

Target 

mechanism 

Remarks Reference 

P
A

S
S

IV
E

 S
T

R
A

T
E

G
Y

 

B-type 

proanthocyanidins 

Permanox plastic 

slide 

Spin coating onto a 

Permanox slide 

Staphylococcus 

epidermidis, 

Staphylococcus 

aureus, 

Enterococcus 

faecalis 

Bacterial adhesion Treated biofilm composed by 

few cell clusters or single 

attached cells; compatibility 

with mammalian cells 

Trentin et al. 

2015 

Cinnamaldehyde, 

carvacrol 

Poly(lactic-co-

glycolic acid) 

Incorporation in the 

polymer mixture 

E. coli, S. aureus, 

Pseudomonas 

aeruginosa 

Bacterial adhesion Efficacy against E. coli and S. 

aureus biofilm 

Zodrow et 

al. 2012 

Clove essential oil; 

Eugenol 

poly(D,L-lactide-

coglycolide) 

Incorporation in the 

polymer mixture 

Escherichia coli 

O157:H7 and K-12  

Bacterial adhesion, 

Biofilm maturation 

Reduction of biofilm 

biomass, thickness, and 

substratum coverage by ≥ 

90% 

Kim et al. 

2016 

Dibromohemibasta-

din-1 

Poly(ε-caprolactone-

co-δ-valerolactone) 

Varnish applied on 

the surface 

Paracoccus sp., 

Bacillus sp., 

Pseudoalteromonas 

sp. 

Bacterial adhesion, 

Biofilm maturation 

39.6% biofilm inhibition for 

Paracoccus sp.; no effect on 

Pseudolateromonas sp.  

and Bacillus 

Le Norcy et 

al. 2017 

Dihydrooroidin PVC plastic Mixed in a generic 

marine-based paint 

and applied on the 

surface 

Halomonas pacifica Bacterial adhesion Active after 3 weeks in a 

marine environment 

Melander et 

al. 2009 

N-

vanillylnonanamide 

 Polyurethane Dissolution in the 

polymer and  

sprayed on the 

surface 

Bacillus cereus, 

Bacillus 

thuringiensis, 

Pseudomanas 

stutzeri 

Bacterial adhesion No anti-adhesion effect Villa et al. 

2009 
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Rosmarinus 

officinalis essential 

oil 

Catheter 

pieces 

Functionalization on 

magnetite 

nanoparticles 

absorbed on the 

surface 

Candida albicans, 

Candida 

tropicalis 

Fungal adhesion, 

Biofilm maturation 

Important reduction in 

adhering cells 

and biofilm development 

Chifiriuc et 

al. 2012 

A
C

T
IV

E
 S

T
R

A
T

E
G

Y
 

Salicylic acid Poly(anhydride-

esters) 

Releasing of 

salicylic acid 

through the 

hydrolytic 

degradation of the 

polymer 

P. aeruginosa Bacterial adhesion, 

quorum sensing 

47% reduction of bacterial 

adhesion after 3 h; reduction 

of biofilm formation after 3 

days; resistant to cell 

degradation when implanted 

subcutaneously for 4 weeks  

Bryers et al. 

2006 

Salicylic acid Poly 

(anhydrideesters) 

Dispersion in the 

polimer 

Salmonella  enterica 

serovar 

Typhimurium 

Biofilm maturation No anti-biofilm effect at the 

air-liquid interface, no effect 

on cells attachment 

Rosenberg et 

al. 2008 

 

Salicylic acid Poly[1,6-bis(o-

carboxyphenoxy)-

hexanoate]  

Built into the 

polymer backbone  

Salmonella  

typhimurium  

MAE52 

Bacterial adhesion, 

Biofilm maturation 

Biofilm inhibition without 

affecting cells viability 

Guinta et al. 

2009 

 

Salicylic acid Polyurethane 

acrylate 

Co-polymerization 

with an acrylate-

bearing urethane 

resins 

E. coli, P. 

aeruginosa 

Biofilm maturation Reduction of biofilm 

formation for up to 5 days 

without affecting cells 

existence 

Nowatzki et 

al. 2012 

 

Zosteric acid Polystyrene poly[3-

hydroxyalkanoate-

co-3 -

hydroxyalkenaote] 

Dispersion and 

loading in 

polystyrene 

microcapsules   

Activated sludge Bacterial adhesion Efficacy only in the first 48 h 

of biofilm formation  

Geiger et al. 

2004 

Zosteric acid Polydimethylsilox- 

ane (Sylgard® 184) 

Incorporation in the 

polymer mixture  

Microbial 

consortium isolated 

from Lake Erie, 

Pseudomonas putida 

Bacterial adhesion 70% reduction of bacterial 

attachment 

Barrios et al. 

2005 

Zosteric acid  Sylicon Sylgard® 

184; Sylicon RTV11 

Incorporation in the 

polymer mixture  

Microbial 

consortium isolated 

from Lake Erie, P. 

putida 

Bacterial adhesion 75% reduction of bacterial 

attachment on Sylgard® 184 

and of 55% on RTV11  

Newby et al. 

2006 
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C
O

V
A

L
E

N
T

 A
T

T
A

C
H

M
E

N
T

 
Furanone 

3-(10-bromohexyl)5-

dibromomethylene-

2(5 H)- 

Polystyrene; Silastic 

Tenckhoff catheters 

Co-polymerisation 

with a styrene 

polymer; plasma-1-

ethyl-3-

(dimethylaminoprop

yl) carbodiimide 

reaction 

S. epidermidis Bacterial adhesion, 

Biofilm maturation 

Biofilm inhibited up to 89%; 

effective in vivo sheep model 

up to 65 days 

Hume et al. 

2004 

p-aminocinnamic 

acid;  

p-aminosalicylic 

acid 

Low-density 

polyethylene 

Covalent grafting on 

the surface 

E. coli Bacterial adhesion, 

Biofilm maturation 

Reduction of biofilm biomass 

up to 73 %; active after 

multiple use 

Dell’Orto et 

al. 2017 

p-aminocinnamic 

acid;  

p-aminosalicylic 

acid 

Low-density 

polyethylene 

Covalent grafting on 

the surface 

E. coli Bacterial adhesion, 

Biofilm maturation, 

Antimicrobial 

susceptibility 

Decreasing of biofilm 

thickness, roughness, 

substratum coverage, cell and 

matrix polysaccharide bio- 

volumes by > 80%; no 

biocidal activity; biofilm 

more susceptible to 

ampicillin and ethanol 

Cattò et al. 

2018 

Zosteric acid Poly[3-

hydroxyalkanoate-

co-3-

hydroxyalkenoate]  

Covalent 

incorporation in the 

polymer backbone  

Activated sludge Bacterial adhesion No cell attachment  

 

Hany et al. 

2004  
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Figures 

Figure 1. 3D-reconstructed CLSM images of E. coli biofilm grown on non-

functionalized (a) and functionalized with p-aminocinnamic acid (b) low density 

polyethylene surfaces. Biofilm grown on non-functionalized surface (a) shows a 

complex heterogeneous biofilm, with multi-layers of cells (green) organized in dense 

macro-colonies inside a well-structured polysaccharide matrix (red). On the contrary, 

biofilm grown on functionalized surface (b) shows a significant decrease in thickness 

with a uniform mono-layer of cells (green) and a significant reduction of polysaccharide 

matrix (red). Scale bar = 20 µm. © Cristina Cattò. 
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Figure 2. Time lapse CLSM of ethanol action performed on E. coli biofilm grown on 

non-functionalized (a) and functionalized with p-aminosalicylic acid (b) low density 

polyethylene surfaces. The fluorescence loss from stained E. coli cells is used to 

monitor real-time loss in cell viability during the biocide action. The images show that 

ethanol treatment did not affect green fluorescence of biofilm grown on the control 

surface within the 20 min of the experiment (a). On the contrary, ethanol treatment 

significantly affected the biofilm biomass integrity of biofilm grown on the 

functionalized surface, with a complete loss in fluorescent intensity in 5 min (b). Scale 

bar = 20 µm. © Cristina Cattò. 
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Supplemental material  

Video S1. Time lapse CLSM of ethanol action performed on E. coli biofilm grown on 

low density polyethylene surface functionalized with modified cinnamic acid. The 

technique permits the direct visualization of cell inactivation patterns in biofilm 

structures during the biocide action. The method is based on the monitoring of 

fluorescence loss from stained E. coli cells, used to monitor real-time loss in cell 

viability. © Cristina Cattò. 

 

 

 

 

 

 

 

 

 

 

 


