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Abstract

In this study, we propose interactive graph cut image segmentation for fast creation of femur finite 

element (FE) models from clinical computed tomography scans for hip fracture prediction. Using 

a sample of N=48 bone scans representing normal, osteopenic and osteoporotic subjects, the 

proximal femur was segmented using manual (gold standard) and graph cut segmentation. 

Segmentations were subsequently used to generate FE models to calculate overall stiffness and 

peak force in a sideways fall simulations. Results show that, comparable FE results can be 

obtained with the graph cut method, with a reduction from 20 minutes to 2–5 minutes interaction 

time. Average differences between segmentation methods of 0.22 mm were not significantly 

correlated with differences in FE derived stiffness (R2 = 0.08, p = 0.05) and weakly correlated to 

differences in FE derived peak force (R2 = 0.16, p = 0.01). We further found that changes in 

automatically assigned boundary conditions as a consequence of small segmentation differences 

were significantly correlated with FE derived results. The proposed interactive graph cut 

segmentation software MITK-GEM is freely available online at https://simtk.org/home/mitk-gem.
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INTRODUCTION

Subject specific, image-based finite element (FE) analysis of bone has received considerable 

attention in the biomechanics literature in recent years. One clinical application of interest 

using FE models is patient-specific prediction of the risk of a hip fracture (Amin et al., 2011; 

Bessho et al., 2009; Falcinelli et al., 2014; Keyak et al., 2011; Keyak et al., 2013; 

Kopperdahl et al., 2014; Lang et al., 2012; Orwoll et al., 2009). These tools are aimed at 

mitigating the economic burden of such fractures for our healthcare systems and the 

devastating consequences of these events for the patients involved. Current clinical screening 

tools, such as DEXA or FRAX, are not sensitive enough to identify individuals at risk, even 

though they can capture population trends (Leslie and Morin, 2011). Despite the potential 

for improving hip fracture risk prediction, FE analysis has not yet been implemented into 

clinical practice mainly due to: the cost of carrying out the simulations by trained engineers 

which are not a part of the typical clinical staff; the uncertain accuracy of these methods for 

prospective fracture prediction; and the radiation from x-Ray CT scans needed to construct 

the models. Justifying the extra radiation dosage beyond the current standard of care will be 

difficult until these methods can be used reliably to identify at risk individuals.

The workflow for constructing the FE models of bones is conceptually the same from study 

to study, consisting of extracting the bone geometry of interest from the CT image data, also 

known as segmentation; generating a FE mesh; applying heterogeneous gray level based 

material properties to the finite elements; applying boundary conditions; solving the FE 

equations; and interpreting the results (Pahr and Zysset, 2009; Poelert et al., 2013; Viceconti 

et al., 2004). Programming this workflow into a robust, automatic or a semi-automatic FE 

simulation pipeline is necessary for practical clinical application, allowing researchers to 

process larger cohorts, improving the accuracy of prospective FE-based fracture risk 

prediction.

The segmentation step is a key element in the FE pipeline and is especially challenging at 

joints and in aging cohorts (Wang et al., 2006), due to low bone quality and narrow joint 

space. Bone segmentation is recognized as time-consuming and labor intensive (Poelert et 

al., 2013), due to extensive manual interaction needed to guarantee suitable geometry for FE 

model creation. Numerous approaches have been developed for segmenting bones, ranging 

from manual tracing, thresholding (with morphological operations), contour extraction, 

region growing, to active shape based (snake and level set) methods (Poelert et al., 2013; 

Wang et al., 2006). For best results, these methods are often combined into hybrid methods 

(Cheng et al., 2013; Pahr and Zysset, 2009; Wang et al., 2006) and paired with manual 

correction (Kang et al., 2003; Orwoll et al., 2009). In fact, adopting a ‘user in the loop’ 

paradigm and allowing for manual correction is currently the most straightforward approach 

to obtain suitable segmentation for FE modeling. Recently, statistical shape models 

(Fritscher et al., 2007; Kainmueller et al., 2009; Yokota et al., 2013), multi-atlas registration 

(Whitmarsh et al., 2014) and graph cut segmentation (Krcah et al., 2011) have been applied 

to segment the proximal femur from CT images with promising results. While statistical 

shape models and multi-atlas registration require a database of gold standard segmentations, 

in itself an active area of research, graph cut segmentation was shown to work without such 

prior knowledge (Krcah et al., 2011). Additionally, graph cut segmentation is well suited for 
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fast interactive segmentation (Boykov and Funka-Lea, 2006), but its merit in image-based 

FE model creation has not been assessed. More importantly, while intra- and inter-operator 

differences of manual segmentation on FE results were recently investigated (Peleg et al. 

2014), the influence of different segmentation methods on FE results has not been 

previously reported. Therefore, the current study investigated the potential of interactive 

graph cut segmentation for fast creation of FE femur models from clinical CT data and 

compares results to manual segmentation.

This study had two aims: to develop and release for use a highly automated tool for 

segmenting bone from clinical CT images, and to demonstrate its use in retrospective 

proximal femur strength prediction using a sample cohort data from the AGES-Reykjavik 

study. The outcome was compared to manual segmentation, the current gold standard.

MATERIAL AND METHODS

Image Data

Quantitative computed tomography (QCT) scans were obtained from the Age Gene/

Environment Susceptibility Reykjavik Study (AGES-Reykjavik Study) as previously 

described (Keyak et al., 2011). Briefly, subjects were scanned at the pelvis using a 4-detector 

CT system (Sensation, Siemens Medical Systems, Erlangen, Germany) with a bone mineral 

reference standard (3-sample calibration phantom, Image Analysis, Columbia, KY USA) 

containing calibration cells of 0, 75 and 150 mg/cm3 equivalent concentration of calcium 

hydroxyapatite. Scan parameters were selected (120 kVp, 140 mAs, 1-mm slice thickness, 

pitch=1) to produce images with voxel dimensions of 1mm × 1mm × 1mm and included the 

proximal femur from a point 1 cm superior to the acetabulum to a point 3–5 mm inferior to 

the lesser trochanter. For the current study using this acquisition protocol, CT scans of the 

proximal femur from 24 subjects were selected from the AGES-Reykjavik study cohort. We 

randomly selected 4 men and 4 women in each group of normal, osteopenic or osteoporotic 

based on t-scores. The t-scores were based on CT derived simulated DXA BMD of the 

femoral neck area. The t-scores and groups of normal, osteopenic and osteoporotic were 

based on the NHANES-III BMD data (Kaptoge et al., 2008; Looker et al., 1997). A total of 

48 bones (24 left and 24 right) were available for processing by one operator. Additionally, a 

subset consisting of 12 left femur bones (2 men, 2 women, from each of the 3 groups: 

normal, osteopenic and osteoporotic) was selected for a reproducibility study evaluating 

inter-operator variability with two additional operators.

Manual Image Segmentation

An interactive segmentation method, combining region growing and manual correction was 

used as the gold standard. These methods are readily available in the open source image 

analysis tool The Medical Imaging Interaction Toolkit (MITK, www.mitk.org). This 

software framework served as a basis for software development in the current project. 

Custom plugins were implemented and integrated in MITK as explained below. This new 

analysis software, referred to as MITK-GEM, was employed in the current study. The 3D 

femur image was processed from proximal to distal end in 2D axial slices. If possible, region 

growing was initialized with a seed in high-density cortical bone and enlarging the inclusion 
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criteria to obtain an initial segmentation. Missing and misidentified regions were manually 

added and removed. If region growing did not provide a satisfactory initial guess, the 

contour was drawn entirely manually. This process was repeated in every second slice and 

interpolation between these contours was employed in the remaining slices. The output of 

the segmentation was a voxel mask, defining the voxels belonging to the femur. Prior to 

constructing a FE mesh, the voxel mask was converted to a closed surface by filtering with a 

Gaussian filter (sigma = 2.0, radius = 1.5), followed by marching cubes to provide a smooth 

surface with custom plugins integrated into MITK-GEM. Overall, manual segmentation took 

on the order of 20–35 minutes per bone.

Graph Cut Image Segmentation

The proposed interactive segmentation method is based on graph cut segmentation (Boykov 

and Funka-Lea, 2006). This method classifies each voxel in an image to belong either to the 

object or the background by finding the global minimum of the following cost function:

(1)

where Rp is the regional term incorporating knowledge of individual voxels and Bp,q is the 

boundary term exploring the voxel neighborhood. The Dirac delta function δAp≠Aq ensures 

that edge weights only contribute to the sum of the boundary term if neighboring voxels are 

not assigned the same class. The parameter λ (>0) defines the relative weighting of the two 

terms. To find the minimum of the cost function, a graph containing one node for each voxel 

in the image plus two additional nodes, the source (object) and sink (background) terminal, 

was constructed. Edge weights between voxel nodes encode the boundary term (n-links), 

while edge weights between voxel nodes and the source and sink nodes encode the regional 

term (t-links). The graph cut algorithm assigns each voxel to either object or background by 

cutting appropriate n- and t-links using a max-flow/min-cut algorithm (Boykov and 

Kolmogorov, 2004).

Traditionally, the regional term is composed of statistical information (e.g. the histogram) 

providing some likelihood of a voxel belonging to object or background. In the present 

study, the region term only encodes so-called hard constraints, i.e. voxels selected by the 

user that are considered object and background. Corresponding t-links from voxel to source 

and background terminal are set to L and 0, respectively, if the voxel was identified as bone, 

and 0 and L if the voxel was identified as background (L = largest float value).

The boundary term, i.e. n-link weight, encodes the relationship between neighboring voxels. 

The term is defined using the following relationship (Boykov and Funka-Lea, 2006):

(2)
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Where σ2 is interpreted as variance in homogenous object regions. In essence, the difference 

in Hounsfield units defines the edge weight: if differences are large compared to σ2 (e.g. at 

object boundaries) the cost of cutting the edge is low, while if differences are small 

compared to σ2, then the cost is high. In the proposed method, the boundary term is 

computed for each voxel with respect to its 6 direct neighboring voxels.

Interactive graph cut segmentation was implemented in C++ using the Insight Toolkit 

(www.itk.org) and the max-flow/min-cut library (Boykov and Kolmogorov, 2004) and 

integrated as a plugin into MITK-GEM. Graph cut implementation was inspired by an open 

source contribution (Doria D., 2010).

With this software, hard constraints for object and background were obtained by manually 

drawing on a single 2D coronal slice in the center of the femur (see Figure 1). In addition to 

these hard constraints, a σ = 50 HU in the boundary term was utilized to set the n- and t-

weights in each image and obtain a 3D graph cut segmentation of the femur. If necessary, the 

resulting 3D voxel mask was manually corrected using the tools available in MITK-GEM. 

Similar to manual segmentation, the voxel mask was converted to a closed surface by 

filtering with a Gaussian filter (sigma = 2.0, radius = 1.5), followed by marching cubes with 

custom plugins available in MITK-GEM. Overall, graph cut segmentation took on the order 

of 2–5 minutes per bone.

Validation of Segmentation Methods

New graph cut segmentation and manual segmentation were analyzed in two sub-studies. In 

a full analysis study, all 48 bones were segmented with both approaches by a single operator. 

In the inter-operator reproducibility study, a subset of 12 left femur bones were segmented 

with both approaches by two additional operators (total of three operators).

In order to compare interactive graph cut segmentation to the manual gold standard, voxel 

masks were compared, and the absolute maximum difference (mm) (Hausdorff distance, 

Insight Toolkit, www.itk.org) and mean overlap (Dice coefficient, Insight Toolkit, 

www.itk.org) were computed for each sample. Additionally, differences in segmentations 

were assessed by computing the average, minimum and maximum signed surface-to-surface 

differences [mm] (Visualization Toolkit, www.vtk.org) of smoothed segmentation surfaces. 

These surface-to-surface differences from the full analysis study were subsequently 

compared to differences in FE results. In addition to comparing graph cut to manual 

segmentations, in the inter-operator reproducibility study, these metrics were calculated 

between graph cut segmentations and manual segmentations from the three operators in pair-

wise manner.

Finite Element Modelling

All segmentations of the full analysis study (N=48) were utilized for FE analysis. The 

smoothed segmentation surface (STL-file) was meshed using ICEM CFD, (v.14. ANSYS 

Inc., Canonsburg, PA, USA). The ash density (ρash) in each pixel was linked with calibrated 

bone mineral content (mgHA) using ρash = (mgHA/1000 + 0.09)/1.14 g/cm3 and related to 

apparent density (ρapp) with ρapp = ρash /0.6 (Schileo et al., 2008). Modulus of elasticity (E) 

was determined with E = 6850(ρapp)1.49 (MPa) (Morgan et al., 2003). The ultimate stress 
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was defined based on element apparent density using the equation proposed by (Carter and 

Hayes, 1977)  assuming strain rate ε̇ = 0.005/s which was the strain 

rate used in the experimental testing by (Morgan et al., 2003). The yield stress of trabecular 

bone was defined as a fraction of the ultimate stress, specifically σy = σu/1.1(Helgason et al., 

2008). Tension compression asymmetry ratio of 0.7 (Bayraktar et al., 2004) was 

implemented with a Drucker-Prager yield criterion. Strain at ultimate stress was set to 2% 

and beyond this strain the response was assumed to be perfectly plastic. Yield strain was 

defined by a 0.2% offset rule and the proportional limit defined as 80% of the yield stress. A 

sample of the stress-strain behavior in compression for the material mapping strategy is 

illustrated in Figure 2. Poisson’s ratio was assumed to be 0.3. Five hundred different 

material cards were defined for each model and the elements assigned the properties of the 

closest material card.

The boundary condition of the FE simulations were defined to replicate a sideways fall on 

the hip, which is believed to be the most relevant loading mode for low trauma hip fractures 

(Parkkari et al., 1999). The angles of impact for a sideways fall loading mode vary from 

study to study in the literature (Amin et al., 2011; Bessho et al., 2009; Falcinelli et al., 2014; 

Keyak et al., 2011; Keyak et al., 2013; Kopperdahl et al., 2014; Lang et al., 2012; Orwoll et 

al., 2009). In the present study the FE models were simply aligned in accordance with their 

scanning position with the medial-lateral x-axis of the image plane defined as the direction 

of impact. Various ways of applying boundary conditions (BCs) to the FE models in a 

sideways fall loading configuration have been used in the retrospective fracture prediction in 

the literature. (Falcinelli et al., 2014) applied concentrated BCs at single nodes at the 

femoral head and greater trochanter. In contrast, distributed support and loading BCs over an 

assumed area of contact was used in other studies (Amin et al., 2011; Bessho et al., 2009; 

Keyak et al., 2011; Keyak et al., 2013; Kopperdahl et al., 2014; Lang et al., 2012; Orwoll et 

al., 2009). In the present work we supported the greater trochanter region of the FE models 

in the drop direction and allowed free sliding in the yz-plane (Figure 2). Contact was 

assumed to be distributed over the surface nodes found within a radius of 15 mm from the 

most laterally located FE node, in accordance with previously published work (Keyak et al., 

2011; Keyak et al., 2013; Lang et al., 2012). The distal end of the models was supported in 

the z-direction and allowed to slide freely in the xy-plane in agreement with the study of 

(Amin et al., 2011). The FE models were loaded to an overall deformation of 4% nominal 

strain by displacing the surface nodes of the femoral head found within a radius of 15 mm of 

the most medially located FE node. The peak force was taken as the maximum force from 

the overall force-deformation curve of the whole bone in agreement with the work of (Amin 

et al., 2011). After segmentation and meshing, the creation of FE simulation files, 

application of boundary conditions and mapping of material properties, and launching of the 

simulations were carried in a fully automated fashion using in-house Matlab scripts (Matlab, 

Mathworks). The FE equation system was solved using ANSYS (v.15. ANSYS Inc., 

Canonsburg, PA, USA).

The principal outcome measures for the comparison of the FE results between the two 

segmentation methods were whole bone stiffness (K), calculated as the slope of the greater 

trochanter force-displacement response up to a displacement of 0.4 mm, and peak force (F), 

Pauchard et al. Page 6

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2018 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



taken as the reaction force at the greater trochanter support nodes at 4% nominal strain. In 

order to identify potential contributors to the difference in FE results between the two 

segmentation methods, simple linear regression analysis was performed. In addition to 

comparing effects of surface-to-surface differences of segmentations on FE results, the effect 

of differences in automatically determined boundary conditions on FE results was 

investigated. More precisely, the y- and z-distances (ry and rz) between the center of the 

greater trochanter support area and femoral head load application area, as determined by the 

automatic applications of the BCs, were used as independent variables and differences in 

whole bone stiffness and peak force were dependent variables in linear regression analysis. 

General linear hypothesis testing of the slope being different from unity and intercept 

different from zero, with p < 0.05 was performed on each dependent variable individually 

(R-Statistics, vers. 3.1.0, © The R Foundation for Statistical Computing).

RESULTS

Validating Segmentation Methods

When producing interactive graph cut segmentations, manual corrections were performed in 

47 out of 48 femur segmentations. Corrections were generally small in magnitude and 

predominantly at the femur head, in the proximity of the acetabulum. Median percentage of 

voxels adjusted, amounted to 0.74%, with interquartile range spanning 0.44% – 1.41%, with 

a maximum of 10.16%. Comparing all N=48 femur segmentations, absolute maximum 

difference (Hausdorff distance) between manual segmentation and interactive graph cut 

segmentation was 3.75 ± 1.26 mm (mean ± SD) with absolute minimum and maximum 

values of 2.18 mm and 9.0 mm, respectively. Mean overlap (Dice coefficient) was 0.973 

± 0.005, ranging from 0.963 to 0.981. Surface-to-surface differences between manual and 

interactive graph cut segmentations are summarized in Table 1. On average, graph cut 

segmentation produces slightly smaller geometries, as indicated by the negative average 

distance. Due to smoothing, surface-to-surface differences are slightly smaller than the 

differences of voxel masks (compare to above). Results of the inter-operator reproducibility 

segmentation study (N=12) are summarized in Table 2. Segmentation metrics for interactive 

graph cut to manual segmentation comparison were comparable (slightly superior) to results 

in the full study with small variability between operators. Pair-wise comparison of 

segmentation methods between operators indicated that Hausdorff distances were 

consistently smaller between manual segmentations. In contrast, mean surface-to-surface 

differences were consistently smaller and mean overlap (Dice) was higher between graph cut 

segmentations.

Surface-to-surface differences between segmentation methods (full study, N=48) were not 

significantly correlated with differences in FE derived results except for the average and the 

min surface-to-surface difference being weakly albeit significantly correlated with 

differences in FE derived peak force with R2 = 0.16, p = 0.01 and R2 = 0.09, p = 0.04 

respectively (see Table 3). In Figure 3, the surface-to-surface differences of two samples are 

visualized as color rendering on the graph cut surface and the corresponding histogram of 

values. Note that overall differences are small and there exist a few locations with large 

differences.
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Comparing FE Results

The regressions and correlations between FE results from manual and automatic 

segmentation methods are illustrated in Figure 4 along with corresponding Bland-Altman 

plots. The bones selected from the cohort, with the material mapping strategy and boundary 

conditions used in the present study, represent a wide range of bone quality with FE-derived 

stiffness ranging from 5041 N/mm to 17556 N/mm N and FE-derived peak force of 3796 N 

to 12636 N, which are results based on the manual segmentation FE models. The regression 

slope for stiffness (0.97) and peak force (1.00) respectively (Figures 4 (a) and 4 (b)) were 

found not to be significantly different from unity. The intercept of the regression lines for 

both stiffness and force comparison were found not to be significantly different from zero. 

The Bland-Altman plots (Figure 4 (c) and (d)) did not reveal any particular trends in the 

difference between the two segmentation methods. Average absolute difference in stiffness 

was −3.4% (max difference 26.6%) and in peak force −3.4% (max difference 18.5%).

Further analysis of the source of the difference between the FE result for the two 

segmentation methods showed that the difference in stiffness can partially be explained by 

difference in rz (R2 = 0.27), which is the distances measured in the z-directions respectively 

between the center of the femoral head load application area and the center of the greater 

trochanter support area (Figure 2 and Table 3). The difference in peak force, which on 

average is smaller than the difference in stiffness, was also significantly correlated to the 

difference in rz (R2 = 0.12). The maximum difference in stiffness and peak force was found 

for the same bone, which was also the bone with the highest difference in rz between the 

segmentation methods. Further study of the FE models for this specimen showed that a 

subtle difference in the shape of the femoral head resulting from the two segmentation 

methods had a large influence of the location of the most prominent node on FE models in 

the loading direction which again produced large difference in application of the BCs 

(Figure 5).

DISCUSSION

The aim of this study was to develop a highly automated tool for segmenting bone from 

clinical CT images, to quantify its geometric accuracy and to demonstrate its use in a 

retrospective proximal femur strength prediction using a sample cohort data from the AGES-

Reykjavik study. Since ground-truth values for segmentation and FE were not available for 

this in vivo data, comparing segmentation and FE results to manual segmentation assessed 

segmentation accuracy and viability. We found that the proposed interactive graph cut 

segmentation corresponds well to manual segmentation, based on surface-to-surface 

comparison of both methods (average surface-to-surface differences = 0.22 mm), while 

reducing the user interaction time from 20–35 min (manual) to 2–5 min (proposed). In 

addition, we found good agreement in predicted whole bone stiffness (R2 = 0.95) and peak 

force (R2 = 0.98) when comparing the two segmentation methods used to create FE models 

of the proximal human femurs based on clinical CT scans.

This study attempted to use meaningful FE results to compare the two different 

segmentation methods. The regression analysis of the FE results (Figure 4) showed no 

statistically significant differences and a high correlation was shown between the 

Pauchard et al. Page 8

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2018 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation methods on the population of bones used in the present study. However, the 

resulting internal strength and stiffness ranking of the bones was not exactly the same for 

both segmentation methods. We identified that the difference in BCs between the FE models 

was the largest contributor to the differences in FE results, but the BCs in the present study, 

which were defined based on previous work in the literature, are highly sensitive to even 

small differences in the segmentation outcome. This is because the center of the support and 

load application areas are selected automatically based on the most laterally and medially 

placed nodes in the FE models and we found that the location of these nodes could vary 

considerably for the same bone segmented with the two different methods, even though 

other metrics for comparing the methods indicated insignificant differences. One way of 

decreasing the sensitivity of the BCs to the segmentation would be to define the center of the 

support area with respect to the center of the femoral head but it is less obvious what the 

approach should be at the greater trochanter. We concluded that the outcome of the FE is 

highly sensitive to small changes in BC application, and this is important consideration for 

future studies carrying out FE fracture prediction of human femoral specimens based on 

patient data. Since small variations in BCs can influence both the magnitudes of whole bone 

stiffness and strength as well as the internal ranking of a bone population based on these 

metrics, the BCs may potentially influence fracture predictions based on strength ((Bessho et 

al., 2009; Falcinelli et al., 2014; Keyak et al., 2011; Keyak et al., 2013; Lang et al., 2012)) as 

well as fracture predictions based on load-to-strength ratios (Amin et al., 2011; Orwoll et al., 

2009).

Similar to the present study, other femur segmentation studies use manual segmentation as a 

gold standard (Ben Younes et al., 2014; Fritscher et al., 2007; Kainmueller et al., 2009; 

Krcah et al., 2011; Whitmarsh et al., 2014). These studies were based on different image 

resolutions and varying number of images analyzed. However, differences between 

segmentations here, i.e. average maximum (Hausdorff) distance 3.75 mm, mean overlap 

(Dice) 0.973 and average surface-to-surface distance of −0.22 mm, compare well to 

previously published results. Average maximum (Hausdorff) distances were reported to be 

2.98 mm (Whitmarsh et al., 2014), 5.04 mm (Krcah et al., 2011) and 10.53 mm (Ben Younes 

et al., 2014). Mean overlap ranged from 0.915 (Cheng et al., 2013), 0.988 (Whitmarsh et al., 

2014), 0.992 (Fritscher et al., 2007). Definition of average distances vary in previous studies 

and values reported range from 0.2 mm (Fritscher et al., 2007), 0.23 mm (Whitmarsh et al., 

2014), 0.97 mm (Yokota et al., 2013), 1.1 mm (Kainmueller et al., 2009), 1.22 mm (Cheng 

et al., 2013) to 1.48 mm (Ben Younes et al., 2014).

Inter-operator reproducibility performed on a sub-set of femurs revealed that maximum 

errors (Hausdorff distance) between manual segmentations were slightly smaller for all three 

operators. However, segmentation bias was removed (mean surface-to-surface difference 

smaller than 0.006 mm) and a higher mean overlap (Dice) was measured when using 

interactive graph cut segmentation. Since Hausdorff distance measures worst-case error and 

in general only a small area is affected and average measures are in favor of the new 

segmentation method, interactive graph cut segmentation can be considered the method with 

higher reproducibility. These results further indicate that the exact seeding of the foreground 

and background voxels in graph cut segmentation does not affect reproducibility. However, it 
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was found that the seeding pattern and anatomical plane are important and the pattern 

displayed in Figure 1 produces good results.

Furthermore, we have not studied effects of partial volume artifacts known to blur edges, 

affecting geometric and intensity measurements (Hangartner and Short, 2007; Treece et al., 

2010), and FE modeling results (Peleg et al., 2014). Methods to reduce partial volume 

artifacts have previously been reported, e.g. (Hangartner and Short, 2007; Peleg et al., 2014; 

Treece et al., 2010), and these methods can be applied as a post-processing step to the 

proposed interactive graph cut segmentation method. Applying partial volume artifact 

correction to segmentations renders bone surfaces and bone mineral density estimates closer 

to physical values (Hangartner and Short, 2007; Treece et al., 2010), as well as, reducing 

intra- and inter-operator differences (Peleg et al., 2014).

In summary, by using interactive graph cut image segmentation we found that it is possible 

to produce bounding surfaces and contained volumes of proximal femurs for hip fracture FE 

robustly in around 2 minutes. FE results are comparable to manual segmentation and enable 

analysis of large cohorts. The software is open-source and available online at https://

simtk.org/home/mitk-gem.
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Figure 1. 
Screenshot from graph cut segmentation tool MITK-GEM. Voxels belonging to the femur 

(red) and background (blue) are defined by the user in a single coronal slice (bottom, left). 

The resulting graph cut segmentation is visible in axial (top, left), sagittal (top, right) and 

coronal slices as red overlay. The resulting smoothed surface is visible as a 3D rendering 

(bottom, right).
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Figure 2. 
Definition of boundary conditions and coordinate system used in the FE demonstrated on a 

sample FE model from the cohort data (left). Load was applied to the femoral head by 

displacing the surface nodes found with-in a radius of 15 mm of the most medially located 

node of the femoral head, by a distance Δ which was set as 4% of H, which was the distance 

in the x-direction from the most medially located node on the femoral head and the most 

laterally located node on the greater trochanter. The dimensions ry and rz are the distance 

between these nodes in the y- and z-directions respectively. Sample of the material 

properties assigned to the FE models (right). The curves show stress-strain relationship for 

compression. A tension-compression asymmetry ratio of 0.7 was assumed.
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Figure 3. 
Surface to surface differences of a bone segmentation with small average differences (mean 

= −0.05 mm, min = −1.23 mm, max = 1.52 mm) (a) and corresponding histogram (c); large 

average differences (mean = −0.43 mm, min = −7.23 mm, max = 1.10 mm) (b) and 

corresponding histogram (d).
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Figure 4. 
Comparison between whole bone stiffness (K) in N/mm (a) and peak force (F) in N (b) with 

corresponding Bland-Altman plots in (c) and (d).
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Figure 5. 
FEMs (graph cut segmentation on the left and manual segmentation on the right) of the 

specimen that produced the largest error in stiffness and peak force comparison between the 

two segmentation methods. The black, solid circles indicate the most prominent FE nodes in 

the loading direction on the greater trochanter and the femoral head. The difference in rz 

between the models was 11.52 mm.
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Table 1

Surface-to-surface difference (N=48) between the two segmentation methods and its correlation to the 

difference in stiffness and peak force derived from the FE results. NS: not statistically significant.

Surface to surface
distance

mean ± SD (range)
(mm)

Correlation to
difference in

stiffness

Correlation to
difference in
peak force

Average difference
−0.22 ± 0.12 R2 = 0.08NS R2 = 0.16

(−0.45 to 0.00) p = 0.05 p = 0.01

Min difference
−2.80 ± 1.30 R2 = 0.04NS R2 = 0.09

(−7.23 to −1.12) p = 0.19 p = 0.04

Max difference
1.54 ± 0.54 R2 = 0.08NS R2 = 0.06NS

(0.74 to 3.33) p = 0.05 p = 0.10
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Table 2

Comparing manual and graph cut segmentations created by three individual operators (N=12).

Average mean
surface-to-surface

distance [mm]

Average
mean overlap

(Dice)

Average
Haussdorff

distance [mm]

Graph cut to manual

Op 1 −0.043 0.982 2.77

Op 2 0.179 0.974 3.64

Op 3 −0.199 0.974 3.30

Op 3 (full study) −0.219 0.973 3.75

Graph cut to graph cut

Op 1 – Op 3 −0.003 0.995 2.98

Op 1 – Op 2 0.006 0.995 3.18

Op 2 – Op 3 −0.002 0.993 3.49

Manual to manual

Op 1 – Op 3 −0.159 0.980 2.67

Op 1 – Op 2 0.233 0.975 3.03

Op 2 – Op 3 −0.378 0.969 3.09
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Table 3

Difference in center-to-center distances between the greater trochanter support area and the femoral head load 

application area and its correlation to the difference in stiffness and peak force derived from the FE results. 

NS: not statistically significant.

Difference in center-to-
center distance between

manual segmentation
and GC segmentation

(mm)

Correlation to
difference in

stiffness

Correlation to
difference in
peak force

Δry (mm)
0.06 ± 3.39 R2 = 0.04NS R2 = 0.04NS

(−9.72 to 7.20) p = 0.15 p = 0.17

Δrz (mm)
−0.94 ± 4.02 R2 = 0.27 R2 = 0.12

(−11.52 to 9.36) p < 0.001 p = 0.01
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