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Abstract

Understanding the mechanical behavior of chondrocytes as a result of cartilage tissue mechanics

has significant implications for both evaluation of mechanobiological function and to elaborate on

damage mechanisms. A common procedure for prediction of chondrocyte mechanics (and of cell

mechanics in general) relies on a computational post-processing approach where tissue level

deformations drive cell level models. Potential loss of information in this numerical coupling

approach may cause erroneous cellular scale results, particularly during multiphysics analysis of

cartilage. The goal of this study was to evaluate the capacity of 1st and 2nd order data passing to

predict chondrocyte mechanics by analyzing cartilage deformations obtained for varying

complexity of loading scenarios. A tissue scale model with a sub-region incorporating

representation of chondron size and distribution served as control. The postprocessing approach

first required solution of a homogeneous tissue level model, results of which were used to drive a

separate cell level model (same characteristics as the subregion of control model). The 1st data

passing appeared to be adequate for simplified loading of the cartilage and for a subset of cell

deformation metrics, e.g., change in aspect ratio. The 2nd order data passing scheme was more

accurate, particularly when asymmetric permeability of the tissue boundaries were considered.

Yet, the method exhibited limitations for predictions of instantaneous metrics related to the fluid

phase, e.g., mass exchange rate. Nonetheless, employing higher-order data exchange schemes may

be necessary to understand the biphasic mechanics of cells under lifelike tissue loading states for

the whole time history of the simulation.
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1. Introduction

Chondrocytes, the sole cell type found in cartilage, provide the basis for cartilage growth,

maintenance, and overall health. Chondrocyte response and activity is regulated by a

complex interaction between many factors including, genetic, environmental, and

biomechanical factors (Grodzinsky et al., 2000). Biomechanical factors include but are not

limited to tension, compression, shear, osmolarity, fluid pressure, and associated

electrokinetic effects (Alexopoulos et al., 2005; Soltz and Ateshian, 1998; Urban, 2000). To

understand the in vivo mechanical environment of chondrocytes, one must consider the

multiscale load transfer from the body, to the tissue, and then to the cell.

Development of tools for quantification of chondrocyte level mechanics, and potentially

biological response, is an area of ongoing research. Proposed methods include two

predominant areas, computational or experimental (Halloran et al., 2012). Experimental

studies have provided much of the fundamental information on cartilage biomechanics, but

cannot resolve the complete internal mechanical state of this tissue and its cells. Likewise,

there are considerable barriers to multiscale investigation of cartilage mechanics through

experimentation due to the large disparity in measurement resolution needed at difference

spatial scales and limitations to quantify different cell mechanical metrics. Consequentially,

computational investigations of cartilage and chondrocytes have become the tool of choice

for interpreting the biomechanical and biophysical basis of experimental results, and as an

independent investigative approach when experimental investigation is difficult or not

practical (Goldsmith et al., 1996; Guilak and Mow, 2000; Mow et al., 1993; Soulhat et al.,

1999).

Multiscale computational modeling and simulation approaches for quantification of

chondrocyte mechanics commonly rely on a post-processing analysis. In such a procedure,

the analysis begins with the solution of a boundary value problem at the tissue-scale. A cell

scale model, ideally representative of chondrocyte shape, size and distribution, is then

solved with tissue-scale mechanics dictating the loading and boundary conditions (Guilak

and Mow, 2000). The means to inform a cell-scale model's boundary conditions from tissue-

scale deformations usually require assumptions for mechanical coupling and may have

significant influence on simulation results, particularly when the complicated multiphysics

are considered. When only a small set of points within the cartilage are of interest, an

obvious choice is to overlay a cell scale model within a macroscopic model, and calculate

appropriate boundary conditions by interpolation from appropriate field variables in the

tissue-scale model. This approach has been useful to provide insight into mechanics of

chondrocytes through simulations conducted for several points within a cartilage model

(Guilak and Mow, 2000; Moo et al., 2012) and has also been utilized for tissue constructs

(Yan et al., 2010). However, the implementation constraints associated with this approach
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may hinder streamlined analysis. Interpolations involving a large set of macro-scale and

micro-scale nodes may increase computational cost and book-keeping efforts. Further,

implementation issues may arise when the overlay of the cell-scale model results in some of

the surface nodes being located outside the geometric boundaries of the tissue-scale model,

e.g., for the superficial zone of the cartilage.

An alternative approach for post-processing utilizes tissue-scale mechanical information at a

given point to approximate loading and boundary conditions of a cell-scale model, in the

biphasic case, the deformation gradient and fluid pressure. Adapted from computational

homogenization techniques (Kouznetsova et al., 2004), this approach streamlines large scale

analyses, e.g., many points in a tissue-scale model, as illustrated by the quantification of

elastic deformations of chondrocytes for large sections of tibial and femoral cartilage (Sibole

and Erdemir, 2012). The aforementioned interpolation technique is replaced by a Taylor-

series approximation, which only relies on the information from the finite element

containing the point of interest in the macro-scale model. A 1st order approximation is

common; it has been used to estimate chondrocyte mechanics from cartilage strains (Sibole

and Erdemir, 2012) and to explore cell mechanics in other tissues such as the meniscus

(Upton et al., 2006) and the intervertebral disk (Cao et al., 2011). However, when the

relative sizes of the cell-scale model and tissue characteristic length are comparable, higher

order approximations may be necessary to capture the nonlinearities over the cell-scale

model volume (Kouznetsova et al., 2004).

The method, by which the down-scale communication of mechanical information is

accomplished, and the resulting translation into micro-scale boundary conditions can

strongly affect performance and fidelity, depending on the nature of the higher scale

boundary value problem. This has been generally characterized for elastic materials

(Kouznetsova et al., 2004). However, to the best of the authors' knowledge, no assessment

has been made for biphasic materials, in general, or for the specific case of tissue-cellular

scale modeling in cartilage. In addition, there is a need to quantify the resulting uncertainty

in different cell metrics, which may have varying importance for the interpretation of

potential cell damage and mechanical stimuli. Therefore, the overall goal of this study is to

understand how the assumptions of multiscale data transfer during post-processing of tissue

mechanics (specifically cartilage) influence the solid and fluid mechanics of cells

(specifically chondrocytes). Provided a control case, the specific aims are to quantify the

uncertainty in predicted biphasic mechanics of cells i) for 1st and 2nd order information

passing from the tissue scale, and ii) under four different loading cases representing

increased complexity of tissue level elastic deformations and fluid boundary conditions. For

tissue mechanics in general, and for cartilage mechanics specifically, the study establishes

appropriate procedures for estimation of cell level deformations when tissue level mechanics

are known, i.e., quantified experimentally or predicted through computational modeling.

2. Methods

2.1 Models

All numerical models employed a biphasic constitutive model for the material components:

extracellular matrix (ECM), pericellular matrix (PCM), and chondrocyte (Table 1). The
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solid phase of these materials was defined as isotropic neo-Hookean. The fluid phase was

modeled with strain-independent, isotropic hydraulic permeability directly relating the fluid

pressure gradient to fluid flux via Darcy's Law (Maas et al., 2012).

2.1.1 Embedded Model—To serve as a control model for the study, a cellular-scale mesh

was embedded at the center of a larger cube of ECM (1 mm edge length) containing a total

of 152868 linear hexahedral elements (Figure 1A). Essentially, this was a tissue-scale model

of the transitional zone of cartilage with anatomically-based cellular-scale representation for

a small region at its center (Hunziker et al., 2002). Only the transitional zone was considered

in the current study, as it allowed for the gross assumption of material isotropy for the

extracellular matrix and the cartilage. The cellular-scale mesh was a cube of ECM (100 μm

edge length) that contained a geometric representation of 11 spherical chondrocytes with 10

μm diameters, each surrounded by a 2.5 μm thick PCM. Nodes on the surface of the cellular-

scale mesh were directly merged with the tissue-scale mesh, circumventing the need to

define numerical interaction constraint(s), e.g., tied surfaces or contact.

2.1.2 Autonomous Models

2.1.2.1 Tissue-scale Model: A homogeneous tissue-scale model consisted of a 1 mm edge

length cube of ECM discretized with 42875 linear hexahedral elements (Figure 1B). Lacking

the representation of the heterogeneous cellular-scale geometry, this model made the

assumption that the contribution of the chondrocytes and PCM was negligible to the tissue-

scale response. It should be noted that in the 100 μm cube with cellular representation,

94.2% of the volume was ECM. The element at the center of the mesh had an edge length of

0.2 mm. This resulted in a scale ratio between the finite element of interest in the tissue-scale

model and the size of the cellular-scale model of 2n:1 where n was the spatial dimension

considered, e.g., 8:1 for three-dimensional. Likewise, the total tissue-cell scale separation

was 10n:1. The mesh for this model was refined until the average mechanical response of

the centroid element very closely matched the average mechanical response of the micro-

scale region in the control model.

2.1.2.2 Cellular-scale Model: The mesh embedded at the center of the control model also

served as a separate cellular-scale model to be used in the post-processing coupling

approach (Figure 1C). This geometry was discretized with 97725 linear hexahedral

elements. The mesh density was based on the results of a convergence study for a single

chondrocyte model (Sibole et al., 2012).

2.2 Coupling

For simulations of chondrocyte mechanics, which utilize autonomous models at the tissue-

scale and cellular-scale, a post-processing based numerical coupling approach was adopted.

If the deformation gradient is assumed to be homogeneous across the cellular-scale volume,

the material to spatial frame mapping of surface node positions at a given time, t, is

(1)
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where x(t) are the spatial and X are the material frame position vectors and the deformation

gradient is defined as

(2)

This homogeneous mapping is equivalent to a 1st order Taylor series such that

(3)

where the 1st term, f(0,t), corresponds to rigid body motion and can be omitted. The error

associated with this approximation can be reduced by considering the 2nd order Taylor

series approximation

(4)

This allows for the representation of non-homogeneous deformations as

(5)

where the 3rd order tensor,

(6)

is the deformation Laplacian.

For a poroelastic model, one must also communicate the fluid pressure state from the tissue-

scale down to the cellular-scale. Again, this can be approximated with a 1 st order

(7)

or 2nd order

(8)

Taylor series. In Equations 7 and 8, p(0,t), accounts for the current fluid pressure acting

uniformly across the finite volume. This is analogous to rigid body motion, but in contrast,

cannot be omitted due to its contribution to the total stress state of the volume. From a

model solution at the macro-scale, in this case the tissue-scale, one can calculate F(X,t) ,

G(X,t) , p(0,t) ,  , and  at any location within each finite element using the

isoparametric shape functions and their spatial derivatives (see Appendix A). These

quantities are exact for the infinitesimal volume local to this position in the tissue-scale

model. Equations 3 and 7 can then be used to approximate the deformed surface nodal
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positions and fluid pressures on the finite volume of a micro-scale model with 1st order

Taylor series accuracy. Likewise, Equations 4 and 8 will supply 2nd order accuracy.

The material to spatial frame position mappings were applied to the cellular-scale model as

surface node displacement boundary conditions such that

(9)

where x(X,t) was determined with either 1st or 2nd order accuracy from Equations 3 or 4,

respectively, and X were the coordinates of the cellular-scale model surface nodes in the

material frame. p(X,t) from Equations 7 or 8 serves as the fluid pressure boundary condition

without any additional calculation.

2.3 Cell Level Mechanical Variables

For both the embedded model and post-processing based simulations using autonomous

models, mechanics of individual chondrocytes were characterized at each simulation time

point with the following metrics: change in chondrocyte aspect ratio, volumetric strain, the

volume-averaged effective stress, effective strain, and maximum shear strain, and the net

cellular fluid mass exchange rate. The motivation behind using these metrics was to supply a

considerably diverse array of metrics so as to create an extensive picture of the chondrocyte

mechanics. Some metrics were indicative of the solid phase response of the material, others

the fluid phase, and yet others, a combination of both solid and fluid phases. The volumes of

the finite elements comprising each chondrocyte were calculated from nodal positions at

each time point using the isoparametric formulation and Gaussian quadrature (Appendix B).

2.3.1 Change in Chondrocyte Aspect Ratio—The ellipsoid of best fit was calculated

for each chondrocyte over time by assembling the mass moment of inertia tensor for

chondrocyte element sets (Peeters et al., 2004). Assuming unit density, the mass moment of

inertia tensor, I(t), was calculated with

(10)

where Ve(t) was the volume and xe(t), ye(t), ze(t) were the components of the centroid

position vector of element e at time t.

The eigenvalues, λi(t) in descending order, of this tensor are the principal moments of

inertia. These can be used to determine the length of the axes of the ellipsoid of best fit, Li(t)

in ascending order by

(11)

These axes were used to determine major-minor radii (L3 and L1, respectively), providing

the bounds of overall chondrocyte shape, i.e., the limit case. From these, changes in

chondrocyte aspect ratios at each time point were calculated as

Sibole et al. Page 6

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(12)

2.3.2 Volumetric Strain—Volumetric strain for each chondrocyte was determined as

(13)

2.3.3 Average Effective Stress and Strain—The effective stress and strain were

calculated from the Cauchy stress and Green-Lagrange strain tensors at the 8 Gaussian

integration point for each element in chondrocyte set using

(14)

where λ1(t), λ2(t), and λ3(t) are the eigenvalues of the stress or strain tensors corresponding

to the first, second, and third principal stresses or strains at time t. These 8 values were then

averaged to get a mean element value.

The effective stresses and strains are positive semi-definite functions; therefore, averaging

over chondrocyte volume using

(15)

was valid. Here, ψe(t) is any positive semi-definite function calculated for element e, at time

t.

2.3.4 Average Maximum Shear Strain—The maximum shear strain was calculated

from the Green-Lagrange strain tensor at chondrocyte element integration points as

(16)

and averaged across each element. These were also volume-averaged with Equation 15 to

obtain the average value for each chondrocyte.

2.3.5 Mass Transport—The net mass exchange rate at solution time points, entering or

exiting the chondrocyte volume, was determined from the fluid fluxes reported at the finite

element nodes. Through application of Gauss’ Divergence Theorem to a chondrocyte

volume for fluid flux, the equality

(17)
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where q(t) and n(t) respectively represent the fluid flux and surface normals of a

chondrocyte at time t, can be obtained.

By defining surface sets for each chondrocyte, it was possible to extract fluid fluxes at nodes

on the surface of chondrocytes. Nodal fluid fluxes and local surface normals were

interpolated over the surface facets to obtain values at the integration points via the

isoparametric formulation for quadrilateral facets (Appendix C). The mass exchange rate at

time t, was obtained through calculation of the surface integral corresponding to the right-

hand side of Equation 17 using Gaussian quadrature such that

(18)

where qi(t), ni(t), and ωi(t) were the fluid flux, surface normal, and Gaussian weight at

integration point i on facet e, respectively, and ρ was the density of water (1 x 109pg/mm3).

2.4 Simulation Cases

To evaluate the performance of the post-processing approach for varying complexity of

loading and boundary conditions, four different simulation cases were considered (Figure 2).

All simulations were conducted using FEBio version 1.5.0 (Maas et al., 2012).

2.4.1 Case A—The first case consisted of confined compression stress relaxation in the z-

direction – 0.1 mm compression linearly ramped over 0.1 seconds and held constant for 99.9

seconds with free-draining of fluid on top and bottom faces. This scenario resulted in

symmetric fluid flux and displacement about the model z-midline. Simulation results were

sampled at 0.0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,

40, 45, 50, 60, 70, 80, 90, and 100 seconds.

2.4.2 Case B—This case incorporated the same conditions as Case A, except fluid could

only drain from the top face. This scenario resulted in asymmetric fluid flux and

displacement about the model z-midline.

2.4.3 Case C—Again, this case used the same conditions as Case A, except displacement

of top face was non-uniform and defined by a nonlinear mapping

(19)

where X, Y, and Z were the components of the undeformed nodal position vectors. This

scenario considered a non-uniform surface displacement with nearly symmetric fluid

behavior.

2.4.4 Case D—This case consisted of the same conditions as Case C, except fluid could

only drain from the top face. This scenario considered a non-uniform surface displacement

with asymmetric fluid behavior.
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2.5 Evaluation of Coupling Assumptions

The performance of the 1st and 2nd order post-processing approaches were evaluated for all

chondrocyte mechanical metrics using several measures comparing predictions of

autonomous models against those of the embedded control model. Some of these

calculations utilized the whole time history of cell response, while others considered only

specific time points.

2.5.1 Root-Mean-Square Differences—The root-mean-square differences between 1st

order data passing and control and between 2nd order data passing and control were

calculated throughout the whole time history with information from all cells combined:

(20)

where N is the number of time-points, C is the number of chondrocytes and λ refers to a

given chondrocyte mechanical metric. Root-mean-square differences were also normalized

by the range of the metric obtained from the control simulation, |max (λcontrol)−min

(λcontrol|.

2.5.2 Bland-Altman Limits of Agreement—The limits of agreement according to

Bland and Altman (Altman and Bland, 1983) were determined for 1st and 2nd order versus

the control for the whole simulation duration, for 11 cells on a cell-by-cell basis at each time

instant. The number of values lying outside the 95% limits of agreement were recorded for

each comparison.

2.5.3 Distribution of Chondrocyte Mechanics Metrics—Metrics to describe

chondrocyte mechanics were also extracted from two time points of loading, referred to as

“instantaneous” and “steady state”, and for the “peak” of cellular mechanical response

regardless of its occurrence through the course of loading (Figure 3). The instantaneous

response corresponded to the time instant of tissue displacement reaching its maximal value

(0.1 s), to explore the fast-loading mechanics of chondrocytes. The steady state response

corresponded to the final simulation time (100 s), to quantify the equilibrium state of the

chondrocytes. The peak values of chondrocyte mechanics can have significance for

evaluation of potential damage mechanisms or to quantify maximum mechanical stimuli

transferred to the cell. The data from 11 cells did not exhibit a normal distribution, based on

qualitative interpretation of their probability density function plots. Therefore, median

values and ranges for instantaneous, steady-state, and peak response were reported.

2.5.4 Correlation—For each simulation case, Spearman rank correlation coefficients

(Spearman, 2010) were calculated for each cellular metric at instantaneous, steady-state and

peak values between 1st order data passing and control and 2nd order data passing and

control using R (Ihaka and Gentleman, 1996). Correlation analysis relied on the

correspondence of mechanical metrics for each individual cell, in this case 11 chondrocytes.
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To compare the correlation coefficients calculated for first and second-order methods,

Fisher's Transform was used to determine a z-score and the corresponding p-value (Fisher,

1921).

3. Results

As intended, the simulations driven by each of the four boundary condition cases resulted in

markedly different mechanics at the level of the chondrocytes (Figures 4 & 5). The influence

of boundary conditions was apparent for metrics descriptive of both solid and fluid

components of poroelastic simulations. Qualitative comparison of the time evolution of

chondrocyte metrics in the control, 1st, and 2nd order simulations provided substantial

insight into the performance of the two coupling methods (Figures 4 & 5). For boundary

condition Cases B and D (asymmetric permeability conditions), qualitative differences were

more apparent between chondrocyte metrics reported by the 1 st and 2nd order simulations

with the 2nd order approach displaying better agreement with the control. Large differences

were not qualitatively observable between the two approaches for Case A and Case C

(symmetric permeability conditions).

Quantitatively, the 2nd order data passing approach followed predictions of the control more

closely, as illustrated by the RMS differences (Table 2). The overall improvement in

performance using 2nd order data passing was also apparent as the number of predictions

outside the limits of agreement were generally lower (Figure 6), particularly with increased

complexity of loading and boundary conditions. An exception to the better agreement of the

2nd order was the mass exchange rate, which showed an increased RMS difference for the

2nd order data passing for Cases C & D. Potential artifacts of utilizing 2nd order data passing

were noted, particularly when specific time points (instantaneous, steady-state, and peak) for

chondrocyte metrics were evaluated. For example, the correlation coefficients calculated for

mass exchange rate and volumetric strain at the instantaneous time point were significantly

worse for the 2nd order approximation (Table 3). The instantaneous mass exchange rate was

also the peak value for Cases C & D. The median and range of each variable at the

instantaneous, peak, and steady-state time points were reported in Appendix D.

4. Discussion

In general, the results of this study indicated that the 2nd order Taylor series approach to data

passing between scales exhibited better agreement with the control simulations than the 1st

order approach, particularly when the whole duration of a loading case is considered. The

need for a 2nd order approach, for prediction of cell deformation metrics, was more apparent

when loading and boundary conditions for the macro-scale tissue model were more

complicated, e.g., for case D (asymmetric fluid pressure and non-uniform displacement)

(Figure 2). Asymmetric fluid permeability conditions potentially induced a more non-

uniform fluid pressure gradient over the cellular region, as indicated by the non-zero fluid

pressure Laplacian. The resulting fluid flux interacted with the solid phase through drag

forces and impacted the internal displacement field of the cellular region, which already

exhibited complexities due to non-uniform boundary conditions at the tissue scale. As a

result, chondrocyte mechanics were strongly influenced. The ability of the 2nd order
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approximation to capture this nonuniformity resulted in its superior agreement with the

control model when deformation metrics were considered.

For a given study, quantification of chondrocyte mechanics at particular time points may be

more important than the entire time history of chondrocyte mechanics. For instance, peak

deformation would be applicable to a cellular damage study, instantaneous response would

be relevant for highly dynamic activities such as impacts, and steady-state response would

be relevant for cases of prolonged static loading. The relevance of these time points were

variable-specific. For example, at the first instance of full ramp displacement, chondrocytes

essentially behaved as nearly incompressible materials and thus volumetric strain and other

deformation metrics were very close to zero (Appendix D). Similarly, at steady-state, by

definition the fluid flux would be zero and thus mass exchange rate should also be zero

(Appendix D). These limiting behaviors are expected for biphasic materials (Ateshian et al.,

2007). Comparison of metrics in such cases may reflect errors largely attributable to

machine precision and round-off errors. Accordingly, correlation between 1st or 2nd order

data passing and control at these time points were not sought after (Table 3).

For specific time-points, it was interesting to note the deficiency of 2nd order data passing to

predict metrics of chondrocyte mechanics, particularly those associated with the fluid phase.

Superiority of the 2nd order approach for prediction of peak effective stress (Table 3, Cases

B & D) and maximum shear strain (Table 3, Case B) was not reflected for instantaneous

mass exchange rate and volumetric strain (Table 3, Cases C & D). At the instantaneous

time-point, the volumetric strain values were lower than other time points, e.g. median of

-0.004 (Table D.1 in Appendix D), which may have contributed to this artifact. Peak mass

exchange rate values also showed discrepancies, simply because peak and instantaneous

time points for this variable were the same. It may have been possible that the 2nd order data

passing scheme resulted in an over fitting of fluid pressure boundary conditions acquired

from the macro-scale simulations, and therefore in the application of artificially increased

and non-uniform fluid pressure boundary conditions. As a result, chondrocyte mass

exchange rates during the ramp loading phase were over predicted (Figure 7). Further, the

fluid flux field within the cell region, despite visually closer to the control case, spatially

varied in a different manner (Figure 8). This situation may have influenced one-to-one

correspondence of cellular mass exchange rates and related volumetric strains. This issue

may have also resulted in higher RMS differences in predicted mass exchange rate for the

2nd order data passing (Table 2). Yet, in view of limits of agreement over the whole

simulation time history, the 2nd order data passing was more adequate (Figure 6). Therefore,

the instantaneous time point should be considered as a special case. One may utilize

different data passing orders for fluid and solid phases, i.e., 1st for the former and 2nd order

for the latter. This may resolve the issues related to the prediction of instantaneous metrics.

Additionally, if scale separation between macro and micro scales is suspected as a source of

error, the order of data passing can be increased further.

The post-processing approach, 1st or 2nd order, should be robust against nonuniform loading

and boundary conditions, which are likely to occur during the analysis of in vivo cartilage

mechanics. The non-uniform displacement field in the cellular-scale region induced solely

by a nonlinear displacement mapping of the top face in Case C did not require 2nd order
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approximation to produce the resulting chondrocyte mechanics in the control simulation as

evidenced by the minimal differences between 1st and 2nd order. Likewise, the simplest

boundary condition, Case A, did not require 2nd order accuracy. Nonetheless, in situ

cartilage loading may not resemble such conditions (Mononen et al., 2012). The 2nd order

data passing approach, which can more robustly represent the loading and boundary

conditions at the cell-scale, may be safer to use for investigation of the functional mechanics

of chondrocytes.

The realism of the models for the representation of actual cartilage and chondrocyte

anatomy, microstructure, and constitutive properties were limited in this study. While

physiological accuracy was sacrificed, this simplification allowed for the reduction of

computational cost during the evaluation of the effect of non-uniformities in loading and

boundary conditions on post-processing based quantification of chondrocyte metrics. The

latter was indeed one goal of the study, also supporting development and cross evaluation of

1st and 2nd order data passing in post-processing based multiscale analysis. One should

consider this work as a methodology demonstration, upon which more complicated cases

can be evaluated with different model parameters and constitutive representations. The

freely available dissemination package accompanying this manuscript will aid in such an

endeavor (see Dissemination).

With regard to cartilage anatomy, although the models were morphometrically

representative of transitional zone cartilage based on histological statistics (Hunziker et al.,

2002), the cellular and pericellular geometries were idealized as spheres with no variation in

cellular diameters or pericellular thicknesses. The cellular membrane was also not

considered, and the interface between the chondrocyte and PCM was assumed to be

perfectly adhesive, as opposed to focally attached at integrin binding sites (Schwartz, 2010).

The laminar structure of cartilage (superficial, transitional, and deep zones) including its

transition to calcified bone was not considered. The constitutive models assigned to the

ECM, PCM, and chondrocytes did not incorporate strain dependent anisotropy, due to

changing alignment of the initially randomly-oriented collagen fibril network of transitional

zone cartilage (Ateshian et al., 2009), but rather assumed isotropic behavior at all strains.

Likewise, the fibrous structure of the PCM (Julkunen et al., 2009) was also not represented,

nor was any anisotropy resulting from the cellular cytoskeleton (Chen et al., 2012). The fluid

permeability was assumed to be strain-independent and isotropic, yet permeability has been

shown to decrease with increasing strain due to reduction in porosity and increase in

tortuosity (Holmes and Mow, 1990). In reality, the relative permeability between the ECM

and chondrocytes may be different than the one used in this study. i.e., with cells having a

higher permeability than ECM. This ratio was known to influence transient cell

deformations particularly when the aggregate modulus of the cell and extracellular matrix

were similar (Guilak and Mow, 2000), which was not the case in the models of this study.

Nevertheless, constitutive models incorporating some or all of these properties could be used

in a future study without additional modification to the coupling approach. So-called

triphasic modeling of the movement of charged particles within the cartilage and the

resultant osmotic effects (Lai et al., 1991; Wang et al., 2002) was not considered. Extending
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to this degree of realism would require modifications to the presented technique to account

for communication of the ion content between scales.

Increased complexity for the representation of cartilage and chondrocyte physics and

physiology will likely increase non-uniformity of field variables at a cellular region interest.

Therefore, it will challenge the performance of the data passing approach to move from the

spatial scale of cartilage to that of the chondrocytes. As it was observed for the loading and

boundary conditions (Figure 6), the performance gap between 1st and 2nd order data passing

will likely widen with more realistic representation of material properties and fiber

architecture. It is also possible that 2nd order performance may degrade, indicating a need

for even higher order approximations or even preclude the use of a post-processing

approach. The post-processing based multiscale analysis framework will allow the

exploration of full thickness cartilage, with macroscopic delineation of zones, including their

depth-dependent permeability and fiber organization. In following, different cell scale

models, representative of individual zones can be solved and chondrocyte metrics can be

calculated. Such an analysis is important to establish realism of multiscale cartilage

mechanics. Yet, it was beyond the scope of this first assessment of the data passing

approach.

Additional limitations are associated with model generation and analysis of the results. To

allow for comparison of results between simulations, results were sampled at specific time

points. Therefore, aliasing errors were likely introduced. To reduce such errors, resolution of

time sampling was higher early in the simulation, when dynamic effects would be dominant.

Relevant to time sampling, one should also note that RMS error gave a time-aggregate

measure of differences between control, 1st, and 2nd order techniques, which may be

influenced by this time sampling and may not be a good measure of agreement at specific

times. The analysis to establish limits of agreement between data passing schemes and

control may also be affected in a similar manner. For this reason, chondrocyte mechanics

were also evaluated at multiple time points, e.g., instantaneous, and steady-state, with each

offering a different scope of applicability. In terms of spatial discretization, difficulty in

hexahedral mesh generation due to the geometric complexity of the inclusion of randomly

placed chondrons imposed limitation on obtaining an optimal discretization of the cellular-

scale boundary value problem. While a mesh convergence study was conducted, there may

be additional discretization artifacts that may impact simulated chondrocyte mechanics.

Nonetheless, the effect of such errors can be assumed to be similar between control

simulations and 1st and 2nd order data passing approaches.

This study used a large set of metrics to characterize chondrocyte mechanics. These metrics

characterized overall cell deformation (aspect ratio, volumetric strain, effective strain,

maximum shear strain) but also included overall cell stress state (effective stress) and fluid

flow (mass exchange rate). The deformation metrics may provide insight into chondrocyte

damage mechanisms, and offer complimentary information to existing experimental

capabilities. Utilizing multiple metrics provides the possibility to assess chondrocyte

damage from combined deformation modes, and are also useful to characterize the various

types of mechanical stimuli acting on the cells. Metrics describing fluid flow may be

indicators of potential chemical signaling between neighboring cells. Through the
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exploration of a large set of cell variables, differences were observed between 1st and 2nd

order approximations that may have gone unnoticed if only a subset of metrics were

calculated. For example, if only changes in chondrocyte aspect ratios were considered,

differences between the 1st and 2nd order data passing schemes would have appeared small.

However, effective strain and effective stress show marked differences between the methods

(Figures 4 and 5). This serves as somewhat of a cautionary tale for data analysis of

chondrocyte mechanics in either experimental or computational realms, i.e., characterization

of mechanics requires informed use of a given metric, or studies should strive to use a

diverse array of variables when possible. Conversely, if change in aspect ratio is the only

variable of interest, a 1st order approximation scheme may be sufficient (Figures 4 & 5).

The study findings regarding the accuracy of 1st and 2nd order post-processing schemes are

applicable to other multiscale coupling approaches as well. For example, bi-directional

multiscale modeling techniques obtain a solution at higher and lower scales synchronously

with simulation progression dependent on information passing between scales at each time

step. Computational homogenization is a wide-spread example of a bi-directional technique

(Geers et al., 2010), during which the constitutive behavior at each integration point in the

higher scale problem is determined by the average stress tensor solution of a corresponding

lower scale boundary value problem, which represents the micro-scale heterogeneity. The

boundary conditions of the lower scale problems are therefore dependent on the boundary

conditions of the higher scale problem and are iteratively modified until the governing

equations of the higher scale problem are satisfied, with each modification driving a new

lower scale simulation. The order of the data-passing scheme (first or second) determines

the degree to which nonuniformity in the displacement and fluid pressure fields can be

communicated. The results for this study indicate that there may be a need to represent these

nonuniformities due to their impact on the quantification of chondrocyte mechanics.

Therefore, future implementation of computational homogenization for multiscale biphasic

cartilage problems may want to consider employing 2nd order Taylor Series accuracy.

Also regarding bi-directional multiscale analysis, in particular computational

homogenization theory, the size of the cellular-scale model needs to be verified to ensure

that it is a representative volume element (RVE) (Gitman et al., 2007) for transitional zone

cartilage. This is of particular importance, as the accuracy of data passing schemes may be

influenced by RVE size; larger RVEs may require higher order data passing (Kouznetsova et

al., 2004). Presently, a study to characterize this for any cartilage zone at any level of

constitutive complexity is generally lacking in the discipline. For multiscale biphasic

analysis, there are additional fundamental barriers to overcome the determination of an RVE

size, due to the dependence of mechanical time history on construct volume. All these issues

need to be addressed before extending the analysis of chondrocyte mechanics into a bi-

directional computational homogenization framework.

5. Conclusion

This study provided a general purpose framework for a post-processing based multiscale and

multiphysics analysis to appropriately quantify cellular deformations from tissue level

mechanical information. The sensitivity of cell level metrics to approximations in data
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passing were established along with estimates of accuracy. The study, although entirely

theoretical in design, addressed the fundamental need to verify this post-processing based

multiscale simulation approach. In the future, this evaluation pipeline can be expanded to

incorporate other geometric and material nonlinearities, as required by the specifics of the

tissue of interest. Validation approaches, e. g., comparison of predictions of cell mechanics

to recently emerging experimental data (Abusara et al., 2011) will certainly establish

increased confidence in predictions of multiscale analysis as well.

There are several advantages of the outlined post-processing approach, in addition to its

cost-effectiveness. First, tissue level mechanical field variables (to be passed to cell level

models) are only needed at a single point. Second, by increasing the order of information

passed at a a given point, i.e., with deformation and fluid pressure gradients and Laplacians,

potential non-uniformity of boundary conditions of the cell level models can be represented.

Third, the calculations of cell level metrics were automated and incorporated a wide range of

variables (not just change in cell aspect ratio), which may provide insight into cell

mechanobiology and damage. Given these advantages, previous multiscale analysis of cell

deformations for large regions of cartilage (Sibole and Erdemir, 2012) can be extended to

accommodate for the multiphysics nature of this tissue's behavior and to understand the

functional mechanical environment of chondrocytes. If tissue level information can be

obtained experimentally, e.g., as shown for meniscus (Upton et al., 2008) and for constructs

(Bell et al., 2012), the post-processing approach may serve as a general purpose tool to

associate tissue scale experimental measurements to cell mechanics. In return, understanding

multiscale interactions between functional tissue behavior, cell mechanobiology and tissue

and cell viability will be possible (Shoham and Gefen, 2012).

8. Dissemination

A download package incorporating the embedded and autonomous models, postprocessing

scripts, and simulation results is freely accessible in the ‘Downloads’ section of the project

web site https://simtk.org/home/j2c.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An embedded (control) model including a region with representation of chondrocyte

distribution and properties (A) is shown along with autonomous models: tissue level

homogeneous model of cartilage (B) and a cell-scale model, which is identical to the region

of the embedded model that has chondrocyte representation (C). Simulations using the

embedded model directly provide information on cell mechanics. When using autonomous

models, first the tissue level model is solved. Following extraction of deformation and fluid

pressure metrics (using 1st or 2nd order data passing) (C), the cell level model is solved to

obtain chondrocyte mechanics. Performance of 1st and 2nd order coupling can be evaluated

by comparing cell level metrics of autonomous simulations against those of the embedded

model.
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Figure 2.
Simulation scenarios at increasing level of complexity in loading and boundary conditions

are used to evaluate the performance of 1st and 2nd order data passing to acquire information

on chondrocyte mechanics. Case A. Uniform displacement with symmetric permeability

conditions. Case B. Uniform displacement with asymmetric permeability conditions. Case

C. Non-uniform displacement with symmetric permeability conditions. Case D. Non-

uniform displacement with asymmetric permeability conditions. Also illustrated is the time

history of the of compressive displacement (dZ). For Cases A and B this displacement time

history curve is scaled by −0.1. For Cases C & D, it is scaled by the solution of a non-

uniform displacement function imitating a curved indenter.
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Figure 3.
For each cell, metrics of mechanics were extracted for two time points representative of

“instantaneous” response (at peak loading of tissue level model) and “steady-state”

response. The maximum of each mechanical metric, denoted as “peak”, was also extracted

irrespective of its occurrence throughout the course of simulation.
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Figure 4.
The time histories of exemplar mechanical metrics for each chondrocyte during uniform

elastic loading with symmetric and asymmetric permeability conditions (Cases A & B) are

shown. Embedded model results are shown along with autonomous simulations with 1st and

2nd order data passing.
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Figure 5.
The time histories of exemplar mechanical metrics for each chondrocyte during non-uniform

elastic loading with symmetric and asymmetric permeability conditions (Cases C & D) are

shown. Embedded model results are shown along with autonomous simulations with 1st and

2nd order data passing.
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Figure 6.
The number of values lying outside the 95% Bland and Altman limits of agreement for each

chondrocyte metric, when compared to control over the full simulation time, were

normalized by the number of values in the set, n=319.
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Figure 7.
The time histories of mass exchange rate during the first second of simulation Case C

illustrate the potential over prediction of the instantaneous value of this metric when using

2nd order biphasic simulations. Nonetheless, when the remainder of the time history for this

variable and other solid mechanics metrics are also considered (Figures 4 & 5), 2nd order

data passing scheme for post-processing appears to be advantageous.
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Figure 8.
A snapshot of the biphasic response of the embedded model cellular region and that

obtained from autonomous simulations (1st and 2nd order) using the cell-scale model. Cross-

sectional distributions of effective strain are shown along with fluid flux for simulation Case

D at t = 5 s.
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Sibole et al. Page 26

Table 1

The material properties used in embedded and autonomous models for chondrocyte, pericellular matrix (PCM)

and extracellular matrix (ECM) were obtained from (Guilak and Mow, 2000), which were originally derived

from experimental studies. Note that tissue level cartilage representation is the same as cell level

representation of the extracellular matrix.

Young's Modulus (kPa) Poisson 's Ratio Permeability (mm4/N-s)

ECM 1000 0.125 0.002

PCM 43 0.125 0.002

Chondrocyte 1 0.4 0.001
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Table 2

The root-mean-square differences between autonomous model (with 1st or 2nd order data passing) and

embedded (control) model predictions of chondrocyte mechanical variables are given (see Equation 20).

Normalized root-mean-square differences are also shown in parentheses. For information on simulation

scenarios, please refer to Figure 2.

Case Data Passing Order Change in Cell
Aspect Ratio

Volumetric Strain Effective Strain Effective Stress (kPa) Maximum shear strain Mass Exchange
Rate (pg/s)

A First 7.46E-3 (0.048) 9.02E-3 (0.038) 1.68E-2 (0.064) 1.44E-5 (0.059) 9.27E-3 (0.070) 6.23E-13 (0.091)

Second 7.46E-3 (0.048) 9.02E-3 (0.038) 1.68E-2 (0.064) 1.44E-5 (0.059) 9.27E-3 (0.070) 6.23E-13 (0.091)

B First 1.33E-2 (0.083) 1.82E-2 (0.070) 2.42E-1 (0.318) 1.45E-4 (0.303) 1.29E-1 (0.319) 1.75E-12 (0.129)

Second 1.19E-2 (0.074) 1.45E-2 (0.056) 9.76E-2 (0.128) 5.52E-5 (0.115) 5.13E-2 (0.127) 1.74E-12 (0.128)

C First 1.22E-2 (0.052) 1.38E-2 (0.040) 3.04E-2 (0.079) 2.75E-5 (0.066) 1.69E-2 (0.087) 1.94E-12 (0.051)

Second 1.10E-2 (0.047) 1.79E-2 (0.053) 2.46E-2 (0.064) 2.17E-5 (0.052) 1.30E-2 (0.067) 9.75E-12 (0.255)

D First 2.07E-2 (0.083) 2.90E-2 (0.078) 4.09E-1 (0.312) 1.98E-4 (0.281) 2.14E-1 (0.311) 3.70E-12 (0.091)

Second 1.83E-2 (0.074) 2.69E-2 (0.073) 1.75E-1 (0.133) 7.82E-5 (0.111) 8.97E-2 (0.130) 9.37E-12 (0.231)
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Table 3

The Spearman rank correlation coefficients for cell level mechanical metrics calculated between embedded

model results (control) and autonomous simulation predictions (1st and 2nd order) are given. Time points

represent peak response as well as at instantaneous and steady-state loading (see Figure 3). Correlation

coefficients were omitted when the metric was near zero and bolded when there was a significant difference

(p<0.05) between 1st and 2nd order. For information on simulation scenarios, please refer to Figure 2.

Instantaneous

Case Data Passing Order Change
in Cell
Aspect

Ratio

Volumetric Strain Effective Strain Effective Stress Maximum Shear Strain Mass Exchange Rate

A First

Second

B First 0.4727

Second 0.6182

C First 0.2727 0.7727 0.3273 0.3273 0.2727 0.6727

Second 0.4455 −0.6000 0.6727 0.6636 0.7455 −0.4636

D First 0.4636 0.8545 0.5909 0.6182 0.5909 0.9273

Second 0.5545 −0.6455 0.4909 0.4818 0.5818 −0.7364

Peak

Case Data Passing Order Change
in Cell
Aspect

Ratio

Volumetric Strain Effective Strain Effective Stress Maximum Shear Strain Mass Exchange Rate

A First 0.8818 0.8636 0.9091 0.9091 0.9091 0.6182

Second 0.8818 0.8636 0.9091 0.9091 0.9091 0.6182

B First 0.0182 −0.0273 0.0000 0.0000 0.0000 −0.0727

Second 0.2000 0.3909 0.6818 0.9364 0.7545 0.9364

C First 0.7000 0.6273 0.7182 0.7182 0.7273 0.6727

Second 0.7909 0.8364 0.7455 0.8273 0.8364 −0.4636

D First 0.0182 −0.0273 0.0000 0.0000 −0.0273 0.9273

Second 0.3545 0.3818 0.2000 0.7545 0.2000 −0.7364

Steady State

Case Data Passing Order Change
in Cell
Aspect

Ratio

Volumetric Strain Effective Strain Effective Stress Maximum Shear Strain Mass Exchange Rate

A First 0.8818 0.8636 0.9091 0.9091 0.9091

Second 0.8818 0.8636 0.9091 0.9091 0.9091

B First 0.6091 0.2182 0.8091 0.7182 0.7545

Second 0.7091 0.4818 0.8545 0.7818 0.7818

C First 0.7000 0.6273 0.7182 0.7182 0.7273

Second 0.7909 0.8364 0.7455 0.8273 0.8364
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Steady State

Case Data Passing Order Change
in Cell
Aspect

Ratio

Volumetric Strain Effective Strain Effective Stress Maximum Shear Strain Mass Exchange Rate

D First 0.6636 0.5545 0.7364 0.6455 0.7364

Second 0.8273 0.7909 0.7364 0.7091 0.8273

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2014 October 01.


