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Abstract

Purpose.—The purpose of this study was to translate our in vitro therapy approach to an in vivo 
model. Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells 

glutamine-dependent. Studying lymph-node aspirates containing malignant lung tumor cells 

showed a strong correlation between glutamine consumption and glutathione (GSH) excretion. 

Subsequent experiments with A549 and H460 lung tumor cell lines provided additional evidence 

for glutamine's role in driving synthesis and excretion of GSH. Using stable-isotope-labeled 

glutamine as a tracer metabolite, we demonstrated that the glutamate group in GSH is directly 

derived from glutamine, linking glutamine utilization intimately to GSH syntheses.

Materials and Methods.—To understand the possible mechanistic link between glutamine 

consumption and GSH excretion, we studied GSH metabolism in more detail. Inhibition of 

glutaminase (GLS) with BPTES, a GLS-specific inhibitor, effectively abolished GSH synthesis 

and excretion. Since our previous work, several novel GLS inhibitors became available and we 

report herein effects of CB-839 in A427, H460 and A549 lung tumor cells and human lung tumor 

xenografts in mice.

Results.—Inhibition of GLS markedly reduced cell viability, producing ED50 values for 

inhibition of colony formation of 9, 27 and 217 nM in A427, A549 and H460, respectively. 

Inhibition of GLS is accompanied by ~30% increased response to radiation, suggesting an 

important role of glutamine-derived GSH in protecting tumor cells against radiation-induce injury. 
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In subsequent mouse xenografts, short-term CB-839 treatments reduced serum GSH by >50% and 

increased response to radiotherapy of H460-derived tumor xenografts by 30%.

Conclusion.—The results support the proposed mechanistic link between GLS activity and 

glutathione synthesis and suggest that GLS inhibitors are effective radiosensitizers.

Introduction

Lung cancer is one of the leading causes of cancer-related deaths in the US, with an 

estimated 222,500 new cases and an estimated 155,870 deaths in 2017 (American Cancer 

Society 2017; Siegel et al. 2017). Despite immense research efforts, the overall 5-year 

survival rate (all stages combined) of <17% remains poor compared with other cancers. The 

poor survival of lung cancer patients is attributed to the fact that approximately 70% of 

patients are diagnosed at an advanced stage (II,III or IV), because they do not exhibit any 

symptoms during the early stages of tumor development (Morgensztern et al. 2010; 

Devarakonda et al. 2013). For these patients, the advanced stage and presence of metastases 

precludes complete surgical resection, and treatment relies solely on thoracic radiation, 

chemotherapy, immunotherapy or a combination of them. In the past, treatment of advanced 

lung cancer followed a straightforward algorithm of platinum-based combination therapy or 

third-generation cytotoxic drugs, irrespective of histopathology subtypes (Johnson et al. 

1990; Breathnach et al. 2001; Hennessy et al. 2003).

More recently, treatment efficacies have improved due to patient pre-selection based on 

histopathology subtypes and identification of specific driver mutations (Ausborn et al. 

2012). Considering a patient’s tumor biology in therapy selection (personalized medicine) is 

transforming the diagnosis and treatment of lung cancer (Langer et al. 2010; Kim & Pandya 

2013; Saito et al. 2018). Further, metabolic deregulation is a hallmark of cancer, as tumors 

exhibit an increased demand for nutrients and macromolecules to fuel their rapid 

proliferation (Hanahan & Weinberg 2011; Hosios et al. 2016). Significant improvements in 

lung cancer treatment are being made by targeting biochemical pathways essential for tumor 

growth (Song et al. 2018). For example, studying lymph-node aspirates that contained 

malignant lung tumor cells suggested a mechanistic link between glutamine consumption 

and GSH excretion (Sappington et al. 2017). In fact, we and others demonstrated that lung 

tumors require large amounts of glutamine to drive GSH synthesis (Hensley et al. 2013; 

Sappington et al. 2016). Inhibiting glutaminase (GLS) in lung tumor cells reduced GSH 

synthesis and resulted in increased sensitivity to ionizing radiation (Sappington et al. 2016).

The first step in glutaminolysis, mediated by mitochondrial GLS, is the enzymatic 

conversion of glutamine to ammonia and glutamate (van den Heuvel et al. 2012). 

Mammalian cells contain 2 genes that encode GLS: kidney-type (GLS1) and liver-type 

(GLS2) enzymes (Xiang et al. 2015; Momcilovic et al. 2017). GLS is overexpressed in 

various human tumors and has been shown to be positively regulated by oncogenes such as 

Myc (Dang 2016). Consistent with the observed dependence of cancer cell lines on 

glutamine metabolism, pharmacological inhibition of GLS offers the potential to target 

glutamine-dependent tumors. Glutamine, the most abundant amino acid in circulation, is 

known to play an essential role in providing cancer cells with biosynthetic intermediates 
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required to support proliferation and survival. Specifically, glutaminolysis provides 

proliferating cancer cells with a source of nitrogen for amino acid and nucleotide synthesis, 

and a carbon building block to fuel the tricarboxylic acid (TCA) cycle (Mohamed et al. 

2014). GLS inhibitors such as UPGL00004 (Huang et al. 2018), 968 (Yuan et al. 2016), 

CB-839 (Gross et al. 2014a), BPTES (Sappington et al. 2016), 6-diazo-5-oxo-L-norleucine 

(Rahman et al. 1985) and ebselen (Thomas et al. 2013) effectively inhibit GLS1 and reduce 

tumor growth in vitro and in vivo, suggesting that GLS is a suitable target for cancer therapy 

(Seltzer et al. 2010; Le et al. 2012; Gross et al. 2014a; Xiang et al. 2015).

In addition to providing building blocks for cell growth, glutamine metabolism plays a 

critical role in maintaining cellular redox homeostasis, as glutamate is a precursor for GSH 

(Figure 1). GSH is the most abundant endogenous antioxidant and protects cells and tissues 

against oxidative stress such as that induced by radiation therapy. Inhibition of GLS by 

BPTES led to GSH depletion and increased response of A549 and H460 lung tumor cells to 

radiation treatment (Mukundan et al. 1999; Sappington et al. 2016). Surprising to many was 

the finding was that lung tumor cells seem to excrete micromolar amounts of GSH in 

clinical specimens (Sappington et al. 2017) and in cell culture (Sappington et al. 2016). 

Glutathione concentrations have previously been reported to be significantly higher in lung 

tumor tissues (20.8±9.4 nmol/mg protein) compared with normal lung tissue (11.6±3.0 

nmol/mg protein, P<0.05), suggesting active GSH synthesis (Blair et al. 1997).

The standard of care for lung cancer patients includes a combination of radiation therapy 

(RT) with surgery, chemotherapy or immunotherapy (Featherstone et al. 2007). Many 

approaches have been exploited to establish effective and low-toxicity radiosensitizers, 

compounds that increase the amount of cell killing in response to radiation therapy, and their 

utilization has become a highly desirable aspect in combination therapy (Dings et al. 2005; 

Amano et al. 2007; Dings et al. 2007; Koonce et al. 2015). Most radiosensitizers are small 

molecules that inhibit the repair of radiation-induced DNA damage and directly or indirectly 

increase oxidative stress or related mechanisms (Wang et al. 2018). Antioxidants such as 

GSH directly counteract these mechanisms, and GSH depletion is expected to enhance RT 

outcome (Bamatraf et al. 1998). Here we report the efficacy of CB-839 for GSH depletion 

and the subsequent increased response to radiation therapy in vitro and in vivo.

Material and Methods

Cell Culture

Tumor cell lines were from American Type Culture Collection. H460, A427 and A549 

human lung carcinoma cell lines were grown in RPMI 1640 (Corning) with 10% fetus 

bovine serum (Atlanta Biological) and 100 units/ml penicillin/streptomycin in an incubator 

with a 5% CO2 atmosphere and maintained by sub-culturing every 3-4 days.

Clonogenic Assay

Effects of CB-839 on clonogenic viability and subsequent radiation sensitivity were 

determined as described previously (Sappington et al. 2016). In brief, H460, A427 and A549 

cells (for several treatment groups) were seeded in 6-well plates containing 3 ml of standard 
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complete medium, and allowed to attach for 24 hours. For the dose response of CB-839 on 

clonogenic viability, cells were treated with various concentrations of CB-839 ranging from 

0.0001 to 100 μM in DMSO. In parallel, cells were grown in standard media or media 

containing 1% DMSO (Veh). In all treatments, DMSO concentrations was 1%. After 24 

hours, cells were placed in complete RPMI medium and allowed to form colonies for a 

minimum of 6 doubling times (~8 days).

For the radiation response experiments, cells were seeded as described above. After 24 

hours, plates were divided into treatment groups and grown in standard medium (control), 

glutamine-free medium (gln-), medium containing 1 μM CB-839 or medium containing only 

DMSO (veh). After 24 hours, cells were subsequently irradiated using a Faxitron X-ray 

Generating System (CP-160, Faxitron X-Ray Corp.). Single-doses of 4 or 8 Gray (Gy) were 

delivered at a dose rate of 1 Gy/min (150 kVp and 6.6 mA). Cells were then placed in 

complete RPMI medium and allowed to form colonies as described above.

For both experiments, the surviving colonies were stained and the colonies of >50 cells were 

counted on a stereomicroscope. Plating efficiency (PE) of cells after each treatment were 

determined and normalized to that of untreated control cells after each treatment, and the 

surviving fractions were expressed as a ratio of treated PE over untreated PE.

Metabolite quantitation by LC/MS

To confirm the effect of CB-839 on the activity of GLS, metabolites were extracted and 

analyzed as described previously by our group (Sappington et al. 2016). In brief, cells were 

cultured in 96-well plates at 3000 cells/well in 200 μl complete media with and without 

CB-839. Metabolites were extracted from 25 μl media or 25 μl mouse plasma by the 

addition of 200 μl 50% methanol/0.2% formic acid to the frozen cells in the culture flasks. 

Solvents were removed using a SpeedVac and pellets were reconstituted in 250 μl 50% 

methanol/0.2% formic acid. Proteins were precipitated by the addition of 1050 μL 

acetonitrile/0.2% formic acid, incubated on ice for 30 min and centrifuged for 10 min at 

13000 g. Supernatants were transferred to new vials, solvents were removed in a SpeedVac 

and the concentrated metabolites were stored at −80 °C until analysis. For analyses, samples 

were reconstituted with 100 μL 50% methanol/0.2% formic acid and analyzed by LC-

MS/MS (Agilent, 1290 Infinity LC coupled to an Agilent 6490 triple quadrupole mass 

analyzer). Individual metabolites were monitored with the multiple reactions monitoring 

(MRM) mode, monitoring their specific ion transitions as described previously (Sappington 

et al. 2016). Quantitation of the individual metabolites was based on external calibration 

curves that were generated with each set of samples.

Human Xenografts Model in Mouse

To demonstrate in vivo efficacy, H460-cell-derived tumors were established subcutaneously 

on the hind flank of 20 male nude mice. When tumors reached a size of >100mm3 (day 12) 

mice were divided into four groups: control, CB-839, 18 Gy radiation and CB-839 plus 18 

Gy radiation. In a follow-up experiment, H460 cell-derived tumors were established 

subcutaneously on the hind flank of 50 female nude mice. When tumors reached a size of 

>100mm3 (day 12), mice were divided into ten groups: control, CB-839, and 2, 4, 8 and 12 
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Gy radiation with and without CB-839. For both experiments, CB-839 was given as three 

oral gavages of 200mg/kg body weight, 28, 16 and 4 hours prior to blood draw from the tail 

vein and subsequent exposure to the corresponding dose of radiation. For these initial 

experiments we chose to administer CB-839 as recommended 2 × 200 mg/kg body weight 

the day before and 4 hours prior to administration of a single dose of radiation. This dosing 

regimen was chosen to increase dosage response at a time when serum CB-839 

concentration was expected to peak (Gross et al. 2014b). Serum was analyzed for reduced 

and oxidized GSH by LC-MS. Tumor sizes were measured using a metric caliper. For 

radiation treatments mice were anesthetized with 2.5% isoflurane and placed supine on a 

mouse bed. The radiation was applied using a standard x-ray beam generator and the body 

was shielded using a custom designed 1/8 inch lead shield that reduces exposure by over 

90% and the tumor-bearing hind leg was irradiated using a Faxitron cabinet x-ray system 

operating at 160kV.

Data Analysis

Longitudinal tumor-size data from each mouse were normalized to their Day-0 values. The 

resulting relative tumor volumes were log-transformed to stabilize variance and reduce right-

skewing, then analyzed via mixed-models repeated-measures ANOVA. The post hoc 
analysis consisted of pairwise comparisons among treatment groups within each time point. 

Each comparison was 2-sided and employed an unadjusted alpha=0.05 significance level in 

order not to inflate Type II error in this modestly powered study, despite the multiple 

comparisons.

Results and Discussion

Inhibition of GLS1 in H460 and A549 cells by BPTES has been shown to reduce glutamine-

dependent GSH synthesis, and the reduction in GSH led to increased response to radiation 

therapy (Sappington et al. 2016). In contrast to the first generation of GLS inhibitors which 

are glutamine analogues, screening a library of chemical compounds revealed that BPTES 

and CB-839 were effective GLS inhibitors that cause the formation of a stable but inactive 

GLS tetramer (Robinson et al. 2007). Since its discovery, many other GLS inhibitors have 

been reported and studied in combination with other drugs. To the best of our knowledge, 

the potential for synergy of a GLS inhibitor with radiation therapy in vivo remains 

unexplored. Therefore, building on our previous work with BPTES in vitro, we set out to 

determine if GLS inhibition in fact reduces GSH synthesis in vivo and subsequently 

improves response to radiation therapy.

Unfortunately, BPTES’s weak solubility of 0.144 μg/mL and subsequent poor bioavailability 

made it less favorable for in vivo studies (Shukla et al. 2012). To overcome this limitation, 

Elgogary et al. demonstrate the improved pharmacokinetics and efficacy of BPTES bound to 

nanoparticles compared with free BPTES (Elgogary et al. 2016). More recently, several 

other GLS inhibitors have been reported, demonstrating an interest in GLS inhibition as a 

cancer-drug target. The emergence of novel GLS inhibitors prompted us to investigate 

CB-839, which is currently in phase I and phase II clinical trials (NCT02071862) and 

considered the best-in-class GLS inhibitor (Katt et al. 2017; Thompson et al. 2017; 
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Momcilovic et al. 2018). CB-839 in combination with paclitaxel largely increased sensitivity 

to paclitaxel in xenograft models of triple-negative breast cancer (Gross et al. 2014a), and in 

combination with metformin against pancreatic cancer (Elgogary et al. 2016). CB-839 also 

synergized with the proteasome inhibitor carfilzomib against myeloma (Thompson et al. 

2017) and showed efficacy in combination with erlotinib on epidermal growth-factor 

receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) (Momcilovic et al. 2017).

We first established the in vitro dose response for CB-839 in lung tumor cells. The CB-839 

ED50s for inhibition of colony formation were 9.1, 27.0 and 217 nM for A427, A549 and 

H460, respectively. These ED50 compare favorably to the respective BPTES ED50 of 1,000 

and 4,200 nM against A549 and H460, thus demonstrating the markedly greater potency of 

CB-839 compared to BPTES (Sappington et al. 2016). Treating H460 cells with 1 μM 

CB-839 elicited an increased response to radiation that was essentially identical to culturing 

in glutamine-free medium (Figure 2), suggesting that CB-839 completely blocked glutamine 

utilization at that concentration. Compared to our previous studies with 10 μM BPTES, 

CB-839 was as effective at a 10-fold lower concentration. Future studies are underway with 

lower CB-839 concentrations to determine the minimum concentration needed to block 

glutamine utilization in lung tumor cells.

We then explored the efficacy of the CB-839 with and without a single dose of radiation in a 

mouse xenograft model of human lung tumors. H460 lung tumors were established on the 

hind flank of male and female nude mice and treated with CB-839, radiation, both or neither. 

In the first round of xenografts, using male mice, the radiation dose of 18 Gy was chosen 

based on common clinical practice (Nagata et al. 2011; Timmerman et al. 2018). The results 

in the male mice suggest that 18 Gy is quite sufficient and for the subsequent round of 

xerographs with female several doses of radiation, ranging from 2, 4, 8 and 12 Gy were 

studied, because the goal is to reduce radiation doses to avoid adverse side effects. In both 

male and female mice, the combination treatments reduced tumor growth by 15%–30% 

(Figure 3a & b and Supplemental Figure S1), providing strong evidence for efficacy of the 

combination therapy. The single radiation dose was administered 4 hours after the last dose 

of CB-839, the time by which CB-839 reaches peak serum concentrations as reported 

previously (Gross et al. 2014b). The CB-839 treatments produce a 50% reduction of serum 

GSH concentrations (Figure 4) confirming the predicted drug effect on GSH synthesis. The 

short-term CB-839 dosing alone does not affect tumor growth, which was expected since 

CB-839 is recommended for daily BID dosing up to 30 days.

There were several limitations in this study that should be addressed in future studies. The 

numbers of animals per group was low and a larger group sizes may allow us to observe 

statistically significant differences earlier in the growth delay assessment process. Effects of 

CB-839 on GSH concentrations in tumor and non-tumor tissues prior to radiation would also 

increase our ability to interpret our results and add depth to the understanding of 

manipulating this pathway. Third, the hypoxic status of the tumor microenvironment should 

be assessed. In addition, varied dosing regimens of CB-839 plus radiation would help to 

further elucidate the efficacy of CB-893 given before, during or after a single dose or 

multiple low dose radiation fractions. Lastly, the benefits of the combination of glutaminase 
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inhibitor with radiation should be evaluated in an orthotopic lung tumor model in an immune 

competent mouse model.

Together, the in vivo and in vitro experiments demonstrate that the metabolic pathway 

identified in lymph node aspirates of lung cancer patients is a suitable therapy target. 

Further, our data show that CB-839 dosing can be significantly reduced when given in 

combination with a single dose of radiation, a regimen that fits well with the current trend 

toward low fraction number, high dose stereotactic radiotherapy for lung cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scheme for CB-839 effect on glutamine derived GSH syntheses and excretion.
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Figure 2. 
Effect of GLS inhibition by CB-839 on colony formation (A) in H460, A427 and A549 lung 

tumor cells, (B) in response to radiation in H460 cells. Shown are mean ± SD of three 

independent experiments.
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Figure 3. 
Response of H460 xenografts in mouse to radiation with and without CB-839 treatment in 

male (A) and female (B) nude mice. Male and female mice were irradiated to 18 and 12 Gy, 

respectively. CB-839 was given by oral gavage 28, 16 and 4 hours prior to radiation at 200 

mg/kg. Shown are the mean and SD from 3 male and 5 female mice per group, respectively.
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Figure 4. 
Effect of CB-839 on total serum glutathione in male and female nude mice after 3 doses of 

oral gavage of CB-839. Shown are the mean and SD from 3 male and 5 female mice per 

group, respectively.
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