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Abstract 

Here we report the systematic study of solid-state phase transformations between 

boron polymorphs: α-B12, β-B106, γ-B28, T-B52 and amorphous boron (am-B). It is evident that 

the Ostwald rule of stages plays an important role during phase transformations not only of 

amorphous boron, but also of crystalline forms. We have observed the crystallization of 

tetragonal boron T-B52 from amorphous phase of high purity (99.99%), which, however, 

cannot be easily distinguished from B50C2 boron compound. Many factors influence the 

transformations of amorphous phase, and it is possible to observe not only well known am-

B → α-B12  and am-B → β-B106 transformations, but also am-B → T-B52, never reported so 

far. At ~14 GPa the crystallization order becomes β-B106 → α-B12 → γ-B28, while at ~11 GPa 

the intermediate crystallization of T-B52 still was observed. This unambiguously indicates that 

α-B12 is more thermodynamically stable than β-B106 at high pressures, and renders possible to 

transform, at least partially, common β-phase of high purity into α-B12 at very high pressures 

and moderate temperatures (below 1600 K), i.e. outside the domain of its stability.  
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Introduction 

High pressure (HP), although an extreme condition for a human being [1], is very 

common in nature, e.g., in the interiors of planets. With discovery of artificial diamond, this 

parameter became important not only for fundamental science, but also for industry [2,3]. It 

influences both static and dynamic properties of the matter. For example, the diamond 

structure of carbon becomes stable at high pressure, and is usually called “dense high-pressure 

phase”. At the same time, the pressure renders carbon self-diffusion slow but activates the 

systematic displacements of atoms in graphite, giving rise to martensitic mechanism [4]. The 

impact of pressure on transport properties is a promising tool to control not only the 

microstructure of materials [5], but also their composition [6]. It may be explained by the fact 

that mainly diffusional processes lead to the phase segregation to thermodynamically stable 

compounds. 

At the same time, displacive mechanisms may conserve the composition and 

metastability of the resulting phase. For example, the extreme metastability [6] of multiple 

graphite-like precursors of various compositions gives many opportunities to obtain multiple 

metastable and stable materials. It was recently illustrated by synthesis of a number of 

diamond-like phases of various elemental compositions, such as c-BCxN [7,8], BCx (up to 

x = 5) [9,10], etc. Most of them are metastable and nanostructured. 

It was just a short description of the background of the present work, on the example 

of carbon-like materials, much studied under high pressure. Boron-rich solids, including the 

known polymorphs of boron, have also interesting behavior under extreme conditions, 

although not so evident to observe as in the case of carbon-like solids [11,12].  

Being known for already two centuries, boron and its compounds still remain, 

probably, the most challenging element for fundamental and applied research in physics, 

chemistry and materials science [12,13]. Recently the high-pressure behavior of boron has 

widely attracted the attention and raised a number of high-impact results such as the high-

pressure superconductivity [14], p-T phase diagrams [15,16], unusual high-pressure 

polymorphs [15,17,18] with extreme hardness [17,19], lattice behavior [20] etc. Still the 

knowledge of intrinsic mechanism of phase transformations between boron polymorphs 

remains a challenging target from both theoretical and experimental point of view, although 

some attempts have been already made [21-23]. 

α-B12 and β-B106 crystallize in the R-3m space group (trigonal syngony, a = 4.927 Å, 

c = 12.564 Å for α-B12 [24] and a = 10.947 Å, c = 23.903 Å for β-B106 [25]). The structure of 

α-B12 is a distorted cubic face-center (cfc) packing of icosahedra (rhombohedral angle α ~ 58° 



instead of 60°, as with the ideal packing); while in the case of β-B106, it is a packing of 

B12(B5)12 groups (rhombohedral angle α ~ 65°). The principal difference between two phases 

consists in the presence of individual B atoms in the structure of β-B106, which do not make a 

part of neither icosahedra nor more complicated clusters. The partial occupancy of the 

Wickoff positions of individual atoms causes the inner disorder of the lattice and can be easily 

recognized by weak and wide overlapped Raman bands [12] even for the samples of high 

crystallinity (narrow well-defined X-ray diffraction lines of ideal dhkl position). 

Recently discovered high-pressure orthorhombic γ-B28 phase can be also considered as 

a cfc packing of icosahedra with B2 dumbbells in each octahedral cavity, forming in total 

distorted NaCl-type lattice with two differently charged cfc sublattices [15,26], giving rise to 

covalent polar (partially ionic) bonds between different atoms of boron. It crystallizes in the 

Pnnm space group [15] (a = 5.054 Å, b = 5.612 Å and c = 6.966 Å) and does not contain inner 

disorder, as shown by sharp and well-defined Raman spectrum (Fig. 1a). 

To present time, the T-B52 (or T-B50) phase was believed to be hypothetical boron 

phase, which can exists only as B50N2, B50C2 (Fig. 1b&c, open symbols) or some other 

compounds [12,27].  

Thermodynamic stability of boron polymorphs. 

For a long time the α-B12 phase was believed to be thermodynamically stable at low 

temperatures, while disordered β-B106 phase was considered as the high temperatures 

polymorph. However, detailed analysis using ab initio calculations render this simple 

interpretation somewhat ambiguous and predicts that denser α-B12 could be stable only at high 

pressures [15,28]. At ambient conditions α-B12 and β-B106 have similar static energies, but β-

B106 has lower zero-point vibrational energy making it stable at 0 K [28], while its 0-K 

configurational entropy is non-zero making it stable at low and intermediate temperatures 

(~1.65·10
-4

 eV K
-1

 per atom or 15.9 J mol
-1

 K
-1

 [29]). However, at pressures above several 

GPa, much denser α-B12 should be definitively more stable at low and even moderate 

temperatures [15]. Thus, with pressure increase, the free enthalpy of alpha phase is below the 

corresponding value for beta phase up to relatively high temperatures. This suggests the 

possibility of formation of alpha phase in parent beta boron bulk at high pressure, even in the 

p-T domains where they both become metastable.  

At pressures higher than 10 GPa the γ-B28 phase becomes stable up to at least 2200 K, 

while above this temperature T-B192 phase has been found to be stable (see [15] and 

references inside). However, the high-temperature part of the diagram remains not very clear 

to present time. 



Crystallization of amorphous boron: Ostwald rule of stages. 

Crystallization of metastable polymorphs of boron prior to stable modifications is 

known for already a long time and is typical for boron. This phenomenon is justified by the 

Ostwald rule of stages, which insists on possibility to form and isolate the phases with 

intermediate values of free Gibbs energy, before the system has passed into the 

thermodynamically stable state with the most stable crystal structure [30,31].  

Crystallization of amorphous boron in solid state by heating in an inert atmosphere (or 

in vacuum) has been much studied in the past [22,23,32]. It has been established that the 

crystallization temperature and resulting phase is a complex function not only of the short-

order structure and purity of initial amorphous phase, but also of time-temperature profile 

(heating rate, etc.).  

At ambient pressure, the crystallization of amorphous powders of pyrolytic and 

electrolytic samples of boron has been observed at the same temperature [32]. Pyrolytic 

amorphous boron crystallized as α-B12, while electrolytic boron crystallizes directly as the 

thermodynamically stable β-rhombohedral modification, β-B106 without going through the 

intermediate stage of α-B12. These distinctions in the crystallization processes are indirectly 

brought about by the different impurity contents of the initial amorphous boron. However, the 

main factor that affects the crystallization processes was suggested to be the short-range order 

of the atom arrangement in the microstructure [32,33]. The nucleation of alpha phase is 

supposed to have lower activation energy, and this is one of the reason why the slow heating 

lead to the recovery of alpha boron after experiment. As for the crystallization of amorphous 

boron, the high sensitivity of the resulting phase of crystallization to contaminations has been 

established. 

We performed the experiments with amorphous boron up to very high purity (both 

99% and 99.99%). Till now only the direct crystallizations of α-B12 and β-B106 were observed 

by DTA as a function of heating rate and origin of initial amorphous phase. Our data have 

shown that tetragonal phase crystallizes in both cases when oxygen free hydrogenated argon 

was used as atmosphere. This phase has the crystal structure of T-B52 type, never observed to 

present time in the case of pure boron (but mainly as B50C2 and B50N2 compounds). The 

lattice parameters of a synthesized phase in comparison with literature data for boron carbides 

B50Cx [34] are given in Fig. 1b&c. It is evident that the a/c ration is very different from those 

of phases obtained by CVD method. The thorough analysis of X-ray data has shown that a 

small amount of other phases (small amount of β-B106 and, most probably B6(O/N/C)x are also 

visible, see Fig. 2a). Their presence even in the sample obtained from so-called “99.99%-



purity” boron is a striking feature. This may raise some doubt on the existence of the 

corresponding polymorph of boron T-B52, and even on the possibility to use amorphous boron 

for the synthesis of phases pure of carbon/oxygen.  

The Raman spectrum of highly crystalline (according to X-ray diffraction) T-B52 

phase (bottom spectrum of Fig. 1a) show a superposition of wide weak bands and seems to 

correspond to the structure with inner disorder of atoms allover some Wyckoff positions (like 

in the case of β-B106 [25] and B50X2 phases [27]).  

Our results presented in this chapter give a strong support to the previous reports on 

the strong sensitivity of crystallization product to the purity and structure of initial am-B.  

Transformations of beta phase. 

The high-purity β-B106 melts at pressures at least up to 8 GPa [35,36], and completely 

transforms into γ-B28 phase at pressures above 10 GPa and temperatures above 1800 K [15]. 

However, our experimental study of the beginning of the β → γ phase transformation 

(~1400 K) shows that the transformation does not pass directly, and the T-B52 or α-B12 phase 

crystallize as intermediate ones. For these experiments we have used the boron nitride 

capsules, proved to be inert in relation to crystalline boron under employed p-T conditions and 

refractory to avoid the formation of liquid phase in the system at employed temperature [37-

40].  

Fig. 3a shows the X-ray diffraction patterns of the samples recovered from 1400 K 

(14.4 GPa, 10-min heating). One can see always three phases: initial β-B106 (partially 

recrystallized), intermediate α-B12 and final γ-B28. The Raman data (Fig. 3b) confirm the 

presence of three mentioned phases. At higher temperatures, α-phase completely transforms 

into γ-phase. Obviously, the subsequent crystallization of phases in the framework of Ostwald 

rule of stages occurs in the case of crystalline boron, as well as in the case of amorphous one 

(Fig. 4a&b). The experiment performed at lower pressure (11 GPa, 10-min heating) has 

shown the crystallization of T-B52 phase as intermediate one (between β-B106 and γ-B28) in the 

beginning of phase transformation (Figs. 2b&4a). Although the results at ambient pressure 

raised some doubt on the existence of T-B52, the X-ray diffraction data from the high-pressure 

sample (Fig. 1b&c) give a strong support to its existence. Anyway, this phase still remains the 

object of study. The weak and broad Raman data of this phase (bottom spectrum of Fig. 1a) is 

indicative of an inner disorder of boron atoms allover Wyckoff positions in the structure, 

similar to β-B106 and in contrast with γ-B28 and α-B12. The difference in such occupancies may 

be the reason of the difference of lattice parameters of T-B52 obtained at different pressures. 



All kinetic results obtained in the present work (Fig. 4a) indicate that curves “chemical 

potential vs pressure” at the temperatures in the vicinity of the onset of transformations for 

boron polymorphs (~1500 K) should have mutual position as presented on Fig. 4b. This 

allows us to reasonably explain the observed crystallization paths in the framework of the 

Ostwald rule of stages. The relative positions of α-, β- and γ- phases are very similar to those 

predicted by ab initio calculations [15]. However, the situation with T-B52 phase seem to be 

somewhat strange. According to our experiments on metastable crystallization, it should be 

very close to alpha phase (Fig. 4b), while ab initio calculations show that at 0 K the free 

enthalpy of T-B52 should be much higher [15]. This discrepancy could be explained by the 

non-negligible 0-K configurational entropy of this tetragonal phase (due to the partial 

occupancy of Wyckoff positions [12,27]), which strongly decreases the free enthalpy at high 

temperatures, similarly to β-phase. 

Structural features of transformation mechanism. 

To present time only the mechanism of direct phase transformation of α-B12 into β-

B106 has been studied [21]. It has been proven that the transformation is not exclusively 

limited by solid diffusion, but the displacive stages accompanied by the strain/stress and 

stacking faults accumulation along some crystallographic directions play important role. Our 

observations (Tab. 1) indicate that the residual strains in the recovered samples containing α-

B12, β-B106 and γ-B28 phases are present, although remarkably less pronounced.  

When the crystal accumulates the stacking faults of the (h0k0l0) layer (the latter 

remains practically unperturbed) in the direction gh0k0l0 (gh0k0l0  (h0k0l0)), the profiles, d-

positions and intensities of hkl reflections may change in different ways, e.g. positive or 

negative deviation of d-spacings, asymmetry, widening and/or weakening of certain 

reflections, etc. (see, for example, ref. [41] and references inside). 

The lack (or very weak intensity), asymmetry and shift of certain reflections of boron 

phases is typical for powder diffraction patterns of our recovered samples (Fig. 4a, Tab. 1). 

The accumulation of stacking faults in certain crystallographic directions has been previously 

attributed to specific displacive feature during the alpha to beta transformation [21]. 

Evidently, the reverse is true (see Tab. 1), indicative that inverse transformation (β-B106 → α-

B12) has similar features. However, the detailed study of such particularities is beyond the 

scope of this report and will be published elsewhere. 

Conclusions 



We performed the systematic study of solid-state phase transformations of boron 

polymorphs: α-B12, β-B106, γ-B28 and amorphous boron (am-B). It is evident that the Ostwald 

rule of stages plays an important role during phase transformations not only of amorphous 

boron, but also of crystalline boron. We have first observed the crystallization of tetragonal 

boron T-B52 from amorphous phase of high purity at ambient pressure and temperatures 

~1400 K. However, no data allow distinguishing it from the B50C2 boron compound. Many 

factors influence the transformations of amorphous phase, and it is possible to observe not 

only well known am-B → α-B12  and am-B → β-B106 transformations, but also am-B → T-

B52, never observed so far. While at ambient pressure the crystallization order is am-B → (α-

B12 or T-B52 →) β-B106, at high pressure it becomes β-B106 → T-B52 → γ-B28 (~11 GPa) or β-

B106 → α-B12 → γ-B28 (~14 GPa). This unambiguously indicates that α-B12 is more 

thermodynamically stable than β-B106 at high pressures, and renders possible to transform 

common β-phase of high purity into α-B12 (or T-B52) at high pressures and moderate 

temperatures (~1400 K).  

Experimental methods. 

Amorphous boron up to very high purity (both 99% and 99.99%, Alfa) and well-

crystallized β-B106 (99.999% purity, Alfa) were used as starting materials. 

To study the phase transitions of amorphous boron at ambient pressure, differential 

thermal analyses (DTA) were performed by using a Netzsch Tasc 414/3 analyser. The sample 

temperature was increased up to 1570 K at a heating rate of 2 K/min in hydrogenated argon 

atmosphere, then cooled as fast as possible (60 K/min). 

High pressure experiments were performed in the octahedral multi-anvil apparatus 

(LMV) using a Walker module [44] and following the procedure described in ref. [45]. The 

starting material was contained in a boron nitride container, which was subsequently inserted 

in a LaCrO3 cylindrical furnace before being introduced into the high-pressure cell consisting 

of a Cr-doped MgO octahedron of 14 mm edge length. The pressure medium was squeezed by 

eight cubic tungsten carbide anvils with 8 mm length truncation. For each run the pressure 

was first raised to desired pressure in 3 hours. The temperature was subsequently raised. 

Dwell temperature was reached in 8 to 9 minutes and the sample was kept at high temperature 

for 10 minutes. Temperature was monitored using a W-Re (5/26) thermocouple. Quenching 

was performed by shutting off the electrical power, resulting in quenching rate of several 

hundreds of degrees per second. The sample was then slowly decompressed, in 12 hours. 

The recovered samples were studied by X-ray diffraction. Two X’Pert PRO 

PANalytical powder X-ray diffractometers (Bragg-Brentano geometry) employing CoKα1 



CuKα1 radiation were used. The goniometer was aligned using high purity silicon 

(a = 5.431066 Å). Unit cell parameters were derived from the LeBail profile analysis 

performed using the PowderCell program. 

The homogeneity of the samples was established by micro-Raman spectroscopy 

(5 micron beam). Raman spectra were collected in the backscattering geometry using peltier-

chilled Raman spectrometer JY HR800 (the 488-nm excitation laser beam). The spectrometer 

was calibrated using the Γ25 phonon of Si (Fd-3m). 
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Tab. 1 X-ray diffraction data for the sample recovered from 14.4 GPa and 1400 K (the 

top powder diffraction pattern of Fig. 3a) 

d-Spacings of hkl reflections 

γ-B α-B β-B 

hkl dtheor dexp εd, % hkl dtheor dexp εd, % hkl dtheor dexp εd, % 

011 4.370 4.361 -0.21 111 4.188 4.177 -0.26 111 7.968 7.898 -0.88 

101 4.091 4.078 -0.32 100 4.040 4.014 -0.64 110 7.427 7.419 -0.11 

110 3.756 3.745 -0.29     1-10 5.473 5.488 0.27 

002 3.483 3.478 -0.14     1-11 4.649 4.666 0.37 

111 3.306 3.298 -0.24     210 4.511 4.504 -0.16 

        222 3.984 3.959 -0.63 

Lattice parameters 

γ-B α-B β-B 

a 5.054 5.035 -0.38 a 5.0627 5.0426 -0.40 a 10.17 10.1379 -0.32 

b 5.612 5.605 -0.13 α 58.2339 58.0465 -0.32 α 65.1196 65.6435 0.80 

c 6.966 6.96 -0.09         
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        (a)     (b)         (c) 

Fig. 1 (a) Raman spectra of α-, γ- and T-borons. (b&c) Lattice parameters of B50Cx 

phases as a function of composition. The dotted line with symbols ∆ represent the data of 

[34]. Symbols  represent the data of [27] (see also references inside). Solid line is a general 

guide for eyes. Symbols show our experimental data (● and ▼ – crystallization at ambient 

pressure, ▲ – crystallization at high pressure). 
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Fig. 2. X-ray powder diffraction pattern of samples recovered after DTA experiment at 

ambient pressure (a) and from 11 GPa and 1500 K (b). The symbols are:  - γ-B28, ▼ - T-B52. 

+ - reflections of B6(O/N/C) (?). All non-marked reflections correspond to β-B106. 
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Fig. 3. (a) X-ray powder diffraction patterns of starting β-boron sample (bottom) and 

of samples recovered from 14.4 GPa and 1400 K. The symbols are: × - reflections of β-B106 

that became visible,  - γ-B28, ▼ - α-B12. (b) Raman spectra collected in different places of β-

B106 recovered from 14.4 GPa and 1400 K.  
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Fig. 4. (a) Crystallization order of boron forms at ambient and high pressure. Solid 

lines represent the phase diagram of boron obtained by combination of ab initio calculations 

and experimental data [15]. The dashed lines show the data on the α-boron crystallization (the 

highest temperatures) from liquid solutions (□ from ref. [42], ○ from ref. [43]). (b) Schematic 

representation of the relative positions of chemical potentials of α-, β-, γ- and T-52 

polymorphs of boron at temperatures above 1000 K. 

 

 


