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ABSTRACT
The SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19).
The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to
combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify poten-
tial covalent inhibitors containing a variety of chemical warheads. The targeted Asinex Focused
Covalent (AFCL) library was screened based on different reaction types and potential covalent inhibi-
tors were identified. In addition, we screened FDA-approved protease inhibitors to find candidates to
be repurposed against SARS-CoV-2 3CLpro. A number of compounds with significant covalent docking
scores were identified. These compounds were able to establish a covalent bond (C–S) with the react-
ive thiol group of Cys145 and to form favorable interactions with residues lining the substrate-binding
site. Moreover, paritaprevir and simeprevir from FDA-approved protease inhibitors were identified as
potential inhibitors of SARS-CoV-2 3CLpro. The mechanism and dynamic stability of binding between
the identified compounds and SARS-CoV-2 3CLpro were characterized by molecular dynamics (MD)
simulations. The identified compounds are potential inhibitors worthy of further development as
COVID-19 drugs. Importantly, the identified FDA-approved anti-hepatitis-C virus (HCV) drugs paritapre-
vir and simeprevir could be ready for clinical trials to treat infected patients and help curb COVID-19.

Abbreviations: 3CLpro: 3-chymotrypsin-like cysteine protease; COVID-19: coronavirus disease 2019;
MD: molecular dynamics; MERS-CoV: Middle East respiratory syndrome coronavirus; PDB: Protein Data
Bank; RMSD: root-mean-square deviation; RMSF: root-mean-square fluctuation; SARS-CoV: severe acute
respiratory syndrome coronavirus; WHO: World Health Organization
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1. Introduction

In the last two decades, several pathogens have spilled over
and caused outbreaks. Among them, emergence and reemer-
gence of coronavirus-related epidemics have widely spread
fatal respiratory illnesses (Zhu et al., 2020). Coronaviruses are
enveloped RNA viruses that are distributed broadly among
humans, other mammals, and birds, and cause respiratory,
enteric, hepatic, and neurologic diseases (Weiss & Leibowitz,
2011). Six coronavirus strains are known to cause human dis-
eases. Four strains (229E, OC43, NL63, and HKU1) are preva-
lent and typically cause common cold symptoms in
immunocompetent individuals. The two other strains (severe

acute respiratory syndrome coronavirus, SARS-CoV, and
Middle East respiratory syndrome coronavirus, MERS-CoV) are
zoonotic in origin and have been linked to fatal illnesses (Cui
et al., 2019; Su et al., 2016). Recently, severe respiratory ill-
ness outbreak was reported. Follow-up studies found that
this illness is linked with a new highly infectious strain of
coronavirus SARS-CoV-2, and term it as coronavirus disease
2019 (COVID-19) (Wu et al., 2020; Zhou et al., 2020; Zhu
et al., 2020). COVID-19 has quickly turned into a global pan-
demic, affected millions of people, and claimed tens of thou-
sands of human lives worldwide. Currently, there is no
approved drug or vaccine to combat COVID-19 (Ahmed
et al., 2020; Tahir ul Qamar, Rehman, et al., 2020). Several
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antiviral drugs are in clinical trials (Zhu et al., 2020) and only
remdesivir appeared to be the most promising (Cao et al.,
2020) which is being tested in patients with severe disease
(Cao et al., 2020; Hillaker et al., 2020).

Later investigations have revealed that the SARS-CoV-2
belongs to the beta-corona-virus family and it is closely
related to SARS-CoV (Tahir ul Qamar, Alqahtani, et al., 2020;
Wu et al., 2020; Xu et al., 2020; Zhou et al., 2020). Similar to
other beta-corona-viruses, SARS-CoV-2 produces an 800-kDa
polypeptide upon transcription of its genome (Zhu et al.,
2020). This polypeptide is proteolytically cleaved to generate
various proteins including Spike (S) protein, envelope (E) pro-
tein, membrane (M) protein and nucleocapsid (N) protein (Xu
et al., 2020; Zhu et al., 2020). S protein is involved in virus-
cell receptor binding, while the other structural proteins E, M
and N are crucial for virion assembly (Wu et al., 2020; Zumla
et al., 2016). The proteolytic processing is mediated by
papain-like protease (PLpro) and 3-chymotrypsin-like protease
(3CLpro). 3CLpro (also termed as the main protease, Mpro)
cleaves the polyprotein at 11 distinct sites to generate many
of the non-structural proteins, including RNA-dependent RNA
polymerase (RdRp) and helicase (Hel), which are important in
viral transcription and replication (Zumla et al., 2016). Thus,
this main protease plays a critical role in transcription and
replication of the virus (Shirato et al., 2013; Zumla et al.,
2016). Structure-based activity studies and various high-
throughput studies have identified distinct inhibitors of
SARS-CoV and MERS-CoV main proteases (Anand et al., 2003;
Bacha et al., 2004; Kumar et al., 2017; Ryu et al., 2010).
Therefore, it is crucial to identify novel inhibitors of SARS-
CoV-2 main protease to control COVID-19 (Farag et al., 2020;
Haider et al., 2020; Jin et al., 2020; Wang, 2020). On the other
hand, main protease is highly conserved across coronavi-
ruses. Therefore, it is a potential target for identification of
compounds that could have broad spectrum anti-viral activ-
ity (McInnes, 2007; Mirza & Froeyen, 2020).

Covalent inhibition of therapeutic protein targets is
becoming popular. Nearly 30% of the marketed drugs in the
last two decades target enzymes by covalent binding mech-
anism (De Cesco et al., 2017; Lagoutte et al., 2017). Covalent
inhibitors form a chemical bond between an electrophilic
group of the ligand and a nucleophilic residue (e.g. Cys) on
the target protein (Mah et al., 2014). The mechanism of
action of covalent ligands is known to have two-steps. The
mechanism initiates by the formation of a non-covalent com-
plex essential to orient the electrophilic group in favor of
bond formation with the nucleophilic residue of the target
protein. The second step involves the formation of the cova-
lent bond (Mah et al., 2014; Mukherjee & Grimster, 2018).
The nature of the electrophile dictates if covalent inhibition
is reversible or irreversible. Irreversible inhibition caused by
covalent bond formation results in a remarkably different
profile as compared to the reversible counterpart (De Cesco
et al., 2017).

Cysteine moieties are present in a range of diverse pro-
teins such as proteases, oxidoreductases, and kinases and
thus, take part in a variety of functions (Go et al., 2015).
Cysteine thiol is a highly reactive moiety due to its high

electron density and polarizability and can therefore, be tar-
geted with less reactive ligands allowing to minimize poten-
tial side effects (Flanagan et al., 2014; Poole, 2015; Schultz
et al., 2006). Hence, cysteine-targeted electrophiles can be
employed to understand their effect on a wide range of pro-
teins. For example, cysteine proteases including Cathepsin B,
K, and S have been targeted by covalent inhibitors (vinyl sul-
fones, epoxides, isothiazolones, and ketoamides, as well as
other chemical groups) (Toledo Warshaviak et al., 2014).
Hepatitis C virus (HCV) protease is also targeted covalently
by the ketoamide groups of boceprevir (Rotella, 2013) and
telaprevir (Kwong et al., 2011). In this work, given the
importance of cysteine targeting covalent inhibitors, we
aimed to identify cysteine thiol targeting warheads (reactive
groups in compounds). Specifically, this study is focused on
targeting Cys145 of the catalytic dyad of SARS-CoV-2
main protease.

Traditional methods for identification of inhibitors are
expensive and time-consuming (Hou & Xu, 2004; Kolb &
Sharpless, 2003; Mirza et al., 2019; Tahir ul Qamar et al.,
2016; Wu et al., 2020; Xu, 2006). Therefore, the use of in silico
techniques for identification of potential inhibitors has
gained importance in recent years (Ece, 2020; Er et al., 2018;
Mirza & Ikram, 2016; Mirza et al., 2019; Tahir ul Qamar et al.,
2017; Tahir ul Qamar et al., 2019; Wu et al., 2020). The avail-
able small molecule databases can be utilized for structure
and ligand-based virtual screening to identify novel scaffolds
that could serve as hits or leads to be optimized for
enhanced activity (McInnes, 2007; Mumtaz et al., 2017). In
this contribution, combined virtual screening approaches
were used to identify potential covalent inhibitors of SARS-
CoV-2 Mpro from specific databases consisting of a variety of
chemical warheads. In addition, FDA approved protease
inhibitors were screened for the purpose of drug repurpos-
ing. Molecular dynamics (MD) simulations were utilized to
investigate the binding mode of the potential inhibitors at
the active site of SARS-CoV-2 main protease. The here discov-
ered virtual hits could serve as a starting point to develop
future drug candidates. Furthermore, the FDA approved pro-
tease inhibitors identified in this study warrant further
in vitro evaluations.

2. Materials and method

2.1. Sequence and structural alignment analysis

A multiple sequence and structure alignment analysis was
carried out to find out the evolutionarily conserved func-
tional residues among SARS-CoV-2, SARS-CoV and MERS-CoV
that could be further targeted for the discovery of drug hits.
Sequences and 3D structures of SARS-CoV-2 (PDB ID 6LU7)
(Jin et al., 2020), SARS-CoV (PDB ID 2A5I) (Lee et al., 2005)
and MERS-CoV (PDB ID 5WKK) (Galasiti Kankanamalage et al.,
2018) main proteases were retrieved from the Protein Data
Bank (PDB) (Berman et al., 2003). The 3CLpro sequences were
aligned using Clustal Omega (Sievers et al., 2011). To ensure
broad-spectrum relevance of these protein targets, the con-
served functional residues within their active sites were ana-
lyzed through structural alignment as well. Structural
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alignment/superposition analysis was carried out using the
Pymol Molecular Graphics System v1.3 program (Seeliger &
de Groot, 2010), while the interactive protein/ligand snap-
shots were generated with the UCSF Chimera v1.14
(Pettersen et al., 2004).

2.2. Chemical libraries preparation

Two chemical libraries were used in this study, the commer-
cially available Asinex Focused Covalent (AFCL) library that
consists of 1000 molecules (http://www.asinex.com/) and the
FDA-approved protease inhibitor library that includes in total
116 anti-viral compounds. The structures of these 116 inhibi-
tors were downloaded individually from the PubChem data-
base (https://pubchem.ncbi.nlm.nih.gov/). The AFCL database
was used to identify potential compounds bearing reactive
warheads, while the FDA-approved protease inhibitor data-
base was used to search for existing anti-viral compounds
that could be repurposed against SARS-CoV-2 main protease.

2.3. Covalent docking-based virtual screening protocol

Since the active site of SARS-CoV-2 main protease contains a
catalytic cysteine, it is possible to target it with covalently
binding compounds. For example, in the crystal structure of
SARS-CoV-2 main protease (PDB ID 6LU7), the N3 peptide (a
designed Michael acceptor inhibitor) (Yang et al., 2005) is
covalently attached to the Sc atom of C145. The Michael
addition reaction has occurred with the Cb of the N3 vinyl
group. Thus, we carried out a covalent docking protocol to
screen the AFCL library, using Schr€odinger’s Covalent
Docking (CovDock) tool (Zhu et al., 2014) as implemented in
the Maestro molecular modelling package (release 2019-4;
Schr€odinger, LLC, New York, NY, 2019). In addition to
Michael addition, we also explored the other reaction types
implemented in CovDock, such as nucleophilic addition to
double bond or triple bond.

Protein Preparation Wizard (Sastry et al., 2013) of Maestro
was used for preparing the target structure of SARS-CoV-2
main protease (PDB ID 6LU7). The missing hydrogen atoms
were added, and the hydrogen bond network was optimized
with PROPKA at pH 7.0. The protonation states of histidine
residues at the protease active site were optimized inter-
actively. The catalytic His41 and His164 were set as d-proto-
nated (HID) while His163 was set as e protonated (HIE) and
His172 as double protonated (HIP). In the active conform-
ation of the substrate-binding site, His172, rather than
His163 has been proposed to have a salt bridge interaction
with Glu166 (Tan et al., 2005), which is consistent with the
target’s active crystal conformation. The covalently bound N3
peptide inhibitor was removed from the protease active site
and its structure was remodeled to the unreacted state and
used in the validation docking employing the Michael add-
ition reaction. Moreover, all water molecules were removed,
and a restrained minimization was carried out using the
newly optimized OPLS3e force field (Roos et al., 2019) and
the convergence criteria of 0.3 Å root-mean-square deviation
(RMSD) for all heavy atoms. The AFCL library was processed

with the LigPrep tool of Maestro (release 2019-4). The miss-
ing hydrogen atoms were added and different tautomeric
states for each ligand were generated at pH of 7.0 ± 2.0 with
Epik (Shelley et al., 2007). Maximum of two alternative ster-
eoisomers per ligand were generated whilst retaining the
specified chiralities. Finally, the OPLS3e force field was used
to generate optimized low-energy 3D conformers of
the ligands.

The center of the docking site was defined at the centroid
of the catalytic Cys145 residue and the box size was set for
ligands with a length of � 20Å. For the N3 peptide re-dock-
ing, the box centroid was defined by four residues: Cys145,
His163, Pro168 and Gln189 (the grid center xyz coordinates
were either [�14.142582, 19.133875, 64.827842] or
[�13.805531, 12.077630, 68.251552], depending on in which
order the residues were picked). At first, all the library com-
pounds were docked using the Michael addition reaction
and the fast-virtual screening mode of CovDock to investi-
gate the feasibility of forming a covalent interaction with
Cys145. All compounds that successfully formed a covalent
complex with the protease (as well as the N3 peptide) were
then docked using the more thorough pose prediction
mode. The cut-off to retain poses for further refinement was
set at the docking score of 2.5 kcal/mol and maximum num-
ber of 100 poses (200 or 300 for the N3 peptide). The poses
were then ranked using the Prime (Jacobson et al., 2004)
MM-GBSA score in the OPLS3e force field. The Prime/MM-
GBSA (molecular mechanics–generalized Born surface area)
calculation employs the variable dielectric generalized Born
solvation model (VSGB 2.1) (Li et al., 2011). The MM-GBSA
binding free energy calculation does not take into account
covalent binding and thus, the CovDock tool treats the com-
pounds as non-covalent (capped) binders during the calcula-
tion. The above steps were then repeated for other reaction
types implemented in CovDock (nucleophilic addition to a
double and a triple bond, nucleophilic substitution, aryl and
nitrile activated conjugate addition to alkyne). The top-rank-
ing compounds were selected for further validation by MD
simulations.

2.4. Virtual screening of FDA-approved
protease inhibitors

Molecular (non-covalent) docking-based virtual screening
was performed to search for potential inhibitors from the
FDA-approved protease inhibitors library using AutoDock
Vina v1.1.2 (Trott & Olson, 2010) in PyRx 0.8 virtual screening
tool (Dallakyan & Olson, 2015). Initially, the compounds were
imported into the Open Babel tool (O’Boyle et al., 2011)
implemented in PyRx 0.8 for energy minimization using the
MMFF94 force field (Halgren, 1996a, 1996b). The same pro-
gram was utilized to convert the compounds from the SDF
format to the AutoDock Vina PDBQT format. The screening
was carried out against the active site of SARS-CoV-2 (PDB ID
6LU7) (Jin et al., 2020) in which the grid box was defined to
cover the catalytic dyad residues His41 and Cys145 and other
essential residues within the binding pocket. The protein was
kept rigid and multiple docking poses were generated for
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each compound. After screening, the docked poses of the
compounds were ranked on the basis of the docking score
(kcal/mol) generated by AutoDock Vina (Trott & Olson, 2010).
The top compounds with docking scores lower than
�8.0 kcal/mol were selected as hits for further analyses.

The molecular interaction of the candidate compounds
was studied by re-docking each compound individually
against the SARS-CoV-2 3CLpro structure using AutoDock
Vina v1.1.2 program (Trott & Olson, 2010). The protein struc-
ture (PDB ID 6LU7) in monomer form was prepared using
Discovery Studio Visualizer v2.5 (Biovia, 2017) by removing
the N3 peptide ligand and crystallographic water molecules.
The Gasteiger partial atomic charges were assigned and
polar hydrogen atoms were added to the protein using
AutoDockTools (Huey & Morris, 2008). The same program
was used to generate the PDBQT file of the protein. The
docking grid of size 24 Å � 22Å � 26Å (X, Y, Z) was cen-
tered using the following xyz coordinates: [�1.549, 2.454,
7.117] to cover the active site. The molecular interactions
and binding modes of the top-ranked docked poses were
visually inspected using the Discovery Studio Visualizer v2.5
and Pymol Molecular Graphics System v1.3 (Seeliger & de
Groot, 2010). In furtherance of validation of the docking
parameters, the co-crystallized inhibitor N3 was re-docked
non-covalently at same active site of SARS-CoV-2 3CLpro to
assess the ability of the AutoDock Vina docking parameters
to reproduce the bioactive conformation. The inhibitory con-
stant (pKi) was calculated based on the docking energy score
using the following Equations (22)–(24):

pKi ¼ 10½Binding energy score=1:366�

2.5. Molecular dynamics simulations

In order to investigate the binding mode of the most prom-
ising hit compounds inside the active site of SARS-CoV-2
3CLpro, molecular dynamics (MD) simulations of each com-
plex were performed for a period of 50 ns. Complex stability
and interaction profile were elucidated from the simulation
trajectories. All simulations were performed with the AMBER
18 simulation package (Case et al. 2018). The same MD simu-
lation protocol was implemented as described previously
(Ikram et al., 2019; Jabbar et al., 2018; Mirza et al., 2016), but
the length of the production run was increased to 50 ns.
Moreover, the parametrization was performed by creating a
new molecular topology file for each compound, starting
from ligand and ending in covalently bound Cys145. The
tleap program of AMBER was used to generate the topology
and coordinate files of the complexes. The Antechamber
package of AmberTools was utilized and parameters for the
ligands (using AM1–BCC charge definitions) were generated
from the AMBER force field (GAFF) (Wang et al., 2004) . The
charges of each simulation system were neutralized by add-
ing counter ions around the ligand-protease complex that
was centered in a dodecahedral TIP3P (Jorgensen et al.,
1983) water box with a 10-Å distance between the solute
and the box edge. The covalent bonds were constrained
using the SHAKE algorithm to maintain constant bond length

(Ryckaert et al., 1977). After a stepwise minimization, the sys-
tem was heated and equilibrated. Finally, a production run
of 50 ns was performed at 300 K and 1 bar pressure. The time
step was set to 2 fs and the trajectory snapshots were saved
every 2 ps and analyzed using the CPPTRAJ program (Roe &
Cheatham, 2013) of AMBER.

2.6. Mm-GBSA calculations using AMBER

The binding free energies (DGtol) of SARS-CoV-2 3CLpro com-
plexed with the most promising hit compounds were calcu-
lated using the MM-GBSA method, implemented in AMBER
18. Briefly, 5000 snapshots were generated for each system
from the last 20 ns stable trajectories with an interval of 2 ps.
The total binding free energy is calculated as a sum of the
molecular mechanics binding energy (DEMM) and solvation
free energy (DGsol) as given below:

DEgas ¼ DEint þ DEele þ DEvdw
DGsol ¼ DGp þ DGnp

DGtol ¼ DEMM þ DGsol

where, DEMM is further divided into internal energy (DEint),
electrostatic energy (DEele), and van der Waals energy
(DEvdw), and the total solvation free energy (DGsol) is contrib-
uted by the sum of polar (DGp) and non-polar (DGnp) compo-
nents. The MM-GBSA approach is well illustrated in binding
free energy calculations (Hou et al., 2011) for antiviral inhibi-
tors (Srivastava & Sastry, 2012; Tan et al., 2006).

3. Results and discussion

3.1. Structural analysis of SARS-CoV-2 main protease

The sequence alignment showed that the SARS-CoV-2 3CLpro

is 96.08% and 51.82% identical to SARS-CoV (PDB: 2A5I) and
MERS-CoV (PDB: 5WKK) main proteases, respectively (see
Figure S1, Supplementary material). The sequence alignment
also revealed that the catalytic dyad residues His41 and
Cys145 of SARS-CoV-2 main protease, are conserved among
SARS-CoV-2, SARS-CoV and MERS-CoV. Furthermore, the
structural alignment/superposition of the main proteases of
all 3 coronaviruses revealed conserved catalytic dyad resi-
dues His41 and Cys145, inlaid at the same position in the
active site with an average RMSD of 0.12 Å (Figure 1). These
findings were consistent with a recent study reported by
Martin Stoermer (Stoermer, 2020). Therefore, the covalent
docking-based virtual screening was performed against the
reactive nucleophilic Cys145 to identify compounds having
reactive electrophilic moieties, while the molecular (non-
covalent) docking-based virtual screening was performed
against the catalytic dyad residues to identify potential FDA-
approved protease inhibitors for drug repurposing.

Superimposition of several co-crystallized SARS-CoV 3CLpro

structures bound with various inhibitors (N1, PDB ID 1WOF;
I2, PDB ID 2D2D; N3, PDB ID 2AMQ; N9, PDB ID 2AMD) and
recently deposited SARS-CoV-2 3CLpro complexed with N3
(PDB ID 6LU7), revealed similar positions of subsites S1, S2,
and S4 near the catalytic dyad that are crucial for substrate
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recognition (Chang et al., 2007; Yang et al., 2005). In SARS-
CoV-2 protease, the side chains of Phe140, His163, Glu166
and His172 constitute the S1 site. The side chains of Pro52
and Tyr54, alongside the alkyl and methylene moieties of the
side chains of Asp187 and Glu47, constitute a deep hydro-
phobic S2 subsite. Met165, Leu167, Phe185 and Gln192 are
involved in forming S4 subsite.

3.2. Identification and evaluation of covalent inhibitors

3.2.1. Validation docking of the N3 peptide inhibitor
As an essential validation step before virtual screening, the
co-crystalized N3 peptide was re-docked by employing the
Michael addition reaction. All the docked poses of the N3
peptide successfully formed a covalent bond between the
Cb of the vinyl group and the thiol group of the catalytic
cysteine. The best re-docked pose of the N3 peptide (using
the first centroid xyz coordinates and maximum number of
300 refined poses, see the Methods) resembles the original
crystal pose closely. Especially the deeply buried valine side
chain and the other residues in the middle are well posi-
tioned, while the side chains at the ends of the peptide are
somewhat shifted from the original pose (see Figure 2(A)). As
a reference, the MM-GBSA score for this pose was
-79.80 kcal/mol and the covalent docking affinity score was
�9.551 kcal/mol. On the other hand, selecting only maximum
200 poses for further refinement in the docking process did
not yield as good docking poses in the end.

The second centroid coordinate option gave also reason-
ably highly scored poses (MM-GBSA energy varying between
�67 and �90 and the docking score between �7.434 and

�9.994), but none of the poses was so closely resembling
the crystal pose as the best pose from the docking run with
the slightly different centroid coordinates. Interestingly,
when we also docked the SRSSS isomer of the N3 peptide
(which is SSSSS) (Figure 2(B)), the MM-GBSA score for the
best pose (from maximum number of 200 retained poses
and from 5 final output poses) was as low as -98.97 kcal/mol
and the covalent docking affinity score was �8.361 kcal/mol.
The best pose also resembled the original crystal pose very
closely apart from the 5-methylisoxazol ring containing side
chain that had more space to move at the outer edge of the
active site (Figure S2, Supplementary material). Moreover, we
also assumed that different stereochemistry at this chiral cen-
ter (SSSSS to SRSSS) could be utilized in drug design, particu-
larly peptide inhibitor design for improved selectivity. In this
regard, N3 already showed quite a good binding affinity.
During the MD simulation, the RMSD of the N3 re-docked
pose remained comparable to that of the co-crystalized
pose. After small fluctuations, where the peptide tried to
adopt a more favorable conformation, both poses displayed
stability inside the substrate-binding pocket for the period of
the last �10 ns (Figure 2(C)). This clearly validates the cova-
lent docking procedure with regard to the true binding
mode reproducibility.

3.2.2. Covalent docking-based virtual screening
Previous studies have demonstrated Cys145 a key residue in
the active site of SARS-CoV 3CLpro, which makes it an import-
ant target for covalent inhibitors (Pillaiyar et al., 2016;
Pillaiyar et al., 2020; Tang et al., 2020). The virtual screening
process includes two steps: (i) the selection of the candidate

Figure 1. (A) Ribbon representation of the superimposed SARS-CoV-2 3CLpro (red) (PDB ID 6LU7) bound to inhibitor N3 (cyan sticks), SARS-CoV 3CLpro (yellow)
bound to an aza-peptide epoxide inhibitor (green sticks) (PDB: 2A5I) and MERS-CoV 3CLpro (blue) bound to GC813 (magenta). (B) Zoom-in to the main protease
active site. The catalytic dyad His41, Cys145 within SARS-CoV-2, SARS-CoV and MERS-CoV main proteases is shown in red, yellow, and blue sticks, respectively.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 5



ligand with an appropriate pose with its reactive group in
close proximity to Cys145; (ii) and a virtual chemical reaction
between the reactive groups, leading to the formation of a
stable covalent bond (Pillaiyar et al., 2020; Tang et al., 2020).
Ligand poses within the distance cut-offs (reacting pair of
atoms within 5 Å) are kept, and a covalent bond (S–C) is
formed according to the reaction type. For the identification
of potential covalent inhibitors from the AFCL library con-
taining a variety of chemical warheads, six possible covalent
binding reactions were used: Michael addition, nucleophilic
addition to a double and a triple bond, nucleophilic substitu-
tion, and aryl and nitrile activated conjugate addition to
alkyne. As an integral part of the covalent docking protocol,
the free energies of binding were calculated with the Prime/
MM-GBSA method for all the docked poses as described in
the Methods. The compounds having the lowest Prime/MM-
GBSA and/or CovDock scores were considered for further
molecular inspection; thus, 19 compounds from the results
of the Michael addition screening, together with 23 and 2
compounds from two other reaction types: nucleophilic add-
ition to double bond and nitrile activated conjugate addition
to alkyne respectively (details in SI, Figures S3–S7). After
careful inspection of the structures and poses of these com-
pounds, only the best 3 inhibitor candidates, compounds
(cmp) 51, 78, and 223 (one from each reaction type, ranking
according to the CovDock score) were selected for a detailed
interaction analysis and MD simulations to analyze the bind-
ing mode and the stability of the interactions inside the
enzyme active site.

3.2.3. Molecular insights of identified potential cova-
lent inhibitors

The docking complexes of the three candidate inhibitors
were investigated for the molecular interactions governed by
the covalent bond formation. The structures of the candidate

inhibitors, their molecular interactions within the substrate-
binding pocket and the corresponding reaction sites
between the chemical warheads of the candidates and the
catalytic Cys145 are displayed in Figure 3. Cmp 223 formed
a covalent bond between the electrophilic b-C atom of pyr-
rolidine moiety with the reactive nucleophilic thiol group of
Cys145 (1.83 Å C-S distance), and the oxygen atom of its ter-
minal furan ring established a H-bond with the side chain
nitrogen atom (NE) of His163 (2.47 Å) located at S1 subsite.
At S1 subsite, the furan moiety also had van der Waals (vdW)
interactions with Glu166 and Phe140, while the other hydro-
phobic contacts include Met165 and His41 at S4 subsite.

Cmp 78 was ranked the best compound from the
‘nucleophilic addition to double bond’ screen according to
the CovDock score and established a covalent bond between
the b-C to the indoline moiety and the thiol group of Cys145
(1.82 Å, C-S). It also formed a H-bond between the carbonyl
carbon of indoline and His163 (2.65 Å) of S1 subsite. The
structural analysis revealed that the indoline moiety of 78
formed hydrophobic interactions with the S1 residues and its
terminal benzene extended in the direction of the S2 subsite,
where it formed p-p stacking interaction with the catalytic
His41. Cmp 51 was identified as a potential covalent inhibi-
tor from the third reaction type, nitrile activated conjugate
addition to alkyne (also among the best in the Michael add-
ition screen, according to the CovDock score). Cmp 51 estab-
lished a covalent bond (1.9 Å C-S distance) with its
electrophilic b-C atom present between the indole moiety
and the nitrile. The indoline moiety of 51 formed hydropho-
bic contacts and the side chain nitrogen atom established a
H-bond with Glu166 (2.51 Å) located at S1 subsite.

3.2.4. Protein stability analysis through MD simulations
MD simulations are considered to be a reliable approach in
investigating the underlying dynamic consequences of

Figure 2. (A) Covalently re-docked N3 peptide (white carbons, ball and stick presentation) in the active site of the SARS-CoV-2 3CLpro (PDB ID 6LU7, grey surface
presentation). The original crystal pose of the peptide is shown as ball and stick presentation with green carbon atoms. Atom color code: red – oxygen; blue –
nitrogen. Hydrogen atoms are omitted for clarity. (B) Two stereoisomers of N3 peptide (see the chiral center at the carbon next to the reactive vinyl group). (C)
RMSD of Ca atoms of the N3 peptide (re-docked N3 in black, co-crystalized N3 in red) over a period of 20 ns.
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protein-ligand complexes (Ahmed et al., 2018; Durdagi et al.,
2018; Durrant & McCammon, 2011; Liu et al., 2017; Muneer
et al., 2019; Zhou et al., 2017). In order to analyze the

conformational flexibility and stability of the complexes, the
RMSD of the backbone atoms of the SARS-CoV-2 main prote-
ase with reference to the initial structures of the complexes

Figure 3. (A) Molecular surface representation of SARS-CoV-2 3CLpro with the covalently docked hit compounds. (B) Zoomed-in SARS-CoV-2 3CLpro substrate-bind-
ing pocket labelled with subsites S1, S2 and S4. (C–E) Representation of the chemical reaction of the reactive thiol group of Cys145 with the reactive nucleophilic
group of the hit compounds, and the corresponding covalently docked poses (green sticks) inside the substrate-binding site of SARS-CoV-2 3CLpro (white ribbon
presentation, ligand-interacting amino acids are shown in sticks). Atom color code: carbon – green/white; nitrogen – blue; oxygen – red; sulfur – yellow. Hydrogen
atoms are omitted for clarity.
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and the apo (without ligand) conformation of the main pro-
tease was plotted for the 50-ns production simulations.
Overall, the main protease remained more stable in the pres-
ence of the bound inhibitors when compared to its apo con-
formation that displayed greater fluctuation in its backbone.
As shown in Figure 4(A), the RMSD of all three complexes
increased gradually in the beginning of the MD simulation.
After about 20 ns, the RMSD values converged to 1–2Å. The
initial RMSD increase in the complexes was expected due to
the flexible loop connected to the helical domain III. In gen-
eral, the inhibitor interaction with the protein decreased the
overall protein flexibility. Among these complexes, the Mpro/
cmp78 complex displayed the lowest averaged RMSD value
(0.5 Å). This is possibly due to the compound’s best inter-
action profile with an additional p–p stacking interaction
with the catalytic His41. However, a more detailed analysis of
the flexibility of the protein backbone was possible from the
per-residue root-mean-square fluctuation (RMSF). Figure 4(B)
demonstrates the RMSF for the backbone atoms of each resi-
due in Mpro. Overall, the fluctuations showed a similar trend
with highest fluctuations in the loop regions. The highest
amplitude of motion occurred in the long flexible loop of 16
residues (residues 184–199), which retained its freedom of
movement and triggered dynamic effects in the helical
domain III (residues 200–306). On the other hand, a decrease
in flexibility was observed in the substrate-binding region,
which revealed the influence of inhibitor interactions on the
residues located in the substrate-binding pocket.

3.2.5. Binding free energy calculations with AMBER
The molecular mechanics energies combined with the gener-
alized Born and surface area continuum solvation (MM-GBSA)
method is a well-established approach to estimate the free
energy of the binding of small ligands to biological macro-
molecules. The approach is typically based on MD simula-
tions of protein-ligand complexes. It has been applied to
numerous systems with varying success (Chen et al., 2016;
Durrani et al., 2019; Parveen et al., 2019; Sirin et al., 2014)
and better covered in various reviews (Chen et al., 2016;
Gohlke & Case, 2004; Gohlke et al., 2003). The AMBER MM-
GBSA energetic components for each complex are tabulated
in Table 1. Since the RMSD analysis of all complexes showed

backbone stability especially in the last 10 ns, a total of 5000
snapshots were generated and the binding free energies
were calculated from the time period of 40–50 ns. For all
three complexes, the contributions of van der Waals (DEvdw),
electrostatic (DEele), and non-polar solvation energy (DGnp)
were favorable for protein-ligand interactions. All inhibitors
mainly contributed to the binding energy through van der
Waals interactions (<�48 kcal/mol), followed by electrostatic
interactions (<�10 kcal/mol). Cmp 78 displayed the most
favorable total binding free energy (DGtol ¼ �60.05 kcal/mol)
as compared to the other two, which was likely due to the
additional p–p stacking interaction with the catalytic His41.
Apart from the molecular mechanics contributions, the solv-
ation energy also plays a crucial role in small ligand-protein
systems and the accuracy of these calculations has been
extensively studied (Genheden et al., 2010; Gohlke & Case,
2004; Gohlke et al., 2003). For all these simulation systems,
the non-polar solvation energy contributed least to the total
binding free energy, which is evident from the surface area
accessible to the solvent as the ligands are barely exposed,
while the polar solvation energy was unfavorable in all
three complexes.

3.3. Repurposing of FDA-approved protease inhibitors

In order to identify possible repurposable SARS-CoV-2 3CLpro

inhibitors from the FDA-approved protease inhibitors, a
library of 116 FDA-approved protease inhibitors was virtually
screened against SARS-CoV-2 main protease. Initially, the
docking protocol was validated by non-covalent re-docking
of the co-crystallized ligand, inhibitor N3, into the active site

Figure 4. Molecular dynamics simulations of SARS-CoV-2 3CLpro. (A) RMSD and (B) RMSF of both unbound (apo) and ligand-bound SARS-CoV-2 3CLpro. The
domains of SARS-CoV-2 3CLpro are displayed in (B).

Table 1. Molecular mechanics generalized born surface area (MM-GBSA) bind-
ing free energy calculation of the identified covalent inhibitor candidates
against SARS-CoV-2 3CLpro.

Hit compounds DEvdw DEele DEMM DGp DGnp DGsol DGtol
Cmp223 �51.26 �12.01 �63.27 22.3 �5.77 16.53 �46.74
Cmp78 �67.45 �14.69 �82.14 28.98 �6.89 22.09 �60.05
Cmp51 �48.47 �10.52 �58.99 15.72 �6.69 9.03 �49.96

Note: DGtol represents total binding free energy, which is the sum of molecu-
lar mechanics energy (DEMM) and solvation free energy (DGsol). Both DEMM
and DGsol are further divided into internal energy (DEint), electrostatic energy
(DEele), and van der Waals (DEvdw) energy in the gas phase, and polar (DGp)
and non-polar (DGnp) contributions to the solvation free energy. The units of
these energy parameters are calculated in kcal/mol.
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of SARS-CoV-2 3CLpro. As shown in Figure S8 (Supplementary
material), the top-docked pose adapted a binding mode
within the active site similar to that observed for the co-crys-
talized ligand with an RMSD value of 0.760Å, indicating the
robustness of our docking protocol. Next, molecular docking
was carried out as described in the Methods, and the drugs

were ranked based on their binding energies (kcal/mol) and
potential interaction with active site residues. The screening
of the database revealed two potential protease inhibitors
namely, paritaprevir and simeprevir with the lowest binding
energy scores of �8.8 and �8.78 kcal/mol, respectively
(Table 2).

Table 2. Chemical structures, binding energy scores, predicted inhibitory constant (pKi) and molecular interactions of identified FDA-approved protease inhibitors.

Name Chemical Structure
Binding Energy
Score (kcal/mol) pKi (mM)

Hydrogen
bond Hydrophobic

MM-GBSA
value (Amber)

Paritaprevir �8.8 0.36 Gly143 and Cys145 Thr45, Met49,
Met165 and Pro168

�47.15

Simeprevir �8.78 0.37 Gly143 and Gln189 Pro168 �51.84

Figure 5. 3D binding mode and 2D molecular interactions of identified candidate compounds within the active site of SARS-CoV-2 3CLpro (PDB ID 6LU7); (A–B) par-
itaprevir; (C–D) simeprevir. The catalytic dyad His41, Cys145 within the active site is shown in orange sticks.
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The predicted inhibitory constants (pKi) against SARS-CoV-
2 3CLpro based on the AutoDock Vina docking scores for
paritaprevir and simeprevir were 0.36 mM and 0.37mM,
respectively. Interestingly, paritaprevir and simeprevir are
FDA-approved anti-hepatitis C virus (HCV) drugs that act by
targeting the NS3/4A serine protease of HCV (McConachie
et al., 2016). To our knowledge, there are no clinical data
available regarding the use of these two compounds to treat
SARS-CoV-2, MERS-CoV or SARS-CoV. Both compounds
adopted poses near the catalytic dyad, the sulfonamide
group posing near Cys145 (Figure 5). Paritaprevir was found
to form hydrogen bonds with Gly143 and Cys145, while
simeprevir established hydrogen bonds with Gly143
and Gln189.

The stability of the docked complexes was investigated
with the MD simulations using the same protocol as for the
covalent hit compound complexes (Figure 6). Overall, the
complexes remained stable. The average RMSD values for
the last 40 ns for paritaprevir and simeprevir were 3.2 and
3.5 Å, while the average RMSF values were 1.2 and 1.5 Å,
respectively. Moreover, the total binding free energy was cal-
culated from the last 20 ns period and revealed favorable
DGtol for paritaprevir (�47.15 kcal/mol) and simeprevir
(�51.84 kcal/mol).

4. Conclusion

In the current study, pharmacoinformatics and MD
approaches were utilized to identify potential covalent inhibi-
tors of SARS-CoV-2 3CLpro for the treatment of COVID-19.
Several covalent inhibitors, together with FDA-approved pari-
taprevir and simeprevir, were identified as potential inhibi-
tors of SARS-CoV-2 3CLpro enzyme. The binding affinity,
mechanism, and stability of binding of these compounds to
SARS-CoV-2 3CLpro were investigated by molecular docking
and MD simulations. The potential warheads identified in
this study could serve as a guideline to design covalent
inhibitors targeting the catalytic Cys145. Moreover, the FDA
approved anti-HCV drugs, paritaprevir and simeprevir may
also play a key role in expediting the drug discovery process
and could be tested in clinical trials as a treatment for
COVID-19.
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