Supplementary Information

Adjacent dimer epitope of envelope protein as an important region for Zika virus serum neutralization: a computational investigation

Authors:
Carlos Alessandro Fuzo ${ }^{1,2^{*}}$
E-mail: cafuzo@usp.br
Luiz Felipe Lemes de Araujo ${ }^{1,3}$
E-mail: araujolfelipe@usp.br
Rafael de Souza Pontes ${ }^{1,3}$
E-mail: rafaelpontes@usp.br
Patricia Martinez Évora ${ }^{1,3}$
E-mail: patievora@hotmail.com
Rodrigo Guerino Stabeli ${ }^{1,3}$
E-mail: rodrigo.stabeli@fiocruz.br

Affiliations:
${ }^{1}$ Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz Fiocruz SP, Avenida dos Bandeirantes 3900, Campus USP Ribeirão Preto, São Paulo, Brazil.
${ }^{2}$ Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
${ }^{3}$ Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
*Corresponding Author
E-mail:cafuzo@usp.br

Figure S1 - Diagnostic plots for native system simulation showing the profiles of potential energy (A), root-mean-square deviation after the superposition of C_{α} atoms to initial structure (B), gyration radius for all atoms (C) and root-mean square fluctuation of C_{α} atoms from 100 to 200 ns (D).

Figure S2 - Diagnostic plots for Asp67Ala system simulation showing the profiles of potential energy (A), root-mean-square deviation after the superposition of C_{α} atoms to initial structure (B), gyration radius for all atoms (C) and root-mean square fluctuation of C_{α} atoms from 80 to 100 ns (D).

Figure S3 - Diagnostic plots for Gln89Ala system simulation showing the profiles of potential energy (A), root-mean-square deviation after the superposition of C_{α} atoms to initial structure (B), gyration radius for all atoms (C) and root-mean square fluctuation of C_{α} atoms from 80 to 100 ns (D).

Figure S4 - Diagnostic plots for Lys118Ala system simulation showing the profiles of potential energy (A), root-mean-square deviation after the superposition of C_{α} atoms to initial structure (B), gyration radius for all atoms (C) and root-mean square fluctuation of C_{α} atoms from 80 to 100 ns (D).

Figure S5 - Diagnostic plots for Asp247Ala system simulation showing the profiles of potential energy (A), root-mean-square deviation after the superposition of C_{α} atoms to initial structure (B), gyration radius for all atoms (C) and root-mean square fluctuation of C_{α} atoms from 80 to 100 ns (D).
-VIPR_ALG4_1084358903_577_2088 -VIPR_ALG4_AVZ47169_1_969_2480
-VIPR_ALG4_ASN64427_1_1_1512

- $\overline{\mathrm{VIPR}}$ _ALG4_AUI42289 $\overline{1} 1$ - 913 _2424

VIPR_ALG4_-ATW74960_1_1_1512
-VIPR_ALG4_ATWU_ASG45394_1_959_2470
-VIPR_ALG4_ASU55394_1_959_2470
-VIPR_ALG4_987031298_978_2489
पVIPR_ALG4_987031298_978_24
-VIPR_ALG4_1036637437_1_1512
-VIPR_ALG4_ASU55393_1_959_2470
[VIPR_ALḠ4_1046626550_969_2480
-VIPR_ALG4_1036637433_978_2489
-VIPR_ALG4_ASV60825
VIPR_ALG4_AUY62552_1_977_2488

- VIPR_ALG $\overline{4}$ _- 685052338 _977_2488
VIPR_ALG4_1036637431_977_2488
-VIPR_ALG4_ASV60828

\square VIPR_ALG4_ASV60828
\square VIPR_ALG4_ASV60827_1_1_1512
VIPR_ALG4_ASV60826

VIPR_ALG4_592746960_871_2382
VIPR ALG4 592746966_871_2382
-VIPR_ALG4_ANŌ46307_1_918_2429
VIPR_ALG4_AMX81917-1_971_2482
-VIPR_ALG-ATW74961_1_1_1512
-VIPR_ALG4_1001229293_958_2469
[VIPR_ALG-G4_APH11536_1_961_2472
VIPR_ALG4_APH11534_1_962_2473
VIPR_ALḠ4_APH11539_1_962_2473 -VIPR_ALG4_APB03018_1_950_24 $\overline{4} 61$ -VIPR_ALG4_1115549286_871_2382 -VIPR ALG4 ASU55392 19072418 -VIPR ALG4 AWF93617-1960-2471 -VIPR ALG4-AOY08535-1-958-2469 -VIPR ALG4-985578256-971 2482 -VIPR_ALG4-985578256_971-2482 2468 -VIPR ALG4 AQS26816_1_957_2468 -VIPR_ALG4_AQS26816_1_896_2407 -VIPR_ALG4_AMK49165_1_964-2475
-VIPR_ALG4_AQS26791_1_896_2
-VIPR_ALG4_ARU07076_1_978_2489
-VIPR_ALG4_189092758_871_2382
-VIPR_ALG4_AMQ48982_1_978_2489
VIPR_ALG4_1087313262_871_2382
-VIPR_ALG4_APH11599_1_962_2473 -VIPR_ALG4_AOY08538_2_961_2472 -VIPR_ALG4 ASU55399_1 959 2470 -VIPR_ALG4_AQS26797_1_896-2407 -VIPR_ALG4_ARB07975-1-940-2451 -VIPR_ALG4_ARB07974_1_941_2452 -VIPR ALG4 ASU55411 - 959 - 470 -VIPR_ALG4-ASU55411_1_959_2470 -VIPR ALG4-984874584-871 2382 -VIPR_ALG4_984874584_871_2382
-VIPR_ALG4_973447409_917_2428
-VIPR_ALG4_ARU07182_1_871_2382
-VIPR_ALG4_1006593137_-970_2481
-VIPR_ALG4_APG56499_1_928_2439
-VIPR_ALG4_APB03022_1_950_2461
VIPR_ALG4_ARO85709_1_1_1512 [VIPR_ALG4_1020267436_950_246

VIPR_ALG4_AXE75586_1_1_1512
VIPR_ALG4_AXE75585_1 1 1512
-VIPR_ALG4_1029979472_1_1512
-VIPR ALG4 ASU55407 1-959 2470
-VIPR ALG4 ATG29301-1 962- 2473
-VIPR ALG4 ASL68979-1 962 - 2473
VIPR ALG4 100 $\overline{2} 39402 \overline{5}$ _946_245
VIPR ALG4 APG56457 18712382

 | |i| i|| IIT Ni

 Min

 |||

Figure S6 - The phylogenetic tree generated with conservation analysis and the respective alignment matrix for complete sequences of ZIKV sE protein obtained from the Virus Pathogen Database and Analysis Resource (https://www.viprbrc.org/).

Figure S7 - Complexes formed by Z20 (green) and ZIKV-117 (cyano) on the ZIKV envelope protein showing the overlap of only the $\mathrm{E}(\mathrm{A})$ and Fab (B) regions, indicating the two antibodies are in different orientations in relation to protein E.

Figure S8 - Principal component analysis results showing the proportion of variance along the first 20 components (left) and the 2D distribution of the first two components (right).

Figure S9-Profiles of the distances (A) and angles (B) showing the dynamic of the cation- π interaction between the residues Gln 89 A and Tyr 53 H . The distances were calculated between the hydrogen atoms 1 HE 2 (green) and 2HE2 (red) of the amino group of the side chain of Gln89A with the center of mass of the aromatic ring of the side chain of $\operatorname{Tyr} 53 \mathrm{H}$. The respective angles were calculated between the normal vector from the plane of the aromatic ring and the vector from the center of mass of aromatic ring to 1HE1 (green) and 2HE2 (red).

Table S1 - PDB codes of the structures whose sequences have 100\% identity and total coverage in relation to the consensus sequence of sE

PDB id (chain)	Coverage	Identity (\%)	X-ray resolution
5JHM (A e B)	1.0	100	$2.0 \AA$
5LBV (A)	1.0	100	$2.2 \AA$
5GZN (A)	1.0	100	$3.0 \AA$
5GZO (D)	1.0	100	$2.8 \AA$
5JHL (A)	1.0	100	$3.0 \AA$
5LBS	1.0	100	$2.2 \AA$

Table S2 - The contribution for van der Waals (vdW), electrostatic (Elec), polar solvation (Polar) and non-polar solvation (Nonpolar) of estimated free energies for the residue pairs ($\Delta \mathrm{G}_{\text {pair }}$) selected with $\Delta \mathrm{G}_{\text {pair }}<-1 \mathrm{kcal}$.mol ${ }^{-1}$, the occurrence of hydrogen bonds showing between parenthesis the de number of individual donor-acceptor pairs, the normalized conservation scores for the EDII position and the residues variety at each position of the multiple sequence alignment. The energy terms are in kcal. mol^{-1}

EDII residue	$\mathbf{Z 2 0}$ residue	vdW	Elec	Polar	Nonpolar	$\Delta \mathrm{G}_{\text {pair }}$	Occurrence (\%)	Normalized conservation score	Residue variety
Ser64A	Asp102H	0.2 ± 0.8	-5.8 ± 1.3	3.0 ± 0.4	-0.6 ± 0.1	-3.2 ± 0.8	87.0 (1)	0.80	Ser, Thr
Ser64A	Leu103H	-0.9 ± 0.2	-0.2 ± 0.1	0.1 ± 0.1	-0.6 ± 0.1	-1.7 ± 0.3	-		
Ile65A	Leu103H	-0.7 ± 0.1	0.2 ± 0.1	-0.2 ± 0.1	-0.4 ± 0.1	-1.1 ± 0.2	-	2.60	Ile, Lys, Leu
Ile65A	Asn92L	-0.6 ± 0.3	-1.1 ± 1.0	0.7 ± 0.4	-0.5 ± 0.2	-1.5 ± 0.9	-		
Ser66A	Leu103H	-0.7 ± 0.3	-0.4 ± 0.3	0.4 ± 0.2	-0.8 ± 0.1	-1.5 ± 0.3	-	-0.75	Ser
Ser66A	His91L	-0.7 ± 0.5	1.0 ± 1.6	-1.3 ± 1.1	-0.7 ± 0.1	-1.6 ± 0.8	0.2 (1)		
Ser66A	Asn92L	-0.9 ± 0.2	-0.2 ± 0.3	-0.1 ± 0.2	-0.5 ± 0.1	-1.7 ± 0.4	-		
Asp67A	His91L	-0.6 ± 0.1	-18.7 ± 1.1	18.0 ± 0.9	-0.3 ± 0.0	-1.5 ± 0.4	75.4 (1)	-0.57	Asp
Asp67A	Asn92L	-0.7 ± 0.2	0.4 ± 0.6	-0.4 ± 0.6	-0.3 ± 0.0	-1.0 ± 0.3	-		
Asp67A	Tyr94L	-1.3 ± 0.2	-2.5 ± 0.4	2.5 ± 0.4	-0.9 ± 0.1	-2.2 ± 0.3	-		
Asp67A	Arg96L	-0.3 ± 0.3	-32.7 ± 6.2	30.0 ± 2.5	-0.3 ± 0.2	-3.3 ± 4.0	-		
Met68A	Asn92L	-0.4 ± 0.5	-2.1 ± 0.6	0.3 ± 0.3	-0.7 ± 0.1	-2.9 ± 0.6	98.7 (1)	2.53	Ile, Met, Thr
Met68A	Ser93L	-1.4 ± 0.3	-1.2 ± 1.0	0.2 ± 0.5	-1.0 ± 0.1	-3.3 ± 0.5	-		
Met68A	Tyr94L	-0.7 ± 0.3	-1.2 ± 0.5	-0.1 ± 0.2	-0.4 ± 0.1	-2.5 ± 0.3	-		
Ala69A	Tyr94L	-0.5 ± 0.1	-0.3 ± 0.1	0.2 ± 0.0	-0.6 ± 0.1	-1.2 ± 0.2	-	2.48	Val, Ala, Thr
Lys84A	Asn59H	-0.1 ± 0.4	-6.4 ± 2.9	4.3 ± 1.7	-0.6 ± 0.2	-2.9 ± 1.3	43.4 (1)	1.44	Arg, Lys
Gln89A	Trp34H	-0.9 ± 0.3	-0.6 ± 1.3	0.2 ± 0.8	-0.8 ± 0.1	-2.1 ± 0.8	1.1 (1)	-0.57	Gln
Gln89A	Tyr53H	-1.1 ± 0.2	-0.7 ± 0.5	0.1 ± 0.4	-0.8 ± 0.1	-2.6 ± 0.6	0.1 (1)		

Table S2 (continued).

EDII residue	Z20 residue	v.d.W	Elec	Polar	Non Polar	$\Delta G_{\text {pair }}$	Occurrence (\%)	Normalized conservation score	Residue variety
Lys118A	Trp34H	-1.6 ± 0.2	-2.4 ± 0.9	-0.6 ± 0.7	-1.4 ± 0.1	-5.9 ± 1.0	4.6 (1)	-0.51	Lys
Lys118A	Glu51H	0.8 ± 0.7	-53.5 ± 1.8	41.2 ± 0.8	-0.5 ± 0.0	-12.0 ± 1.2	98.2 (2)		
Lys118A	Leu103H	-1.0 ± 0.3	0.2 ± 0.3	-0.2 ± 0.3	-0.9 ± 0.1	-2.0 ± 0.3	-		
Ala 120A	Leu103H	-0.6 ± 0.5	0.0 ± 0.0	0.0 ± 0.0	-0.7 ± 0.1	-1.3 ± 0.5	-	0.90	Ala, Thr
Ser122A	Asp102H	-0.6 ± 0.2	-0.3 ± 1.1	0.3 ± 1.0	-0.6 ± 0.2	-1.2 ± 0.4	0.1 (1)	0.85	Ser, Cys
Gly232A	His54H	-0.3 ± 0.3	-3.0 ± 1.8	2.6 ± 1.4	-0.3 ± 0.2	-1.0 ± 0.8	3.3 (1)	-0.38	Gly
Thr233A	Tyr53H	-0.6 ± 0.3	-0.1 ± 0.4	0.0 ± 0.1	-0.5 ± 0.2	-1.2 ± 0.6	7.5 (1)	-0.70	Thr
Lys246A	Arg30L	-1.2 ± 0.4	28.6 ± 3.0	-27.9 ± 2.8	-1.0 ± 0.3	-1.6 ± 0.5	-	1.14	Arg, Lys
Asp247A	Arg30L	0.6 ± 0.8	-50.5 ± 2.1	39.9 ± 0.9	-0.8 ± 0.1	-10.8 ± 1.3	100.0 (3)	1.05	Asp, Glu
Arg252A	Gln27L	-0.9 ± 0.5	0.4 ± 2.9	-0.5 ± 2.3	-0.9 ± 0.4	-1.8 ± 1.2	7.7 (3)	1.10	Arg, Thr
Arg252A	Gly28L	0.0 ± 0.4	-4.4 ± 3.6	2.5 ± 1.4	-0.2 ± 0.2	-2.1 ± 2.4	37.0 (2)		
Thr254A	Ile29L	-0.6 ± 0.2	-0.2 ± 0.2	0.2 ± 0.1	-0.4 ± 0.2	-1.1 ± 0.3	-	-0.70	Thr
Thr254A	Arg30L	-0.8 ± 0.2	2.2 ± 0.7	-1.7 ± 0.5	-0.7 ± 0.1	-1.1 ± 0.4	0.3 (1)		
Val255A	Asn31L	-0.1 ± 0.3	-1.6 ± 1.2	0.3 ± 0.3	-0.2 ± 0.1	-1.6 ± 1.1	56.1 (1)	0.92	Val, Ala
Val256A	Arg30L	-0.8 ± 0.2	0.2 ± 0.2	-0.3 ± 0.2	-0.8 ± 0.1	-1.7 ± 0.3	-		

