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TESTING THE STOCHASTIC STRUCTURE OF PRODUCTION: 
A FLEXIBLE MOMENT-BASED APPROACH 

The aim of this paper is to develop a flexible moment-based approach to 

specifying, estimating, and testing stochastic production models. 

This approach provides a statistical methodology for estimating not only 

"mean" output as a function of inputs, as is done in conventional production 

function models, but also the variance, third moment, and higher moments can 

be specified and estimated as functions of inputs. The moment-based approach 

to the study of production economics is motivated by a number of facts. 

First, the probability distribution of output is a unique function of its 

moments and, therefore, the behavior of the firm under stochastic production 

can be defined in terms of the relationships between 1nputs and these moments. 

Any characteristic of a firm's stochastic technology can be measured and 

tested using the moment functions. 

Second, conventional econometric production models are based on the ad 

hoc appending of additive or multiplicative random error terms to 

deterministic production functions. This is true for both the "mean" and 

"frontier" production models in the literature. It is shown in this paper 

that these models are not generally adequate representations of the 

probability distribution of output, because they impose arbitrary restrictions 

on the moments of output which result in arbitrary restrictions on the 

behavior of the firm. Other studies have also found that the error 

specification has important economic implications (Just and Pope, 1978, Pope 

and Kramer 1979, Newberry and Stiglitz, 1982). These restrictions can not be 

tested using conventional production function models. 

A third motivation for the moment based approach comes from empirical 

evidence (Day 1965, Anderson 1974, Roumasset 1975, Just and Pope 1979, 
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Nikiphoroff 1981, Antle and Goodger 1982) which shows that second, third, 

and fourth moments of output may be functions of inputs. The theory of 

decision making under uncertainty shows that empirical production models need 

to account for these relationships. 

The above facts suggest that an econometric production model is needed 

which provies a general representation of the probability distribution of 

output and which does not impose arbitrary restrictions on the moments. The 

moment-based approach developed in this paper is "flexible" in the sense that 

I 

it imposes relatively few restrictions, or maintained hypotheses, on the 

probability distribution of output and thus provides a useful framework for 

testing the stochastic structure of production. 

Estimators for the moment-based approach are developed within a 

conventional linear regression framework. The estimation methodology can be 

viewed as a generalization of the heteroscedastic regression models devised by 

Goldfeld and Quandt (1972) and Amemiya (1978). The generalized least squares 

(GLS) technique is used to obtain estimators for the moment functions which 

are consistent and asymptotically normal under the conditions of the 

Lindberg-Feller central limit theorem so they can be used to test hypotheses. 

As Judge~ al. (1982) have noted, one limitation of the Goldfeld-Quandt and 

Amemiya models is that negative variance estimates can be obtained for the GLS 

model; in this paper it is shown that using standard nonlinear programming 

techniques, and recently developed software, variances for the GLS models can 

be estimated under the constraint that they are nonnegative. To test 

cross-moment restrictions implied by conventional production models, a joint 

GLS estimator is developed which is a heteroscedastic version of Zellner's 

(1962) seemingly unrelated regression estimator. 
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The paper begins with a discussion of the restrictions imposed on the 

stochastic structure of production and the behavior of the firm by the 

production function models in the literature. In the second section the 

theoretical foundations for the flexible moment-based approach are developed, 

moment-based approximations are discussed, and a quadratic moment model is 

used to illustrate how the stochastic structure of production can be tested. 

The third section develops the econometric model and the associated parameter 

estimators. The final section presents an application of the moment-based 

approach to milk production data. The results strongly support the hypothesis 

that both the variance and third moment of the output distribution are 

statistically significant functions of inputs. The restrictions implied by 

models in the literature are formally tested. The results show that both the 

multiplicative error model and the heteroscedastic, additive error model are 

poor approximations to the output distribution and are rejected by the data. 

I. MAINTAINED HYPOTHESES OF STOCHASTIC SPECIFICATIONS. 

Before introducing the flexible moment-based approach, I shall discuss 

the restrictions, or maintained hypotheses, embodied in conventional 

stochastic production models, and the economic implications of these 

restrictions. 

First consider the maintained hypotheses of the multiplicative error 

model 

(1) Q = m(x, ~)ell 

where Q is output, x = (x1,•••,xn) is a vector of inputs,~ is a conformable 

parameter vector, and u is a random error. This specification is convenient 

because it can be expressed as an additive error model by taking logarithms 

and it satisfies the constraint that output is non-negative. However, there 
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is little theoretical justification for this particular model and it can be 

shown to impose a number of arbitrary restrictions on the stochastic structure 

of the production process. Letting E[•] denote the mathematical expectation 

operator, the mean of output is 

µl = E[Q] = m(x, ~) E(eU] 

the variance is 

µ2 = E[Q - E(Q)]2 = m(x, ~)2 E[eU - E(eU)]2 

and in general the ith moment about µl is 

The multiplicative error model implies that the mean and the higher moments of 

the probability distribution of output are functions of inputs through the 

functi~n m(x,~). The set of restrictions, or maintained hypotheses, implied 

by this model can be expressed in terms of the elasticities of moments with 

respect to inputs. From above we have, for µi*O, 

(2) Dik xk = i om(x.~) 
µi oxk m(x,~) 

Thus the elasticity of the ith moment with respect to the kth input, Dik• is 

proportional to the mean production elasticity Dlk• These are the 

cross-moment restrictions implied by model (1).1 

Another frequently used specification is the additive error model 

(3) Q = m(x, ~) + u. 

Typically u is assumed to be independently and identically distributed across 

all observations, and the distribution of u is assumed not to depend on x. 

Under this specification only the mean of the output distribution is assumed 

to be a function of inputs; all other moments are independent of x. Thus 

model (3) implies that Dik = 0 for all i > 2. 
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Just and Pope (1978) have suggested that some of the restrictions 

embodied in models (1) and (2) can be circumvented by utilizing the 

heteroscedastic model proposed by Harvey (1976). Model (3) is specified with 

the heteroscedastic error structure 

u = h(x, y)e: 

where e: is an independently and identically distributed error term. This 

allows the inputs to have different effects on the mean m(x, ~) and the 

variance of output 

While this model does represent a generalization of models (1) and (3) because 

it does not restrict the effects of inputs on the variance to be related to 

the mean, it can easily be shown that it does restrict the effects of x across 

the second and higher moments in exactly the way model (1) does across all 

moments. To see this we simply note that, from above, 

For i > 2 and E(e:i)tO the parameters of the ith moment are directly related to 

the parameters of the second moment; in particular, 

(4) Xk = i Oh(x,y) 
µi OXk 

Xk = i TJ2k , i ) 2 • 
-h_,,.(-x-, -y ~) 2 

Therefore, the elasticity of each higher nonzero moment with respect to an 

input is directly proportional to the elasticity of the second moment with 

respect to that input. The restrictions (2) imposed on moment functions by 

model (1) are identical to the restrictions (4) of the Just-Pope model except 

that the former apply to all moments and the latter apply to second and higher 

moments. The restrictions in (4) are valid if output follows a "two 

parameter" distribution, such as the normal distribution, otherwise they 

generally are not valid.2 
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Restrictions (2) and (4) are economically important because they 

constrain the firm's behavior under uncertainty. To illustrate, consider the 

negative exponential utility function U(n) =a-be-en, where a, b, and c are 

positive parameters . For simplicity assume prices are nonstochastic and 
n 

define "normalized" profit as n = Q - E rixi, where ri is the ith input price 
i=l 

divided by the output price. An mth order Taylor series expansion of U(n) 

about expected profit n gives 

m 
a-be-err - be-en E 

i=2 

To further simplify the discussion consider a third-order expansion of the 

utility function. The first-order condition for maximization of expected 

utility can then be written as 

where 

2 3 
6 1 + (-c) µ2 + (-c) µ3• 

-2- 6 

Equation (5) can be rewritten as 

2 
(6) Tllk + 5-l (-c) µ2 TJ2k + 5-l (-c) µ3 TJ3k = rkxk, k=l, ••• , n, 

2 µl -6- 1Il" µ1 

which shows that the firm's behavior can be expressed in terms of the 

elasticities of moments with respect to inputs. In equilibrium the kth factor 

share rkxk/µ1 equals a linear combination of the Tlik• Equation (6) shows that 

as the Arrow-Pratt risk aversion parameter c approaches zero, inputs are 

chosen such that the mean production elasticity Tllk equals the mean factor 

share rkxk/µ1, as would be the case for a risk-neutral firm. For large 

positive values of c, equation (6) shows that the equilibrium condition of the 

risk-neutral firm generally is not satisfied.3 
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Equation (6) can be used to show how restrictions (2) and (4) affect the 

behavior of the firm. Substituting (2) into (6) and simplifying we have 

Equation Thus restrictions (2) 

imply that if the output distribution is negatively skewed the firm chooses 

inputs such that ~lk > rkxk/µ 1; and if cµ3/2 = µ2 the risk-averse firm behaves 

exactly like a risk-neutral firm! There does not appear to be any theoretical 

explanation why such behavior should in fact be observed . Equation (6) shows 

regardless of the value of µ3• 

It is thus clear that models which impose arbitrary restrictions on the 

moment functions also impose arbitrary restrictions on the firm's behavior. 

II. THEORETICAL FOUNDATIONS OF THE FLEXIBLE MOMENT-BASED APPROACH. 

In this section I develop the theoretical foundations for a moment-based 

approach to the study of production economics. This approach is motivated by 

the fact that the conventional production function approach to modeling 

stochastic production processes imposes arbitrary restrictions on the 

relationship between inputs and the probability distribution of output. 

Instead of prameterizing a deterministic production function and appending an 

error term to it, the moment-based approach begins with a general 

parameterization of the moments of the probability distribution of output. In 

this way more flexible representations of output distributions are obtained. 
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The problem of uniquely characterizing the probability distribution of 

output is solved by utilizing the results of the "Stieltjes moment problem" 

(Rao 1973, p. 106). These results show that the probability distribution of 

output is a unique function of its moments.4 Therefore, all economically 

relevant characteristics of the technology must be embodied in the 

relationships between inputs and moments. The behavior of the firm under 

production uncertainty can, therefore, always be defined in terms of the 

moments of the probability distribution of output. The moment-based approach 

to production economics, therefore, begins with a general representation of 

the moment functions which describe a stochastic technology. Let the 

probability distribution of output Q for a given input set x be f(Qjx). The 

moment functions are written generally as 

J Q f(Ojx) dQ 
(8) 

µi(x, Yi)= J (Q - µi) f(Qjx) dQ, i;;. 2. 

where the Yi are parameters relating x to µi. With this approach the 

production model may exhibit not only heteroscedasticity (µz a function of x) 

but also "heteroskewness" as a function of inputs (µ3 a function of x), and 

generally any moment of the distribution may be a function of inputs.5 

The general representation of the moments of the probability distribution 

of output in equation (8) is "flexible" in the sense that each moment function 

depends on a distinct parameter vector. Thus, within or cross-moment 

restrictions are not imposed on the model, in contrast to the production 

function models discussed above which restrict the relationship between inputs 

and moments because all moment functions depend on the same parameters. The 

need for a flexible representation of the stochastic production model is 

analogous to the need for "flexible functional forms" in production and demand 

models (Diewert 1974, Fuss, McFadden, and Mundlak 1978). 
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While the flexible moment-based approach relaxes restrictions on the 

moment functions, it creates an "incidental parameter problem" in the sense 

that there are as many different parameter vectors as moments. Obviously, a 

useful representation of stochastic technologies cannot be based on a very 

large number of parameters. In the flexible moment-based approach this 

problem is resolved by the principle that research should strive to obtain a 

good approximation to the true underlying relationships identified by theory. 

Since we seek a good approximation to the true distribution of output, we must 

ask how many moments one need know to adequately represent the behaviorally 

relevant characteristics of the distribution. Kendall and Stuart (1976) 

provide one means of solving this problem. They show that a probability 

distribution can be approximated to the nth de gree by an nth degree polynomial 

whose coefficients are functions of the first n moments of the distribution. 

They conclude from this result (p. 90): 

Thus distributions which have a finite number of the lower moments 
in common will, in a sense, be approximations one to another. We 
shall encounter many cases where, although we cannot determine a 
distribution explicitly, we may ascertain its moments at least up 
to some order; and hence we shall be able to approximate to the 
distribution by finding another distribution of known form which 
has the same lower moments. In practice, approximations of this 
kind often turn out to be remarkably good, even when only the first 
three of four moments are equated. 

These observations by Kendall and Stuart are consistent with the usual 

practice of characterizing distributions in terms of the main "shape" 

characteristics of distributions, namely location (mean), dispersion 

(variance), skewness (third moment), and possibly also kurtosis (fourth 

moment). The fact that many distributions can be adequately represented in 

terms of four or fewer moments is also demonstrated by the Pearson system of 

distributions (Kendall and Stuart, 1976, Ch. 6). Members of the Pearson 
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system, such as the Beta and Gamma distributions, are known to be functions of 

not more than the first four moments.6 Another argument in favor of 

moment-based approximations has been put forward by Anderson et al. (1980, 

pp. 97-98) for the analysis of firm behavior in the expected utility 

framework. They note that when expected utility is approximated by a Taylor 

series, as in the previous section, terms beyond the third or forth moment 

usually add insignificantly to the precision of the approximation. These 

considerations all suggest that a useful approach would be to utilize three or 

four moments to represent a stochastic production process. 

The principle that empirical research should strive for good 

approximations also suggests that it would be desirable to choose a functional 

form for the moment functions which may be a reasonable approximation to the 

true functions. It is also desirable to choose a flexible functional form 

because theory provides little information about the relationship between 

inputs and moments. As will become clear in the following section, a good 

approximation to the "mean" function is especially important because the 

residuals from the mean function play an important role in the model. A poor 

approximation to the mean function could introduce substantial bias into the 

parameter estimates of the other moment functions. Polynomial expansions 

appear to be likely candidates for tractable and flexible linear 

representations of moment functions. In addition to the Taylor series 

approximation, other polynomials such as the Laurent series may provide good 

approximations (Barnett ~ al. , 1982). 

To illustrate the specification of a flexible moment model, consider 

the following quadratic moment model. Letting xk be the kth element of the 

input vector x, let 



(9) 
n 

~io + E 
k=l 

11 

n n 
~ik xk + 1 EE Yild, xkxl, i=l, ••• ,m 

2 k l 

where the model is specified with m moments. Then 

n 
oµi = ~ik + E Yild. xl. 
oxk l=l 

The restrictions discussed in Section I can be tested using this model. For 

example, the restrictions in (4), that nik = 2:_ n1k• are expressible as 
2 

n n 

(10) ~ik + E Yild.xl = i µi [~2k + E Y2klxl]. 
l=l 2 µ2 l=l 

With parameter estimates of the moment functions these parameter restrictions 

can be tested at any data point. Other hypotheses, such as the sign of the 

marginal effects oµi/oxk, can also be tested at any data point. Standard 

statistical procedures such as analysis of variance can be used to test for 

parameter differences across groups of firms. For example, to test the 

hypothesis that moment functions differ according to firm size, the sample can 

be stratified by firm size and the analysis of variance and covariance can be 

applied. With such tests one can determine the qualitative and quantitative 

structure of the moment functions. 

III. SPECIFYING, ESTIMATING, AND TESTING MOMENT FUNCTIONS 

A. The Linear Moment Model 

In this section estimators are devised for the parameters of the output 

distribution moment functions. A linear moment model (LMM) is specified with 

the moments assumed to be linear (in the parameters) functions of the inputs 

or other exogenous variables. Feasible GLS estimators are derived for the LMM 

and are shown to be asymptotically equivalent to the true GLS estimators. 

Under standard statistical assumptions these estimators are consistent and 
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asymptotically normal, and thus provide a statistical foundation for 

hypothesis testing. 

The LMM is defined as follows. Oj is output of the jth firm, 

xj (xj 1 7 ••• ,xjn) is the input vector with xj 1 = 1, ~ is conformable to xj, 

uj is a random error with mean zero, and the "mean" function is 

Q· 
(11) J 

XjYl + uj, j=l, ••• ,N 

Equation (8) shows that higher moments of Oj also may be functions of xj. 

i 
Define µij = E(uj), i) 2 7 as the ith moment of Oj about its mean µlj" Then 

let the "ith moment function" be 

i 
(12) Uj = XjYi + vij• E(vij) 0, i > 2, j=l, ••• ,N 

so that µij = XjYi for all i. The LMM, represented by equations (11) and 

(12), contains a different parameter vector Yi for each moment function and 

thus does not impose restrictions on the Yi either within or across moments. 

Therefore, the LMM is indeed a more general representation of the output 

distribution than the models described in Section 1 and is sufficiently 

general for testing restrictions on the moment function parameters within and 

across equations. 

The following assumptions will be maintained in the derivation of 

estimators for the LMM parameters: 

(i) E(ujuj1) = 0 for j*j'. 

(ii) the Xj are bounded, and the (Nxn) matrix X of the xj is such that 

lim X'X = Mx 
N 

is a positive definite matrix. 

(iii) letting u and vi be the (Nxl) vectors of the uj and vij• 

X' X'v plim __E_ = plim __ i = 0 for all i, 
N N 
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and X'u/~ and X'vi/~ converge in distribution to a 

well-defined limiting distribution. 

Under the above assumptions a least squares regression of Oj on ~ 

produces a consistent estimate Yl of Y1• The residuals of this regression 

are ~·:. ~ l j_ + ~ 

By Slutsky's theorem it follows that 

"i i 
( 14) plim Uj Uj, for all i. 

For notational consistency define Yl as the (Nxl) vector of the Qj, and Yi 
i 

the (Nxl) vector of the Uj • Also define Yi, i ) 2 ' as the (Nxl) vector of 

"i 
Uj' and let vi = Yi - XYi • Regression of Yi on x gives 

It follows from assumptions (ii) and (iii) and equation (14) that 

(15) plim Yi= Yi' i) 2. 

In addition, assumption (i) and equation (12) imply 

(17) E(vij2) = µ2i,j - µij2• 

Equations (12), (13), and (14) show that 

These results suggest that one can obtain a consistent estimator Yi of 

i 

as 

the 

Yi' for any i, using least squares regressions (11) and (12), with uj replaced 
"i 

by Uj in (12). Equations (16) and (17) show that error terms uj and vij are 
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heteroscedastic and their variances are functions of the Yi• We can 

construct "feasible" GLS estimators for the Yi as follows: define Ql as 

the (NxN) diagonal matrix of the µ2j and Qi, i ) 2, as the diagonal matrix of 

the [µ 2i,j - µij2]; also define o1 and Qi, i) 2, in terms of xjy2 and 
A 

[xjY2i - (xjyi) 2J. The feasible GLS estimators for the Yi are then: 

(20) YI 

(21) Yi 

We need to determine the statistical properties of the Yi• It has been 

shown elsewhere for the conventional regression model that under conditions 

(i), (ii) and (iii), feasible GLS estimators converge in distribution to the 

true GLS estimators (White 1980). However, (21) differs from the usual 

equations for the feasible GLS estimator because Yi• i ) 2, depends on Yi 

rather than Yi• Therefore it is necessary to prove that the asymptotic 

convergence holds for (21). 

Theorem 1. The Yi defined in equation (21) converge in distribution to 

-1 -1 -1 
Yi (X'Qi X) X'Qi y1 , i ) 2. 

Proof: Define the ith diagonal element of Qi as wii and similarily 

define Wii• Further define 

"-1 -1 
(22) /:::J.JJ =sup { lwii - wiij}. 

By Slutsky's theorem and equations (15)-(19), plim l:::J.JJ = O. Sufficient 

conditions for convergence of Yi• i ) 2, are 

"-1 -1 
plim X'(Qi - Qi )X/N 0 

"-1 A 

(23) plim X'Qi viii~ 
-1 -

plim X'Qi vi/iN i ) 2. 

Using (22) and (ii) and (iii), 
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"-1 -1 
plim X'(Qi - Qi ) X/N ( plim X'X~w/N Mx plim ~w o. 

"-1 -1 " -
(24) plim X'(Qi - Qi )vi/IN ( plim X'Vi plim ~ 

-nr 
o. 

From (14) plim vi 

Together equations (24) and (25) show that (23) is satisfied and hence 

the theorem is proved. Q.E.D. 

Using the results of Theorem 1 a large sample estimation algorithm for 

the Yi may proceed as follows: 

(a) estimate the "mean" function (11) and compute the residuals uj. 

(b) estimate the regression 

"i 
Uj = XjYi + Vij 

for all moments deemed relevant to the analysis to obtain consistent 

estimates of the Yi• 

(c) compute the feasible GLS estimators (20) and (21). 

Since the covariance matrices are diagonal, the GLS regressions can be 

computed as weighted least squares regressions with weights for (11) given by 

(xjY2)-.5 and weights for (12) given by 

One practical difficulty with the above estimation procedure is that the 

estimated variances used in the GLS regressions may be negative. This problem 

has arisen in the literature on the estimation of heteroscedastic regression 

models; in fact the model developed above can be interpreted as a 

generalization of heteroscedastic regression models proposed by Goldfeld and 
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Quandt (1972) and Amemiya (1977). Several other models have been proposed to 

overcome the negative variance problem (see Judge~~·, 1982, Ch. 14), 

although it can be shown that those models are similar to the Just-Pope model 

and impose the restrictions on the moment functions described above (Antle 

1981). To overcome the negative variance problem for the LHM I shall show 

that standard nonlinear programming methods provide a means of consistently 

estimating the parameters of the even moments under the non-negativity 

restriction. This approach is motivated by the fact that negative variance 

estimates are due to either small sample bias or sampling error in the 

estimates of the Yi• The non-negativity constraint on even moments holds with 

probability one, so the constrained estimator has smaller bias than the 

unconstrained one. Since restricted estimators generally are more efficient 

than unrestricted estimators, the mean squared error of the 

inequality-constrained estimator should be less than the mean squared error 

of the unconstrained estimator in small samples. In large samples the 

consistency of the Yi assures that the constraint holds and the problem 

disappears. Hence, use of inequality-constrained estimators for the Yi can 

improve small sample properties of the estimates and does not affect the large 

sample consistency properties. 

solve 

The inequality-constrained estimator for Y2 is obtained by choosing Y2 to 

N "2 
min E [uj - XjY2]2 
Y2 j =l 

subject to XjY2 > O. 

To estimate the Y2i for i > 2, choose Y2i to solve 

N "2i 
min E [uj - XjY2i]2 subject to [XjY2i - (xjyi)2] > 0, 
Y2i j=l 

where Yi has been obtained from a previous regression. The latter inequality 
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constraint simultaneously forces Y2i to satisfy the requirement that µ2i,j ) 0 

i 
as well as the requirement that the variance of uj be non-negative. Such 

inequality-constrained minimization problems can be solved with software such 

as the MINOS program (see Murtaugh and Saunders, 1977, 1978). 

B. Hypothesis Testing and the Joint GLS Estimator 

Testing hypotheses on the parameters of the LMM requires knowledge of the 

estimators' distributions. Under the conditions of the Lindberg-Feller 

Theorem (Gnedenko and Kolmogorov, 1954), the GLS estimators Yi defined in (20) 

and (21) have a normal limiting distribution with a covariance matrix 
"'-1 

(X'Qi x)-1. Therefore, in large samples, tests of hypotheses on individual 

parameters can be based on single-equation estimates using this limiting 

distribution. However, single equation GLS estimates are generally less 

efficient than joint GLS estimates because the error terms are correlated 

across equations. These cross-equation correlations must be taken into 

account when calculating test statistics for cross-equation parameter 

restrictions such as those discussed in section 1.7 The structure of the 

cross-equation covariances is seen as follows: for the first and ith moments 

the error terms Uj and vij give 

and for the ith and kth moments 

By the assumption of independence of the Uj' 

E(uj 
I 

vij ) = 0 j:f;j 

E(vij 
I I 

V,R_j ) 0 j:f;j . 
To illustrate the joint GLS estimator consider a three moment model, 

y W6 +£,where 
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y ~] ~2 ~ J ' 6 = [~;J ' 
o X3 Y3 

e: = 

2 
where Qii' i=2,3, is the diagonal matrix of µ2i,j - µij; Qil = Qli' i=l,2,3 

is the diagonal matrix of µl+i•j; and 032 = Q23 is the diagonal matrix of 

µ5j - µ2j µ3j• The feasible joint GLS estimator of 6 is 

where Q and y are as defined analogously to Q and y. We now prove the 

following generalization of Theorem 1. 

Theorem 2: 6 defined in (26) converges in distribution to 

(27) 6 = (W' Q-1 W)-1 W' Q-1 y. 

Proof: To utilize the results of Theorem 1 we need to show that Q-1 

satisfies Slutsky's Theorem, i.e., that the elements of Q-1 can be 

defined as continuous functions of the elements of Q. This fact can 

be shown by noting that the Qii are diagonal matrices and by applying 

the partitioned matrix inverse rule to Q. It follows that 

[011 Ql2 gl:] 0-1 = Q12 Q22 Q23 
Ql3 Q23 Q33 

where the Qij are diagonal matrices whose diagonal elements are 

continuous functions of the elements of Q and independent of N, the 

sample size. Therefore, for all N we can define the elements wij of 

Q-1 and claim that plim wij = wij where wij is the (i,j) element of 

Q-1. Proceeding along the lines of Theorem 1, define 
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for which plim ~w = O. Now define R as the 3N x 3N matrix obtained by 

replacing the Qij in Q with identity matrices . Then, as in Theorem 1, it 

follows that 

-1 "'-1 
plimW'(Q - Q )W/N < plim W'RW &.> 

N 

"'-1 -1 "' -

0 

plim W'(Q - Q )£/IN < plim W'R£ ~w = 0 
nr 

which is sufficient to show o converges in distribution to o. Q.E.D. 

To compute the feasible joint GLS estimator defined in (27), Q must be a 

positive definite matrix. The consistent moment estimates, however, do not 

necessarily satisfy this requirement. Using the methodology discussed above 

for imposing inequality constraints it is possible to restrict the consistent 

moment estimates so that Q is positive definite. For example, the necessary 

and sufficient conditions for Q defined above to be positive definite are 

IC1I > 0, IC2I > 0, IC3I > 0, where Ci is the ith principal minor of Q. 

These conditions amount to inequality restrictions on the moments. Since 

2 
IC1I = IQ11I and IC2I = (Q11Qzz) - Q21• the first two conditions can be 

"'2 
imposed using the linear inequality constraints Qll > 0 and Q22 > Q21/Q11· 

However, for Ci, i > 2, the constraints become nonlinear and require 

that several moment functions be jointly estimated. Such estimation procedures 

are possible using the MINOS/AUGMENTED nonlinear optimization program but are 

likely to be very costly. Therefore, joint GLS estimation may be extremely 

costly when more than two moment functions are jointly estimated. This means 

that it is advisable to test cross-moment parameter restrictions with pairs of 

jointly estimated moment functions as a first step in an analysis. Whether 

more than pair-wise estimation is attempted should depend on the need for 

improved efficiency relative to the increased estimation cost. 
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IV. AN APPLICATION TO MILK PRODUCTION 

I now apply the flexible moment approach to milk production data. Milk 

production is an attractive process to study because it is a true 

single-product process. In addition, inputs are chosen prior to the 

production period and are therefore exogenous to output. The model is not 

subject to simultaneous equation bias as would be the case if inputs were 

chosen sequentially (Antle 1983). 

The monthly data represent nine Tulare County, California, dairies over a 

30 month period. These high quality data were obtained from a computerized 

data collection and processing system. For a detailed discription of the 

data, see Goodger (1981). The results reported here are based on an in-depth 

analysis of milk production by Antle and Goodger (1982). 

I use the quadratic form of the LMM given in equation (9). The data are 

monthly time series so it is necessary to account for autocorrelation. 

Because the nine dairies are subject to similar weather and climatic shocks, 

and only 30 (or fewer) observations are available per dairy, the same 

first-order autocorrelation coefficient is assumed for all dairies. The mean 

function is assumed to be 

Ojt = µljt + ujt• j=l, ••• , 9, t=l, ••• , 30, 

where 

and 

- J" =J" I ! t=t I • - µk+.R. ,j t, 

Therefore, by applying the transformation 
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to the mean function, the higher moment functions can be estimated by 

hypothesizing that the moments of Ejt are functions of inputs. 

Based on this model, the following estimation procedure was used: First 

the mean function was estimated to obtain a consistent estimate of p. The 

data were transformed with p and the mean equation was re-estimated to 

obtain residuals Ejt• Second, the Ejt were used in inequality-constrained 

regressions to consistently estimate the parameters of µ2jt' µ3jt' µ4jt' µ5jt• 

and µ6jt• Third, these estimated moments were used to compute the feasible 

GLS estimators for µljt' µ2jt• µ3jt• To test the cross-moment restrictions 

given in equations (2) and (4), the parameters of µ2jt and µ3jt were jointly 

estimated.8 

The inputs in the model are feed; animal capital measured as herd size 

adjusted for breed, age, and health; physical capital measured as milking 

capacity of the dairy; and management measured by an index computed from a 

survey of the dairy managers. Environmental and herd health variables were 

also included in the model. The mean production elasticities for the first 

three moments with respect to each input are presented in Table 1 with their 

standard errors. The x2 statistic (as in Theil, 1971, Ch. 8) for the null 

hypothesis of zero slope coefficients of each moment function are also 

presented in Table 1. These statistics show that all three moments are 

clearly significant functions of inputs. The fundamental hypothesis of the 

moment-based approach, that moments are functions of inputs, is supported by 

the data. 

The elasticities in Table 1 suggest that the restrictions implied by the 

multiplicative error model, given in equation (2), are rejected, since the 

elasticities of higher moments are not all positive. The negative 
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elasticities of µ2 with respect to physical capital and µ3 with respect to 

feed show that the multiplicative error model is a very poor approximation to 

the output distribution. The elasticities in Table 1 also indicate that the 

restrictions implied by the Just-Pope model (equation 4) are rejected, because 

the elasticities of the third moment are not equal to 1.5 times the 

elasticities of the variance. Indeed, except for the animal capital variable, 

the elasticities of µ2 have the opposite sign from the elasticities of µ3. 

Thus it would clearly be inappropriate to constrain all the elasticities of µz 

and µ3 to have the same sign. 

A formal test of the restrictions of the multiplicative error model and 

the Just-Pope model is obtained by noting that both (2) and (4) imply 

D3k 3D2k/2. Using equation (10) these restrictions can be expressed as: 

(28) 
~3k = (3µ3jt/ 2µ2jt) ~2k 

Y3ki = (3µ3jt/Zµ2jt)Y2ki 

for all k and i. These restrictions were tested at the sample means of the 

moments by computing 

x2/R = SSEr _ SSEu/R 
SSEu/DF 

where SSEr is the sum of squared residuals under the restriction, SSEu is the 

sum of squared residuals from the unrestricted model, R is the number of 

restrictions, and DF is the degrees of freedom. Asymptotically, x2 has the 

Chi-square distribution with R degrees of freedom. Under restrictions (28) we 

obtain x2(18) = 76.84 which far exceeds the 5 percent critical value of 28.26. 

Thus, as examination of the moment elasticities suggests, both the 

multiplicative error model and the Just-Pope model are rejected by the data in 

favor of a more flexible specification. 
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IV. CONCLUSIONS AND FUTURE RESEARCH 

The aim of this paper is to develop a flexible representation of a firm's 

stochastic production process which can be estimated and subjected to 

statistical test. This study is motivated by the fact that conventional 

production function specifications impose restrictions on the probability 

distribution of output which cannot be tested with the conventional models. 

These restrictions have important implications for the behavior of the firm. 

Because output distributions are unique functions of their moments the 

stochastic structure of any production process can be inferred by measuring 

its moments. A linear moment model (LMM) is developed which is sufficiently 

flexible to test restrictions within and across moments such as those implied 

by the conventional production function models discussed in section I. A 

quadratic representation of the moment functions is suggested in section II as 

a flexible linear-in-parameters moment model. 

The LMM restricts moment functions to be linear in the parameters. 

Although polynomial functions such as the quadratic can provide flexible 

representations of moment functions, statistical problems may arise because of 

a large number of parameters. Using Malinvaud's (1970) results on consistency 

of nonlinear least squares regressions, it would appear that the statistical 

results obtained in this paper for linear moment functions could be extended 

to the case of nonlinear functions, thus permitting models to be specified 

with fewer parameters. 

Due to previous methodological limitations, little is currently known 

about the stochastic structure of production. The approach developed in this 

paper opens the way for testing the characteristics of the stochastic 

structure of production processes which are known to have important behavioral 
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implications but heretofore could not be rigorously tested. The estimates 

presented here showed that, in the case of milk production, the multiplicative 

error model and the Just-Pope model are not sufficiently flexible to represent 

the output distribution. Therefore, inferences of firm behavior under 

uncertainty based on those models could be misleading. We now need further 

measurement and testing of the stochastic structure of production processes to 

discover what empirical regularities exist and to further explore their 

implications for our understanding of firm behavior. 

cg 1/6/83 P32 
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Footnotes 

1. The reader should note that most recent specifications of frontier 

production functions (see Forsund, Lovell, and Schmidt 1980) have 

multiplicative errors and therefore impose restrictions of the form (2) 

across moments. 

2. When u is normal it follows that 

2k 
µ2 (2k!). 

2k k! 

3. Higher moments have been introduced in the finance literature in numerous 

studies. For a survey of the literature and analysis of a 3 moment 

portfolio model see Francis and Archer, 1979, Ch. 16. 

4. The solution of the "Stieltjes moment problem" shows that a sufficient 

condition for a set of moments to define a unique distribution is 

that the range of the random variable is finite. This condition clearly 

holds for output, which also shows that all moments of output exist. 

5. An alternative derivation of these moment functions can be based on the 

general theory of regression (Kendall and Stuart, 1979, Ch. 28). Assume 

the joint distribution function of Q and x is f(Q,x); then for any value 

x0 of x we can define 

J Qf(O,x0 )dQ/f f(Q,x 0 )dQ 

J [Q-µ1(x 0 )]i f(Q,x 0 )dO/ff(O,x0 )dQ. 

and thus obtain the moments as functions of x as in equation (5). The 

inputs can be treated as predetermined variables in the model under the 

following assumptions: (a) the firm chooses inputs to maximize the 

mathematical expectation of a function of output in a single period, or 
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(b) the firm chooses inputs over time using an open-loop control 

algorithm. However, if inputs are chosen sequentially and there is 

information feedback, inputs become endogenous variables in the model. 

See Antle (1983) for a detailed analysis of this issue. 

6. Day's (1965) pioneering study of yield distributions in agriculture used 

the Beta distribution and the method of moments to show how the shape of 

yield distributions changes with the level of nitrogen fertilizer inputs. 

7. Note that production models based on cross-section data usually have the 

same regressors in each equation. However, there is still an efficiency 

gain from the joint GLS estimator relative to single-equation GLS 

because the covariance matrix is different from the seemingly unrelated 

regression case. 

8. As noted above, joint GLS estimation poses the problem of obtaining a 

positive definite covariance matrix for the equation system. It is 

sufficient to jointly estimate the second and third moment functions to 

test the restrictions implied by the multiplicative error model and the 

Just-Pope model. 
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Table 1 

Mean Moment Elasticities Based on GLS Estimates of 
Quadratic Moment Functions 

Elasticity with Moment 
respect to: First Second Third 

.059 .448 -33.276 
Feed ( .027) (.779) (12. 238) 

Physical .678 -4.051 153.102 
Capital (. 311) ( 1.580) (44. 584) 

Animal .877 1.057 8.414 
Capital (.065) (. 992) (16. 727) 

.230 -1.557 75.269 
Management (.291) (2.241) (32. 726) 

x2C18) 7130 855.5 67.68 

Note: Standard errors in parentheses. Moment 
elasticities computed at sample means of the 
data. 
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