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AbstractThe most widely used multivariate statistical models in the social and behavioralsciences involve linear structural relations among observed and latent variables. Inpractice, these variables are generally nonnormally distributed, and hence classicalmultivariate analysis, based on multinormal error-free variables having no simultane-ous interrelations, is not adequate to deal with such data. Since structural relationsamong variables imply a structure for the multivariate product moments of the vari-ables, general methods for the analysis of mean and covariance structures have beenproposed to estimate and test particular model structures. Unfortunately, extantstatistical tests, such as the likelihood ratio test (LRT) and a test based on asymp-totically distribution free (ADF) covariance structure analysis, have been found to bevirtually useless in practical model evaluation at �nite sample sizes with nonnormaldata. For example, in one condition of a simulation on con�rmatory factor analysis,the LRT rejected the true model about 99.5% of the time at sample sizes from n =150 to n = 5000, while the ADF test either always rejected the true model or didnot converge at n = 150, rejected the true model over 90% of the time at n = 250,and did not perform nominally until n = 5000. Clearly, improvedmethods are needed.We take a new look at the basic statistical theory of structural models under ar-bitrary distributions, using the methodology of nonlinear regression and generalizedleast squares estimation. For example, we adopt the use of residual weight matricesfrom regression theory. We develop a series of estimators and tests based on pseudomaximum likelihood and arbitrary distribution theory. We obtain a type of prob-abilistic Bartlett correction for various test statistics that can be simply applied inpractice. A small simulation study replicates the extremely inadequate performanceof one of our own, and the classical ADF, model tests. In contrast, our correctedstatistics have approximately correct means at all sample sizes, though there is a ten-dency for their variances to be too low at the smallest sample sizes leading to some\overacceptance" of the true model.KEY WORDS: Mean and covariance structures; structural relations; structuralequations; asymptotic distribution free; test; small sample sizes; corrections on tests.



1 INTRODUCTIONLinear structural equation models can be described as a class of models in whicha p�variate vector of variables X is presumed to be generated as X = A�, where thematrix A = A() is a function of a basic vector of parameters, and the underlying k(k � p) generating variables � may represent measured, latent, or residual random or�xed variables (e.g., Anderson, 1989; Bentler, 1983a; Satorra and Neudecker, 1994).Examples of such models are path analysis, con�rmatory factor analysis, simultane-ous equation, and errors in variables models, and especially the generalized linearstructural relations models made popular in the social and behavioral sciences bycomputer programs such as LISREL (J�oreskog & S�orbom, 1993) and EQS (Bentler& Wu, 1995a,b). These models represent by far the most widely used multivariatemodels in the social and behavioral sciences (e.g., Bollen & Long, 1993; Byrne, 1994;Hoyle, 1995), to which a new journal Structural Equation Modeling is devoted entirely.While there are many approaches towards estimating and testing specialized variantsof these models (see e.g., Anderson, 1994; Fuller, 1987), generic classical approachessuch as regression often can not be used because the � variables may all be hypothet-ical variables which are in principle not observable. An example is factor analysis, inwhich the � variables are common and unique factors that, unlike principal compo-nents, cannot be expressed as linear combinations of the X variables. However, sincethe models imply a parametric structure for the multivariate moments of the X vari-ables, especially, the means and covariances (but also higher-order moments, Bentler,1983a), it is possible to estimate and test the models as so-called mean and covari-ance structure models. That is, the parameters can be estimated, and the model nullhypothesis tested, without use of the � variables by relying on unstructured sample1



estimators �X and S of the population mean vector � and covariance matrix � of theX variables. This can be done because any linear structural model implies a morebasic set of parameters �, so that � = �(�) and � = �(�). The q parameters in �represent elements of  as well as the intercepts, regression coe�cients, and variancesand covariances of the � variables. Of course, moment structure models can be spec-i�ed without relying on a linear structural model for motivation; a classic example isthe intraclass model in which � is unstructured and � = c11T + (b � c)I. So, whilelinear structural models provide the most typical motivation for mean and covariancestructural models, such models have a broader general relevance.Estimation and testing mean and covariance structure models is a straightforwardmatter when the variables �, and hence the X variables, are presumed to be mul-tivariate normally distributed. Then, with a sample X1, : : :, Xn from X, classicalmultivariate analysis can be brought to bear, e.g., via the normal theory maximumlikelihood estimator (MLE) and the likelihood ratio test (LRT). Unfortunately, mostsocial and behavioral data are clearly nonnormal (e.g., Micceri, 1989), so classicalmethods can yield very distorted results. For example, in one condition of a simula-tion with a con�rmatory factor analysis model, Hu, Bentler, and Kano (1992) foundthat the LRT rejected the true model in 1194 out of 1200 samples at sample sizesthat ranged from n=150 to n=5000. Nonetheless, MLE and LRT remain by far themost widely used methodology in practice (e.g., Gierl & Mulvenon, 1995). Some al-ternatives to LRT in this context have been proposed (Arminger & Schoenberg, 1989;Bentler, 1994; Browne, 1984, eq. 2.20; Kano, 1992; Satorra & Bentler, 1988, 1994),but these methods accept the MLE, which is not fully e�cient in the face of violationof distributional assumptions.In order to solve the fundamental problem of incorrect and misleading LRT statis-tics, and to obtain an estimator with greater precision, Browne (1982, 1984) and2



Chamberlain (1982) used Ferguson's (1958) minimum modi�ed �2 principle to de-velop an "asymptotically distribution free" (ADF) methodology (called "minimumdistance" by Chamberlain) for covariance structure analysis (in which � is unstruc-tured). This approach was extended to asymptotically equivalent linearized estima-tors by Bentler (1983b) and Bentler and Dijkstra (1985), and to mean and covariancestructure analysis by Bentler (1989, Ch. 10) and Muth�en (1989). While the ADFmethodology is correct asymptotically, and it can perform reasonably well with smallmodels (e.g., Henly, 1993), in larger models with small to medium sized samples it canbe extremely misleading (e.g., Hu et al, 1992; Muth�en & Kaplan, 1992; West, Finch,& Curran, 1995). For example, in the condition noted above, Hu et al found that themethod either always rejected the true model or did not converge at n=150; rejectedthe true model over 90% of the time at n=250; and did not perform nominally untiln=5000. Although a computationally intensive improvement on ADF statistics hasbeen made (Yung & Bentler, 1994), and in spite of technical developments since 1982as noted below, ADF theory thus also remains clearly inadequate to evaluate linearstructural or mean and covariance structure models. See Bentler and Dudgeon (inpress) for a review.As a result of the remarkable failure of ADF theory to be relevant to nonasymp-totic samples, it seems time to take another basic look at estimation of structuralmodels under arbitrary distributions. We do this by invoking the methodology ofnonlinear regression, which has previously been considered relevant by Browne (1982),Lee and Jennrich (1984), Shapiro (1986), Fuller (1987), and Bentler (1993). Unfortu-nately, these workers did not provide any methods to improve on ADF. We shall see,however, that theoretical as well as empirical improvements on ADF can be achieved.In particular, based on the standard regression idea of using residual weight matricesin generalized least squares (GLS) estimation, we develop a class of estimators andtests. Among these are Bartlett-type corrected ADF statistics which are asymptoti-3



cally equivalent to ADF but outperform it in nonasymptotic samples.Turning now to more technical matters, Satorra (1992) modeled the means andcovariances simultaneously. His GLS method is to model the sample covariance of(XT ; c1), where c is a known constant, and use a singular matrix as a weight ma-trix. Under the assumption that X has �nite eighth order moments, Bentler (1989),Muth�en (1989), and Browne and Arminger (1995) model the sample mean and co-variance matrix ( �X;S) simultaneously, using the inverse of the sample covariance of( �X;S) as a weight matrix. Our approach is di�erent from Browne and Arminger's(1995) in that we model the raw moment of (X; vech(XXT )), where vech(:) is thefunction which transforms a symmetric matrix into a vector by picking the nondupli-cated elements of the matrix. Model structures on raw moments generated by linearstructural models on the variables are well-known (e.g., Bentler, 1983b; Satorra andNeudecker, 1994). Our perspective is di�erent from Satorra's in that we consider thestatistical properties of the estimator in a more rigorous way. Following these au-thors, we can use the inverse of the sample covariance of (X; vech(XXT )) as a weightmatrix. However, in the spirit of regression, we show that another asymptoticallyequivalent weight matrix is the inverse of the cross products of the �tted residuals.Moreover, we do not need any distributional assumption besides that the �rst fourmoments of X are �nite.We have the following notation: Yi = vech(XiXTi ), Zi = (XTi ; Y Ti )T , �(�) =vech(�(�)), � (�) = vech(�(�)�T (�)) and�(�) =  �(�)�(�) + � (�) ! :So we have EZi = �(�0) + ei; (1)4



where ei are iid with Eei = 0 andvar(ei) = V =  V11 V12V21 V22 ! ;the true covariance matrix of Zi. Since we have a correct structure on var(X),V11 = �(�0), but we may not have any structure on V12 and V22. De�neQn(�) = 1n nXi=1(Zi � �(�))TWn(Zi � �(�)); (2)whereWn is a possibly random weight matrix. Then the estimator �̂n which minimizesQn(�) will be referred to as a GLS estimator of �0. As the stochastic function Qn(�)is the standard quantity to be minimized in a regression model, it is also the objectivefunction we will work with in Section 2. SinceQn(�) = 1n nXi=1(Zi � �Z)TWn(Zi � �Z) + ( �Z � �(�))TWn( �Z � �(�)); (3)and the �rst term in (3) does not involve �, the generalized least squares estimator�̂n also minimizes Fn(�) = ( �Z � �(�))TWn( �Z � �(�)): (4)The equivalence of Fn(�) and Qn(�) was formally observed by Shapiro (1986) in thesetting of iid Zi. Note that the equivalence of minimizing Qn(�) and Fn(�) holdsalgebraically even when Zi are not iid. Consequently, mean and covariance structureanalysis can be performed for only independent Zi with common �rst four moments.Actually, all the theorems in the next two sections hold if we assume that Xi are inde-pendently distributed with common �rst four moments, and the �fth moments of Xiare uniformly bounded. Since independent random variables with common �rst fourmoments are not far from iid, we will only deal with iid Xi because of the theoreticalsimplicity.Arminger and Schoenberg (1989) considered modeling the mean and covarianceby the pseudo MLE (PMLE) method of Gourieroux, Monfort, and Trognon (1984).5



In the setting of iid observations, the assumptions of Gourieroux et al are morethan enough. However, Gourieroux et al's assumptions are hard to check. Under aset of much simpler assumptions, we also will consider the statistical properties ofthe PMLE. Unless speci�ed otherwise, we denote _h(�) = @h=@�T , evaluated at �.In order to get a PMLE estimator, the iteratively reweighted least squares methodthrough a Gauss-Newton algorithm is often used to solve the following equation for�̂n, _�T (�)W (�)( �Z � �(�)) = 0; (5)where W (�) =  �(�) �(�)�T (�) 	(�) !�1 (6)and �(�) = cov(Xi; Yi), 	(�) = var(Yi) are given by normal theory. When the PMLfunction is not concave, the solution to equation (5) is not unique. Our perspectiveis di�erent from Gourieroux et al (1984) in that we will show that there is a solutionnear the true �0. Our estimation of standard errors is also di�erent from PMLE.The existence of a root of an equation like (5) was formerly considered by Ferguson(1958). He used the implicit function theorem in proving the existence of the root.The approach we use is di�erent from Ferguson's in that we will use the inverse func-tion theorem to show the existence of a root of (5). Our approach is less involvedthan that of Ferguson and our assumptions are simpler and easier to check.When there is no interest in a structured mean, the unknown parameters willinclude both the mean parameter � and the structured covariance parameter. Thecommon practice in covariance structure analysis is to use �X as the estimator for �0and �t the sample covariance S to �(�) by MLE assuming X � N(�0;�(�0)). Since�X and S are independent when X is normal, modeling S by �(�) is the approachof marginal likelihood or conditional likelihood as de�ned in Cox and Hinkley (1974,p. 17). When X is not normal, the sample mean �X and S are not independent anymore. Modeling S by �(�) using the ADF method only uses marginal information.6



Some information will be lost in general by using a summary statistic S though itis hard to say how much information is lost as discussed by Cox and Hinkley (1974,p. 17-18). When Xi is not normal, �X may not be the most e�cient estimator of �0anymore. Even though � is a nuisance parameter in covariance structure analysis,the e�ciency of an estimator for � can inuence the e�ciency of the estimator ofthe structured covariance parameter (Pierce, 1982). Thus, it is tempting to considermodeling the mean and the covariance simultaneously even when we do not have aninterest in a structured mean. One way is to treat the mean �0 as unknown and letthe parameter � include both � and the structured covariance parameter. But notknowing �0, it is plausible that we can not extract any information about � from�X as commented by Cox and Hinkley (1974, p. 18) in a similar example. Since fornonsymmetric distributions, it is very hard to clarify the above discussion, we willcontinue this after some empirical evidence at the end of the paper.We will investigate the consistency and asymptotic normality of both the GLSestimator and the normal theory MLE. A new estimator of the asymptotically cor-rect covariance matrix will also be given for each estimator. Some rigorous proofwill be given whenever necessary. Since for iid samples, the main applications arein structured covariances (e.g., factor analysis model) rather than structured meanmodels, we will develop the general theory for model (1) but emphasize applicationsin structured covariances with an unstructured mean. We consider the GLS estimatorin Section 2 and the normal theory MLE when the data are not normal in Section 3.In Section 4, we discuss a di�erence between the di�erent GLS weight matrices andgive our corrected test statistics. Some empirical performance of the corrected teststatistics will be presented in Section 5. Conclusions and remarks will be given at theend of this paper. 7



2 RESIDUAL-BASED GENERALIZED LEASTSQUARESIn this section, we consider the consistency, asymptotic normality and tests ofthe GLS estimator which minimizes (2) or (4). Especially, a consistent estimator ofV based on the �tted residuals will be given. The advantage of residual-based teststatistics will be discussed in Section 4. We need the following assumptions for ourresults in this paper.Assumptions:A1. �0 2 � which is a compact subset of Rq.A2. �(�) = �(�0) only when � = �0.A3. �(�) is twice continuously di�erentiable.A4. _�(�0) is of full rank.For consistency and asymptotic normality of �̂n, we do not require the covariance ofZ to be nonsingular.The following theorem is about the strong consistency of the GLS estimator.Theorem 1. Let Wn be a sequence of weight matrices which converges almostsurely to W , a positive de�nite matrix. Under assumptions A1 and A2, �̂n a:s:�! �0.Proof: Since minimizing Qn(�) is equivalent to minimizing Fn(�), we will work onFn(�) here. Since �Z a:s:�! �(�0) by the strong law of large numbers, we haveFn(�) a:s:�! (�(�0)� �(�))TW (�(�0)� �(�)): (7)8



Since all the �̂n lie in � which is compact, we can choose a subsequence �̂ni whichconverges to �0. Since Fni(�̂ni) � Fni(�0);letting ni !1, we have(�(�0)� �(�0))TW (�(�0)� �(�0)) � 0:Since W is positive de�nite, we must have �0 = �0. So any convergent subsequenceconverges a.s. to �0 and this proves �̂n a:s:�! �0.Theorem 1 tells us that as long as �(�) is identi�ed, the estimator that minimizes(1) is strongly consistent. We can choose Wn to be the identity matrix, the inverse ofthe sample covariance of Zi, or the inverse of the cross products of the �tted residualsassuming the covariance of Zi is nonsingular. When the mean is unstructured, anidenti�ed �(�) will make �(�) identi�ed.In order to get the GLS estimator of �0, a common practice is to solve the followingequation for �̂n by the Gauss-Newton algorithm,_�T (�)Wn( �Z � �(�)) = 0: (8)The following theorem is about the asymptotic normality of the GLS estimator whichsatis�es (8).Theorem 2. Assume A3 and A4, if Wn P�! W and �̂n P�! �0, then �̂n isasymptotically normal with pn(�̂n � �0) L! N(0;
);where 
 = A�1�A�1 with A = _�T (�0)W _�(�0)9



and � = _�T (�0)WVW _�(�0):Proof: Since �̂n satis�es (8), using the Taylor expansion on �(�), we have_�T (�̂n)Wnpn�e = f _�T (�̂n)Wn _�(��n)gpn(�̂n � �0); (9)where �e = �Z� �(�0) and ��n lies between �0 and �̂n. Since � has continuous derivativesand pn�e L! N(0; V ), the theorem follows from (9) and the Slutsky theorem.When V is full rank, we have the following corollary which is an asymptotic ver-sion of the Gauss-Markov theorem.Corollary 1. When W = V �1, the 
 in Theorem 2 simpli�es to
�1 = _�T (�0)V �1 _�(�0)and we get a minimum variance estimator asymptotically among all estimators whichsatisfy (8).When �0 is unstructured we denote the estimator as (�̂n; �̂n). If V is nonsingular,we have the following corollary.Corollary 2. In Theorem 2, let W = V �1. If all the third central moments of Xare zero, then �̂n and �̂n are asymptotically independent withpn(�̂n � �0) L! N(0;��1(�0))and pn(�̂n � �0) L! N(0;
22);10



where 
�122 = _�T (�)B�1 _�(�);and B = V22 � V T21��1V12.Moreover, when the 4th central moments of X satisfy�ijkl = �ij�kl + �ik�jl + �il�jk;then 
�122 has a simplier form
�122 = 12 _�Ta (�)(��1 
 ��1) _�a(�); (10)where �a(�) = vec(�(�)) and all the matrix functions are evaluated at �0.Since the proof of the above corollary is not so interesting and involves a lot ofalgebraic operations, we give it in the appendix.Corollary 2 tells us that if all the third central moments of X are zero, we canmodel � and � separately and do not lose any information asymptotically. This isthe case with the multivariate elliptically symmetric distribution (Fang, Kotz, andNg, 1990; Shapiro and Browne, 1987).Since the asymptotic covariance matrix of �̂n in Theorem 2 involves an unknownmatrix V , we need a consistent estimator of it in order to do some tests or to com-pute the standard errors. Further, according to Corollary 1, if we choose a properweight matrix Wn in Theorem 2, we can get a more e�cient estimator. An obviousestimator of V is the sample covariance Sz = 1n Pni=1(Zi � �Z)(Zi � �Z)T . An asymp-totically equivalent one is the cross product of the �tted residuals. In the context ofregression, estimating the variance and covariance matrix through residuals has beenused extensively. It can also be used in mean and covariance structure analysis.11



Theorem 3. If �(�) is a continuous matrix function and �̂n is strongly consistent,then V̂n = 1n nXi=1(Zi � �(�̂n))(Zi � �(�̂n))T (11)is a strongly consistent estimator of V .Proof: V̂n = 1n nXi=1 eieTi + (�(�0)� �(�̂n))�eT + �e(�(�0)� �(�̂n))T+ (�(�̂n)� �(�0))(�(�̂n)� �(�0))T : (12)Since � is continuous, the last three terms in (12) approach zero. The theorem followsby the strong law of large numbers.From the above three theorems, we can use a two stage estimating process. First,use least squares, for example, to get a consistent estimator of �0. Then, usingWn = V̂ �1n in (11) as the weight matrix in Theorem 2, the corresponding updated es-timator will be most e�cient asymptotically according to Corollary 1. This is a typeof linearized improvement estimator (Bentler, 1983b; Bentler and Dijkstra, 1985). Forsmall to medium sample sizes, it is known that the e�ciency of an estimated weightmatrix inuences the e�ciency of the mean parameter (Carroll, Wu, and Ruppert,1988). For linear regression models, if starting with least squares, Carroll et al rec-ommend repeating this process at least twice. Their recommendation also applies toour estimator in Theorem 2.Next we propose a test for the overall �t of the model. This test requires either theweight matrix S�1z or V̂ �1n . We will discuss the di�erence between V̂ �1n and S�1z in de-tail in Section 4. The following lemmawill simplify the proofs regarding test statistics.12



Lemma 1. For the �̂n in Theorem 2, we havepn( �Z � �(�̂n)) = fI � _�(�0)[ _�T (�0)W _�(�0)]�1 _�T (�0)Wgpn�e+ op(1):Proof: Using the Taylor expansion on �(�), we have�(�̂n) = �(�0) + _�(�0)(�̂n � �0) +Op( 1n): (13)From (9) we havepn(�̂n � �0) = [ _�T (�0)W _�(�0)]�1 _�T (�0)Wpn�e+ op(1): (14)The lemma follows from (13), (14) andpn( �Z � �(�̂n)) = pn( �Z � �(�0))�pn( �Z � �(�̂n)) +Op( 1pn):Theorem 4. Under assumptions A1 to A4, if Wn P�!W , thennFn(�̂n) = nQn(�̂n)� nQn( �Z) L!Xk �k�21;where Qn( �Z) denotes the �tted index of the unstructed mean and covariance and the�0ks are the nonzero eigenvalues of V 12W 12MW 12V 12 withM = I �W 12 _�(�0)[ _�T (�0)W _�(�0)]�1 _�T (�0)W 12 :Further more, if V is nonsingular and W = V �1, thennFn(�̂n) = nQn(�̂n)� nQn( �Z) L! �2p+p��q;where p� = p(p+ 1)=2. 13



Proof: From Lemma 1, we havenFn(�̂n) L! UTV 12W 12MW 12V 12U= Xk �k�21; (15)where U � N(0; I). Furthermore, when W = V �1, V 12W 12MW 12V 12 = M which is aprojection matrix of rank p + p� � q, the theorem follows.Theorem 4 gives us a way to test the general �t of the hypothetical structure.Note that when W does not equal V �1, �̂n will not be asymptotically e�cient. Thenthe distribution of nQn(�̂n; �̂n) � nQn( �X; s) can be approximated by ��2r, where ris the rank of V 12W 12MW 12V 12 and r� = tr(V 12W 12MW 12V 12 ). Details of such anapproximation can be found in Satorra and Bentler (1988, 1994). It works well incovariance structure practice (Chou, Bentler, and Satorra, 1991; Hu et al, 1992). Asecond alternative is to use an approximation to the distribution of a mixture of �21variates, as proposed by Bentler (1994). The success of such a testing procedurewill depend on the quality of the approximation. A third test alternative is to ex-tend Browne's (1984, Proposition 4) residual covariance test to mean and covariancestructure analysis. To implement it, we need a consistent estimator ~Vn of V .Corollary 3. Under assumptions A1 to A4, if ~Vn P�! V , thenn( �Z � �(�̂n))T _�c(�̂n)f _�Tc (�̂n) ~Vn _�c(�̂n)g�1 _�Tc (�̂n)( �Z � �(�̂n)) L! �2p+p��q;where _�c(�̂n) is a (p+ p�)� (p+ p� � q) matrix of full column rank with columns thatare orthogonal to _�(�̂n).Proof: From Lemma 1, we havepn( �Z � �(�̂n)) L! (0;�);14



where � = (I �H)V (I �H)T withH = I � _�(�0)[ _�T (�0)W _�(�0)]�1 _�T (�0)W;so pn _�Tc (�̂n)( �Z � �(�̂n)) L! N(0; _�Tc (�0)V _�c(�0)): (16)The corollary follows.Even though �̂n does not need to be most e�cient in Corollary 3, it still requiresa consistent estimator of V . As in Theorem 4, both Sz and V̂n can be used in placeof ~Vn under arbitrary distributions. Browne's test and Satorra's (1992) extension tomean and covariance structures were based on Sz. The relation between the resultingtests will be discussed in detail in Section 4. As noted by Bentler (1989) and Satorra(1992), if the distribution is known to be normal, a normal theory estimator ~Vn canbe used instead. The �2 test in Theorem 4 can be invoked by a two step procedureif W 6= V �1. For example, if we start with a least squares �t, we can use V̂ �1n as aweight matrix and update �̂n, then nF (�̂n) L! �2p+p��q.3 NORMAL THEORY MLE WHEN DATA ARENOT NORMALIn this section, we will consider the behavior of normal theory MLE when thedata are not normal. As in the last section, we suppose that the mean and covariancestructure �0 = �(�0) is correct and we model Zi in (1) as a nonlinear regression model.We also need to assume that �(�0) is positive de�nite in this whole section. We need15



some preparations �rst.Let Br(x0) be a ball of radius r with center at x0. The following lemma is amodi�ed version of the fundamental inverse function theorem (Rudin, 1976, p. 221).Lemma 2. Let f(x) be a continuously di�erentiable mapping from Rp to Rp. LetA be a nonsingular p� p matrix and � = 12 jjA�1jj�1. If Br(x0) is a ball on whichjj _f(x)�Ajj < �;then f(Br(x0)) contains the ball B�r(f(x0)).Since both �(�) and 	(�) in (6) are functions of �(�) and �(�), when �(�0) isnonsingular, we can check by a tedious veri�cation that W (�0) de�ned in (6) existsand is positive de�nite. Now letgn(�) = _�T (�)W (�)( �Z � �(�)); (17)we have _gn(�) = � _�T (�)W (�) _�(�) + f @@�T [ _�T (�)W (�)]g( �Z � �(�)):Let g(�) = _�T (�)W (�)(�(�0)� �(�)); (18)then we have_g(�) = � _�T (�)W (�) _�(�) + f @@�T [ _�T (�)W (�)]g(�(�0)� �(�))and both gn(�) a:s:�! g(�);and _gn(�) a:s:�! _g(�)16



uniformly on �.Theorem 5. Under assumptions A3 and A4, with probability 1 there is a r > 0such that gn(�) has a zero point in Br(�0) for all n su�ciently large.Proof: Let A = _g(�0) which is nonsingular and � = 12 jjA�1jj�1. Since _gn(�) convergesto _g(�) uniformly on �, there exist positive numbersN1 and r such that for all n > N1jj _gn(�)�Ajj � jj _gn(�)� _g(�)jj+ jj _g(�)� _g(�0)jj< �; � 2 Br(�0):Applying Lemma 2 to gn(�), it follows that gn(Br(�0)) contains a ball B�r(gn(�0)) forall n > N1. Since gn(�0) a:s:�! 0, there exists a number N2 such that jjgn(�0)jj < �rfor all n > N2. Let N = max(N1; N2), we have 0 2 B�r(gn(�0)) for all n > N . Thus0 2 B�r(gn(�0)) and there is a zero point of gn in Br(�0) for all n > N .When the mean is unstructured, then_�(�; �) =  I 0_�(�) _�(�) ! :Since I _�T (�)0 _�T (�) ! �(�) �(�)�T (�) 	(�) !�1 =  ��1 0� _�T (�)B�1�T��1 _�T (�)B�1 ! ;(5) is equivalent to( �̂n = �X_�Ta (�)(��1(�)
 ��1(�))(vec(S)� �a(�)) = 0: (19)From Theorem 5 and (19), we have the following corollary.Corollary 4. Under assumptions A3 and A4, with probability 1 there is a r > 0such that the second equation in (19) has a solution in Br(�0) for all n su�ciently17



large.The following theorem is about the strong consistency of �̂n which satis�es (5).Theorem 6. Under assumptions A2, A3 and A4, if �̂n satis�es gn(�̂n) = 0 andis in Br(�0), then �̂n a:s:�! �0.Proof: Since _g(�) is nonsingular in Br(�0), the function g(�) has a unique zero pointof �0 in Br(�0). Now let �̂ni be any converged subsequence of �̂n with limit �0 2 Br(�0),we have gni(�̂ni) = 0. Let ni !1 we obtain g(�0) = 0. Since g(�) has a unique zeropoint of �0, we have �0 = �0 and the theorem follows.When �(�) = �, the unstructured mean, we have the following corollary.Corollary 5. Under assumptions A3 and A4, if �̂n satis�es the second equationin (19) and is in Br(�0), then �̂n a:s:�! �0.The following theorem is about the asymptotic distribution of �̂n.Theorem 7. Under assumptions A3 and A4, if �̂n P�! �0, thenpn(�̂n � �0) L! N(0;
);where 
 = D�1GD�1 withD = _�T (�)��1 _�(�) + 12 _�Ta (�)(��1 
 ��1) _�a(�);G = _�T (�)��1 _�(�) + _�T (�)(��1V12 � _�T (�))B�1 _�(�)+ _�T (�)B�1(V21��1 � _� (�)) _�(�) + _�T (�)B�1 _�(�);B = (bkl;st) with bkl;st = �ks�lt+�kt�ls and all the matrix functions are evaluated at �0.18



Proof: Since �̂n satisfy gn(�̂n) = 0, using the Taylor expansion we havegn(�0) + _gn(��n)(�̂n � �0) = 0;where ��n lies between �̂n and �0. Sincepngn(�0) L! N(0;�)with � = _�T (�0)W (�0)VW (�0) _�(�0)and _�(�) is continuous, we havepn(�̂n � �0) L! N(0;
)with 
�1 = A�1�A�1, where A = _�T (�0)W (�0) _�(�0):Since W (�) is given by the normal theory, from Corollary 2, we haveA = ( _�T (�); I) ��1 00 12 _�Ta (�)(��1 
 ��1) _�a(�) ! _�(�)I ! = D:So we only need to show that � = G, and this is just a simpli�cation with somealgebra.When there is no structure on the mean �, we have �̂n = �X . From Theorem 7,we have the following corollary.Corollary 6. Under assumptions A3 and A4, if �̂n P�! �0, thenpn �X � �0�̂n � �0 ! L! N(0;
);where 
 = D�1GD�1 withD =  ��1 00 12 _�Ta (�)(��1 
 ��1) _�a(�) !19



and G =  ��1 G12G21 G22 ! ;where G12 = GT21 = (��1V12 � _�T (�))B�1 _�(�);G22 = _�T (�)B�1(V22 ��T��1V12 � V21��1�+�T��1�)B�1 _�(�)B = (bkl;st) with bkl;st = �ks�lt+�kt�ls, and all the matrix functions are evaluated at �0.Note that when(V22 ��T��1V12 � V21��1�+�T��1�) < B;the normal theory MLE overestimates the standard errors of �̂n, otherwise, MLE un-derestimates the standard errors. A consistent estimator of 
 is to put �̂n = �X and�̂n into the structured parameters and use the result in Theorem 3 to estimate V .Arminger and Schoenberg (1989, p. 414) stated that \Without loss of generality weassume that �(�0) = 0", then they proceeded in the context of �(�0) = 0 to get a sim-pli�cation of the standard errors of �̂n in covariance structure analysis. Their result isnot true in general. In practice, even if the mean is zero, the �nite sample e�ciencywill be di�erent when treating �(�0) = 0. From Corollary 6, we can see that �X and�̂n are generally dependent in normal theory covariance structure analysis. If all thethird central moment of X are zero, then �X and �̂n are independent asymptotically,as with elliptically contoured distributions with an unstructured mean. In this case,we may model the mean and covariances separately for computational covenience.When the underlying distribution is not normal, the normal theory LRT will giveincorrect inference generally. However, the test statistic in Corollary 3 will behavecorrectly asymptotically and can be used to evaluate the model. Finally, we note thatthere are specialized independence and model conditions under which, asymptotically,20



some parameters in a linear structure can be estimated e�ciently, some standard er-rors obtained correctly, and the model null hypothesis tested using normal theorystatistics even if the data are not normal. See Satorra and Neudecker (1994) for arecent contribution and further references to asymptotic robustness theory.4 SEVERAL CORRECTED TEST STATISTICSOur intention in this paper is to present a uni�ed approach to mean and covariancestructure analysis through regression. This point of view implies that the inverse ofthe cross products of the residuals, which has been used extensively in the regressionliterature, should also be considered for use in covariance structure analysis. Here wediscuss further implications of this viewpoint. In the ADF test statistic, the inverseof the sample covariance Sz of Zi is used to get �̂n and the corresponding test statisticis nFn(�̂n). Since V̂n is also a consistent estimator of V from Theorem 3, we can alsouse the inverse of V̂n in estimating �̂n and get a corresponding test statistic througha two stage estimation process. By an ANOVA decomposition, we haveV̂n = Sz + ( �Z � �(�̂n))( �Z � �(�̂n))T : (20)Even though Sz and V̂n are asymptotically equivalent, from (20) it follows that V̂n �Sz. Consequently, we expect that Sz and V̂n should have di�erent e�ects on teststatistics. From (20) we also haveV̂ �1n = S�1z � S�1z ( �Z � �(�̂n))( �Z � �(�̂n))TS�1z1 + ( �Z � �(�̂n))TS�1z ( �Z � �(�̂n)) : (21)So the estimator �̂n which satis�es_�T (�̂n)S�1z ( �Z � �(�̂n)) = 0 (22)21



also satis�es _�T (�̂n)V̂ �1n ( �Z � �(�̂n)) = 0: (23)As a result, the two stage estimation process is uncessary if we start with S�1z as aweight matrix. Let Fn(�̂n) denote the minimized function using S�1z as the weightmatrix and T1 = nFn(�̂n) be the corresponding test statistic. In the context ofcovariance structures with an unstructured mean, T1 would be the ADF test statistic,but in our regression context it is not the same. Then, from (21), a corrected teststatistic corresponding to the weight matrix V̂ �1n isT2 = T11 + Fn(�̂n): (24)As we mentioned earlier, the ADF statistic in covariance structure analysis has beenfound to reject the null hypothesis exceptionally frequently in small to medium samplesizes (Hu et al, 1992). Possibly the same result can occur with T1. However, sinceT2 < T1 generally, we expect T2 to behave better in small to medium sample sizes.From nFn(�̂n) L! �2d;we have Fn(�̂n) = Op( 1n):So we can write T2 = (1� Fn)T1 +Op( 1n2 ): (25)Comparing (25) with Bartlett-type corrections for LRT statistics, the correction term11+Fn represents a correction to the ADF type test statistic T1. The di�erence betweena standard Bartlett-type correction for LRT statistics and 11+Fn for T1 is that theBartlett-type correction shifts the LRT statistics towards zero by a positive factor oforder O( 1n ) while 11+Fn shifts T1 towards zero by a positive factor of order Op( 1n). Ifwe use the inverse of the cross products of the �tted residuals from an ADF �tting22



as a weight matrix, the correction is automatic.Since T2 < T1 generally, it is possible that T2 may lose some power as a teststatistic. We will show that asymptotically T2 has the same power as that of T1against alternatives. When the null hypothesis is not true, then �0 = E �Z 6= �(�) forany � 2 �. Let �(�) = (�0 � �(�))TW (�0 � �(�))and �� minizes �(�) on �. We can rewrite (7) asFn(�) a:s:�! �(�):Exactly the same argument as in Theorem 1 shows that �̂n a:s:�! ��. SoFn(�̂n) = �(��) + op(1);and T2 = nFn(�̂n)1 + Fn(�̂n) P�!1:If we assume that �(��) = �0 + �0pn; (26)which is a standard condition for considering the power of a test statistic, then�(�̂n) a:s:�! �0 and Fn(�̂n) = Op( 1n ). Since T1 is a noncentral chi-square variate under(26), from (25), T2 is also a noncentral chi-square variate with the same noncentralityparameter and degrees of freedom. So T2 has exactly the same behavior as T1 asymp-totically.With a similar empirical behavior to that of T1, the test statistic in Corollary 3based on Sz also rejects the null hypothesis too often (e.g., Chan, 1995). Let T ( ~Vn)denote the test statistic in Corollary 3. From (20), we haveT (V̂n) = T (Sz)1 + T (Sz)=n: (27)23



So T (V̂n) represents a correction to T (Sz) and the merit of T (V̂n) comparing withT (Sz) is exactly the same as that of T2 comparing with T1.We have discussed the correction for ADF type statistics by modeling the meanand covariance simultaneously as a regression model. The correction factor in (24)and (27) also can be applied to only covariance structure analysis. Notice that sincethe covariance structure analysis of modeling S by �(�) is equivalent to modeling(Xi � �X)(Xi � �X)T by �(�), we can use the �tted residuals vechf(Xi � �X)(Xi ��X)Tg � vech(�(�̂n)) and get a corresponding residual weight matrix. Exactly thesame algebra shows that using the weight from the residuals corresponds to the cor-rection (24) and (27) of the ADF statistic of Browne (1982, 1984) and Chamberlain(1982) and the statistic in Proposition 4 of Browne (1984).5 EMPIRICAL PERFORMANCE OF THECORRECTED STATISTICSWe have presented our corrected statistics in last section and discussed their meritsfrom a theoretical point of view. In order to see the practical e�ect of our correction,a small scale simulation was performed. The model is the same as the one used byHu et al (1992), i.e. a 3-factor model with each factor having its own 5-indicators.Since we do not put any structure on the mean vector, we have p + p� = 135 andq = 48. So the degrees of freedom of the chi-square statistic in Theorem 4 is 87. Theobserved variables Xi were generated under two conditions. In the �rst condition,both the common factors and the unique factors are normal, so Xi � N(�;�). Inthe second condition, the common factors are still normal, but the unique factors24



are independent lognormal variates so the skewnesses of the observed Xi are not zeroanymore. We chose sample sizes 150 to 1000 for each condition. 500 simulationreplications were performed for a given sample size. We estimated the model in twoways: �rst, a covariance structure model only with ADF estimation, and second, asa regression model with an unstructured mean and a structured covariance with anoptimal weight matrix. Thus we study asymptotically e�cient estimators only. Theresults are summarized in Table 1 and Table 2, where ADF is the covariance structuretest statistic of Browne (1984); CADF represent the corrected ADF test statistic (24)which is equivalent to using the inverse of the cross products of the �tted residuals asa weight matrix. With the same notation as in Hu et al (1992), M and SD representthe means and the standard deviations, respectively, of the empirical test statisticsacross the 500 replications. The Freq represents the rejection frequency of the empir-ical test statistics using the 95% percentile of the �287.
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Table 1Emprical Behavior of the Correction on Test StatisticsF � Normal(0;�), E � Normal(0;	)Sample SizeMethod 150 200 300 500 1000ADF: M 217.43 165.80 130.01 110.09 97.15SD 46.16 33.06 22.83 18.99 15.84Freq 444/445 482/495 415 241 101CADF: M 87.81 89.78 90.13 89.83 88.36SD 7.72 9.76 10.93 12.60 13.08Freq 0/445 11/495 20 32 35T1: M 203.82 162.18 129.04 109.87 97.10SD 40.53 31.20 22.34 18.91 15.83Freq 422/424 479/497 411 237 100T2: M 85.58 88.75 89.67 89.69 88.32SD 7.29 9.43 10.76 12.55 13.07Freq 0/424 6/497 19 30 35
26



Table 2Emprical Behavior of the Correction on Test StatisticsF � Normal(0;�), E � Lognormal(0;	)Sample SizeMethod 150 200 300 500 1000ADF: M 211.74 158.06 125.29 107.54 97.97SD 40.17 28.46 19.81 16.76 14.21Freq 471/472 484/498 391 203 92CADF: M 87.04 87.60 87.93 88.19 89.07SD 6.92 8.75 9.79 11.28 11.75Freq 0/472 1/498 7 14 26T1: M 199.99 153.94 124.52 107.37 97.94SD 35.28 26.23 19.45 16.63 14.22Freq 453/455 481/495 388 203 91T2: M 85.06 86.38 87.56 88.08 89.05SD 6.54 8.25 9.66 11.20 11.77Freq 0/455 1/495 6 15 26
27



From the results in Table 1 and Table 2, we can see that the ADF method is es-sentially unusable at any of the sample sizes studied. At n = 150, the procedure onlyconverges 445=500 or 472=500 times, and in all but one converged solution the truemodel is rejected. At n = 300, about 80% of true models are rejected. At n = 1000,the procedure works better, but about 20% are still rejected. Hu et al (1992) showedthat the method behaves as expected at n = 5000. On the other hand, from therow labeled CADF, we see that the statistic using the inverse of the cross productsof the �tted residuals as a weight matrix gives a great improvement over the ADFstatistic. As expected, the correction is larger for smaller sample sizes and tends tobe smaller as sample size becomes larger. When sample size is small, the rejectionrate for CADF is usually less than .05. It seems that the statistic over-corrects. But,considering that the test statistic is only approximately chi-square distributed for agiven sample size, and that an ideal test statistic would accept the model in all sam-ples when the underlying null hypothesis is true, it is really an advantage rather thana aw for us to use the corrected statistic in practice. The standard deviation of �287is p2 � 87 � 13:19. At small sample sizes, the empirical standard deviation of thetest statistics is generally smaller than expected. Considering that the CADF meansare around 87 at all sample sizes, small standard errors are also much better thanlarger standard errors with means much larger than 87. Notice that the Bartlett-typecorrection for a LRT statistic is based on correcting the mean of the statistic (e.g.,Stuart and Ord, 1991, x23.9), making the mean of the corrected statistic nearer tothe degrees of freedom of a chi-square. Our correction seems also to mainly correctthe means.The regression test statistic T1 performs virtually the same as the ADF test statis-tic. That is, T1 also greatly rejects the true model as can be seen in Tables 1 and2. In fact, we can see that the di�erences between ADF and T1 disappear when thesample size gets larger. Even though �X and S are not asymptotically independent,28



using the marginal information S for estimating �0 when there is only a covariancestructure does not lose information for this speci�c example. This is not surprising.As commented by Cox and Hinkley (1974, p. 18), before knowing �0, we can notextract any information from �X about �0 when � is unstructed. This phenomenonmay occur in general for other skewed data.On the other hand, the corrected regression statistic T2 based on our residual GLSprocedure, implemented via (24), also performs excellently. Its performance is virtu-ally the same as that of the CADF. Hence, while our regression approach has yieldedsubstantially enhanced test statistic performance based on residual weight matrices,in the unstructured mean case we have not found evidence that modeling the meansyields any improvement in performance. Of course, in models with structured means� = �(�0), modeling the means can not be avoided. We would expect our regressionapproach using residual weight matrices also to outperform the classical approach insmall samples for the reasons noted above.6 CONCLUSIONSOur approach yields a variety of estimators and tests depending on the initialconsistent estimator chosen and the second-stage weight matrix used for �nal esti-mates and tests. Perhaps our most interesting result is that the two-stage approachcan be avoided completely. Similarly, although we have emphasized the importanceof residual weight matrices, it may not be necessary to compute such matrices. Theestimators that result from the use of GLS weight matrices and residual-based weightmatrices are numerically equal, and the test statistics that would be obtained from29



residual-based weight matrices can be computed as simple Bartlett-type correctionsto the GLS statistics. Our small simulation study has shown that these correctedstatistics work remarkably well. Although we have emphasized arbitrary distributiontheory, our corrections also apply to data of any known distributional forms for whichthe appropriate GLS weight matrices are used.It is obvious, from our discussion in Section 4, that T2 will reject the null hypothe-sis for certain departing alternatives even when sample size is small. It is possible thatfor a very small misspeci�cation of the model and a small sample size, T2 may not beas powerful as T1 against alternatives. This also occurs with standard Bartlett-typecorrections. From our experience, T1 almost always rejects alternatives for all samplesizes. Also, every model is probably wrong in practice and there is some consensusthat a model need not to be totally correct before it becomes useful (e.g, Box, 1979).The possible leniency in T2 for a very small misspeci�cation may be an advantage foraccepting a useful but not perfect model in practice.We have discussed the e�ect of the correction in Section 4. Now let us look atit from another point of view. When the null hypothesis is not true and the depar-ture is small, we have ET1 = nF10 = d + � where d is the degrees of freedom ofthe model and � is the noncentrality parameter of �2d distribution. So the multiplier1=(1 + F10) = n=(n + d + �). This point of view also is interesting because it givesus another rationale for our correction eq. (24). Suppose we decided to base ourcorrection on n=(n + d+ �̂) using an estimated noncentrality parameter. Then if wetake as the estimator �̂ = (nF̂1�d), we obtain our correction. From this point of viewwe also could consider other alternatives. First, we could use other noncentrality pa-rameter estimators. For example, if we used maxf(nF̂1� d); 0g, our correction wouldbe modi�ed when T1 < d. This may be useful since the variance of this correctedstatistic would be greater than that of T2 or CADF, which, according to Tables 130



and 2, tends to be too small in small samples. Also, since under the null hypothesis� = 0, we immediately get the correction n=(n + d). Unlike eq. (24), the latter doesnot depend on model �t. This is an attractive feature, but since the variance of sucha corrected statistic would be the same as variance of the uncorrected statistic, thisvariance would be substantially too large as shown in Tables 1 and 2. Hence, thiscorrection probably would not work well. Further, these alternatives do not have thevirtue of arising precisely from our residual GLS approach.Although we have not discussed the standard error estimators obtained from ourapproach, it is a simple matter to show algebraically that the residual-based standarderror estimator is identical to its typical ADF estimator. That is f _�T (�̂n)S�1z _�(�̂n)g�1 =f _�T (�̂n)V̂ �1n _�(�̂n)g�1. However, since empirical evidence shows that ADF standarderror estimates substantially underestimate the empirical sampling variability of theestimators at smaller sample sizes (Henly, 1993; West et al 1995), it would be desir-able to �nd a way to correct the standard errors as well. One way to do this is torecognize from (24) that the divisor (1 + Fn(�̂n)) could be used to de�ne yet a dif-ferent weight matrix, namely, (1 + Fn(�̂n))�1S�1z . The resulting covariance matrix ofthe estimator will become (1 + Fn(�̂n))f _�T (�̂n)S�1z _�(�̂n)g�1. The estimated varianceswould be increased, though asymptotically they would be the same. We will discussthis issue elsewhere.In practice most applications do not involve a structured mean. We have shownthat substantial improvements in test statistic accuracy can be obtained applyingour approach to this situation with both normal and nonnormal data. Although thesample mean may not be the most e�cient estimator of � with nonnormal data, wehave found no evidence that simultaneous estimation of the unstructured mean andthe covariance parameters improves the performance of the resulting estimators andtest statistics in this situation. Further study of this problem is indicated (see e.g.,31



Kano, Bentler, and Mooijaart, 1993).Finally, several obvious extensions of our results should be mentioned. In order tokeep our presentation simple, we did not discuss constraints on parameters. These arehandled in the usual way. Also, all of our results assumed a single model evaluationbased on one sample from a given population. In reality, researchers may comparenested models and may use �2 di�erence, Wald, or Lagrange multiplier (score) testsfor this purpose (e.g., Satora, 1989). ADF and generalized variants of these tests willbe plagued by the same small-sample problems discussed above, and, as we will dis-cuss elsewhere, our new methods can be adopted directly to this situation. Similarly,many applications of structural models are to multiple independent samples frompossibly the same population (e.g., Bentler, Lee, and Weng, 1987; Muth�en, 1989).Extensions to this situation are direct and need not be detailed.7 APPENDIXProof of Corollary 2: We rewrite 
�1 in Corollary 1 as
�1 =  
11 
12
21 
22 ! ; (28)where 
11 = A�1 � _�T (�)B�1V21��1 + ( _�T (�)� ��1V12)B�1 _�(�);
12 = 
21T = ( _�T (�)� ��1V12)B�1 _�(�);and 
22 = _�T (�)B�1 _�(�) with A = ��V12V �122 V21. Under the hypothesis that all the32



third central moments are zero, that isE(xi � �i0)(xj � �j0)(xk � �k0) = 0; all i; j; k; (29)we have vi;jk = cov(xi; yjk)= E(xi � �i0)xjxk= �j0�ik + �k0�ij: (30)It can be shown that _�T (�) = ��1V12 by a direct and tedious computation. So in(27) the o� diagonal matrices become zero and the �rst diagonal matrix becomes��1. This proves the independence of �̂n and �̂n.Let V22 = (vij;kl) withvij;kl = cov(yij; ykl)= E(xixj � Exixj)(xkxl �Exkxl)= Exixjxkxl � ExixjExkxl: (31)SinceExixjxkxl = �ijkl + f�ijk�l + �ijl�k + �ikl�j + �jkl�ig+ f�ij�k�l + �ik�j�l + �il�j�k + �jk�i�l + �jl�i�k + �kl�i�jg+ �i�j�k�l; (32)and ExixjExkxl = (�ij + �i�j)(�kl + �k�l)= �ij�kl + �ij�k�l + �kl�i�j + �i�j�k�l; (33)we have from (30), (31) and (32)vij;kl = �ijkl + f�ijk�l + �ijl�k + �ikl�j + �jkl�ig+ f�ik�j�l + �il�j�k + �jk�i�l + �jl�i�kg� �ij�kl: (34)33



When the third and fourth central moments of X satisfy�ijk = �ijl = �ikl = �jkl = 0; (35)and �ijkl = �ij�kl + �ik�jl + �il�jk; (36)we have from (33), (34) and (35)vij;kl = �ik�jl + �il�jk+ f�ik�j�l + �il�j�k + �jk�i�l + �jl�i�kg: (37)Now denote V21��1V12 = _�(�)� _�T (�) = (�ij;kl) (38)As _� (�) is a p� � p matrix with the ijth row given by@�ij@�T = @(�i�j)@�T = (0; : : : ; 0; �j; 0; : : : ; 0; �i; 0; : : : ; 0); (39)where �j is the ith element, and �i is the jth element.We have from (37) and (38)�ij;kl = �ik�j�l + �il�j�k + �jk�i�l + �jl�i�k: (40)From (36) and (39) we haveB = V22 � _�(�)� _�T (�) = (bij;kl) (41)with bij;kl = vij;kl � �ij;kl = �ik�jl + �il�jk: (42)Using Browne's (1974) notation, we have from (40) and (41)B = 2KTm(�
 �)Km; (43)34



where Km is the matrix such that�(�) = Kmvec(�(�)):Since Km has the properties[KTm(�
�)Km]�1 = K�m(��1 
 ��1)K�Tm ;and vec(�(�)) = K�Tm �(�);with K�m = (KTmKm)�1KTm;we have _�T (�)B�1 _�(�) = 12 _�T (�)K�m(��1 
 ��1)K�Tm _�(�)= 12 _�Ta (�)(��1 
��1) _�a(�):The proof is �nished.References[1] Anderson, T.W. (1989), \Linear latent variable models and covariance struc-tures," Journal of Econometrics, 41, 91{119.[2] |{ (1994), \Inference in linear models," in Multivariate Analysis and Its Appli-cations, eds. T. W. Anderson, K. T. Fang, and I. Olkin, Hayward, CA: Instituteof Mathematical Statistics, pp. 1{20.[3] Arminger, G., and Schoenberg, R. J. (1989), \Pseudo maximum likelihood esti-mation and a test for misspeci�cation in mean and covariance structure models,"Psychometrika, 54, 409{425. 35
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