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Abstract 

Characteristics of observations which cause them to be important 

in a least squares analysis of data arising from a non-designed experiment 

are investigated and related to residual variances, residual correlations 

and the convex hull of the observed values of the independent variables. 

It is shown how deleting an observation can substantially alter an 

analysis by changing the partial F-test, studentized residuals, residual 

variances, convex hull of the independent variables and the estimated 

parameter vector. Outliers are discussed briefly and an example is 

presented. 



lo INTRODUCTION 

Consider the full rank linear regression model 

where Y is an 13.Xl vector .of observators, Xis an nxp full rank matrix 

sf known constants,! is a pxl vector of unknown parameters and e. 

is an nxl vector of randomly distributed errors such that E(_!) = .Q_ 

2 
and Y._(£,) = lq. Experimental designs for these models are usually 

constructed by first specifying the design space (eogo some closed convex 

subset of RP) and then choosing the design points within the space so 

that, in some optimal sense, the maximum amount of information will be 

obtained. For example, D-optimal designs produce coafidence ellipsoids 

for ! with minimal volume. The analysis of designed experim~nts .is 

usually well-known and straightforward. Also, the design space can be 

and usually is ignored during the analysis. 

Unfortunately the idea of a design space is completely absent during 

most analyses of data arising from experiments in which the selection of 

the design points was relegated to Nature. In non-designed experiments 

the configuration of the design points in the factor space can have an 

important effect on the analysiso It has become increasingly apparent that 

failure to examine these configurations can result in severe misinterpre

tations and loss of informationo 

Behnken and Draper (1972) have noted that a wide variation in the 

variance of the residuals reflects a nonhomogeneous spacing of the design 

points. Box and Draper (1975) suggest that for a design to be insensitive 

to outliers the variances of the residuals should be constanto The comments 
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of Davies and Hutton (1975) also reflect the opinion that the residual 

variances should be examinedo 

Cook "(1977) developed a measure based on confidence ellipsoids for 

judging the contribution of each data point to the determination of the 

least squares estimate of ~-- The measure combines information from the 

studentized residuals and the residual variances, and shows that design 

points with relatively small residual variances will tend to be the more 

importanto Huber (1975) mentioned that small residual variances 

typically correspond to "outlying" design points. 

A close examination of the residual variances seems necessary in the 

analysis of any non-designed experiment. (In many designed experiments 

the residual variances are constant). However, the role that such an 

examination should play is somewhat vague. Recall that the covariance 

matrix of the residual vector, 

given by 

where 

R={r.), - ]. 

,. ,.. 
R =Y-Y=Y-~ 

from a least squares analysis is 

Apart from a proportionately constant, the residual variances are 

determined by the design points (ioe. the rows of X). ,We find, it 

convenient to refer to the smallest convex set containing all design 

points as the independent variable hull (IVH)o Of course, the IVH 

and the design space are not in general the sameo 
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Generally, in this note we discuss the role that the residual 

variances, residual correlations and the IVH play in the analysis 

of non-designed experiments. In Section 2 the measure proposed by 

Cook (1977) is reviewed, some comments on its use are given, and 

relationships between the residual variances and the IVH are 

discussed. Consequences of deleting an observation are discussed in 

Section 3. Residual correlations and outliers are discussed in Sections 4 

and 5. An example is presented. 
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2. INFLUENTIAL OBSERVATIONS 

Cook (1977) proposed that the importance of the ith data point be 

measured by first computing the least squares estimate of ~ with and 

without the point an~, second, measuring the distances, D., 
1. 

between the 

two estimates as a monotonic function of descriptive levels of significance. 
,.. 

Specifically, let ! denote the least squares estimate of l based on 
,.. 

the full data set and 

point. Then 

l(--i) the analogous estimate without the ith 

( ,.. " ) I I (" "' ) ! - ~(-i) !!t - !(-i) 
D. = 2 1. ..... (1) 

ps 

where 2 s = R'R/(n-p). A large value of D. indicates that the associated 
-- 1. 

point has a strong influence on the least squares estimate of l· The 

magnitude of the distance between A and B, is assessed by comparing 
.t::.. ~-i) 

D. to the probability points of the central F-distribution~with p and 
1. 

n-p degrees of freedom. For example, suppose that D. 
1. 

is equal to the 

50% probability point, then the removal of the ith data point moves the 

least squares estimate to the edge of the usual 50% elliptical confidence 
,.. 

region for ·f centered at ~: 

I I "1 I Let v •. = x.(X X) x. where x. is the ith row of X.. The 
1.l. -l. - - -l. -l. 

quantities controlling the measure defined in equation (1) may be seen 

in an equivalent form that depends only on the full data set: 

D. 
1. 

2 
t. 

l. =-
p 

,.. 
V(yi) 

v(ri) 
(2) 
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where t. = r ./sJf - v.. is the ith studentized residual, vc;..) = r/v .. 
l. l. l.l. ]. ].]. 

is the variance of the ith predicted value and V(r.) = a 2(1 - v .. ) is 
l. ].]. 

the variance of the ith residualo Clearly, D. can be large if either 
l. 

2 
ti or V(y.)/(V(r.)) is large. 

]. l. 
These two components seem to measure the 

importance of two characteristics of each data point. The 

value of t~ depends on the degree to which the ith observation conforms 

to the assumed model. It will be shown later that t~ is a monotonic 
l. 

function of the likelihood ratio test statistic for the hypothesis that 

the ith observation is an outlier. Thus, a large ·value of D. arising 
l. 

because of a large value of t~ is an indication that the ith observation 
]. 

does not conform to the assumed model. 

The ratio V(Y.)/V(r.) depends only on the design points and 
]. ]. 

reflects characteristics of the ith point relative to the IVH. 

This ratio is a monotonically increasing function of V • • • 
].]. 

The. 
,.. 

particular characteristics which cause v.. and hence V(y.) /V(.r.) 
]. ]. l. ~ 

to be large may be seen by noting that for all ~ in the IVH (x 

need not be a design point) 

. I . 1 · -1 
X (XX) X < max v ..• - - - - - . ].]. 

(3) 
]. 

This follows because the levels of constant value of the quadratic form 

on the left of relationship (3) are ellipsoids and the ellipsoid passing 

through the design point corresponding to max v.. must contain the 
].]. 

IVH. Expression (3) shows that the point with the largest 

variance of a predicted value must lie on the boundary of the IVH 
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,... 
Thus, large values of V (y . ) /V ( r . ) 

1. J. 
indicate "outlying" design 

pointso Of course, the point with the largest prediction variance need not be the 

one whose Euclidean distance from the center of the design is the greatest 

since the values of ~'(X'X)-lx depend on the density of the points in the 

IVH. If x. is any design point with k replicates then 
-J 

. I I -1 1 
X • (X X) x . < -k 
-J - - -J -

(4) 

This is easily justified by first noting that it is certainly true 

for k=l and assuming that it is true for k=k0• It can be shown to be 

true for k=k0 + 1 by using the relationship 

(X'X )-1 
-+-+ 

-1 = (X'X + x.x~) 
-- -J-J 

= (X'X)-1 
(X'X)-1x.x~(X'X)-l 
- - -J J 
1 + x~(X'X)-1x. 

-J -- J 

where X and ~ are the design matrices for k0 and k0 + 1 replicates 

of x .• 
-J 

Generally we may anticipate that the design point corresponding to 
~ 

max~v .. (max V(y.)/V(r.)) will. lie on the boundary of the IVH in a region 
1.1 J. 1. 

where the density of the design poiilts.is··relative low. ·rn non-designed 

experiments it is hot uncommon for max v .• to be close to one. 
. . 1.1. 

The influence of a design point can also be seen by considering the 

variance of a predicted value conditional on the corresponding observed 

value. Letting x denote a design point with k replicated 
-r 

observations, y , j = 1,k, it can be demonstrated by induction that r. 
J 
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2 = l,k) = cr V (1 - kV ) o rr rr 

This conditional variance will be small when x lies on the boundary 
-r 

of the IVH (k v is large) or when x lies in the interior rr -r 

and k is large (v is small). rr Generally, the remaining points will 

have little influence over the predictions around a design point with a 

small conditional variance. 

Some additional insight about the dispersion of the points within 

the IVH may be obtained by inspecting the ordered values, ·v ( ii) .• 

Since the ith design point lies on an ellipse whose value is v.. any 
l.l. 

"large gaps" between the individual elements indicates a corresponding 

gap in the spacing of the design pointso A large gap may be taken as an 

indication of a region in the design space with relatively inadequate coverageo 

Equation (3) also provides a guide to the region in th~ factor· 

space where a final model may be appropri_ate for the purpose of predictiono 

Prediction at any point ~ for which (3) does not hold may be 

tantamount to extrapolation. In this case ~ cannot be in the IVH. 

Using this rule it is possi~le to have extreme situations in which the 

design points are virtually the only points for which the model is 

appropriate for prediction. 

The previous discussion relates the properties of Di to the behavior 

of its individual components. It is also of interest to relate the 

behavior of D. to its components simultaneously. If a point appears to 
1 

be an outlier (t~ is large) and at the same time lies in a high density 
l. 

~ 

region of the IVI-1 (V(y.)/V(r.) is small) then it may be irrelevant whether 
l. l. 

the point is excluded or not at least as far as estimating f. is concernedo 
~ ~ 

A small value of Di indicates that t and ~(-i) are essentially the 

same. The same conclusion may hold if a point lies on the boundary of 

the IVH and fits the model extremely well. 
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3o CONSEQUENCES OF DELETING AN OBSERVATION 

The measure discussed in the previous section provides a method for 

judging the importance of each observation through the implicit deletion 

of the observationso It does not, however, remove the necessity of 

actually deleting highly influential observations and examining the new 

solutiono When this is done it must be remembered that the removal of 

any observation on the boundary of the IVH may affect a considerable 

change in the hµll • . Changing the IVH by removing an observation 

on its boundary·may cause observations that were previou~ly 

judged to be noninfluential to become influentialo Such behavior 

indicates that the solution is not stable across the full IVH 

This should be cause for concern since the final form of the solution 

depends on a few points whose presence or absence was originally left to 

chanceo It may be desirable in such c_ircumstances to post-design the 

experiment by deleting the observations and confining inference to a 

smaller region of the factor spaceo Of course, the influential 

observations shoul_d not be completely forgotten but should perhaps be the 

subject for future investigationo Our main contention is that the use of 

such observations without an independent verification of their authenticity 

or a well grounded: firm belief in the model i~ not a·sound practice. 

3ol Distance Measures 

At present, sequential deletion of observations seems the most 

expedient method for detecting multiple influential pointso In what 

follows we examine the effects of deleting a single influential pointo 

Let D. ( • ) J -l. 
denote the value of the distance measure for the jth point 

based on the data set from which the ith point has been removed, i~j. 



- 9 -

The characteristics of D. ( . ) J '""l. 
seem best understood by expressing it in 

terms of the full data seto 

Let 

and 

where 

. -1 
V. . = X ~ (X 1X) X. 

l.J -1. -- - -J 

- '( I I )-1 
wki, - ~ ~{-i)!(-i) ~J, 

x ' . x . = x 'x - x. x ~ 
-( -1.)-(-1.) - - -1.-1. 

and x' is the·rth row of X. 
-r 

2 
Also, let 8 (-i) denote the usual 

estimate of a 2 based the data set with the ith point removedo 

The following relationships will be useful: 

v .. =w • ./(1 +w .• ) l.J l.J l.l. 

2 
v .. = w .• - w • ./(1 + w •• ) 

JJ JJ l.J ].]. 

,._ ,._ I -1 I"° 
A-A( ")=(XX) x.[y. - x.~)/(1 - v .. ) 
~ .i::. -1. - - -1. ]. -1.- ].]. 

2 2 ,,.. 2, 
(n-p)s = (n-1-p)s ( ") + (y. - x.A),(1 - v .. ) o -1. ]. -1.~ ].]. 

Expressions (5) and (6) are easily verified using the identity 

(!'X)-1 
' -1 

= (X(-i)~-i)) 

, -1 , ·, -1 
<!c -i)!(-i)) ~i~i <!c -i~(-i) > 

1 + w •• l.1. 

(5) 

(6) 

(7) 

(8) 

Expression (7) was shown by Cook (1977) and expression (8) was shown by 

Beckman and Trussell (1974)0 The derivations are straightforward and will 

not be repeated hereo 



- 10 -

From equation (2), 

D "( • ) J -J. 
2 = t.( .)w . ./p(l - w •. ) 
J -i JJ JJ 

(9) 

where 2 
t ·c . ) J -i 

denotes the studentized residual for the jth point in the 

data set with the ith point removed. We now relate equation (9) to the 

full data set by dealing with t~( ") and w .. separately. Consider 
J -J. JJ 

first w .. : Using equations (5) and (6) it is easily verified that 
JJ 

2 
V • • = W • • .,. p •• (1 - V •• ) 

JJ JJ J.J JJ 

where p •• denotes the correlation coefficient between the ith and jth 
J.J 

residuals in the full data set. It follows that 

w • ./(1- w •• ) = 
JJ JJ 

2 2 
v .. (1 - p •• ) + p •• 

]] J.J J.] 
2 0 

(1 - v .. )(l - p •• ) 
JJ J.J 

(10) 

Clearly, this ratio will be large if either is large. 

A large value of v.. would have been, detected in the analysis of the 
JJ 

full data set. Thus, if the variance of the jth predicted value increases 

substantially when the ith observation is deleted it must be due to a large 

correlation between the ith and jth residuals in the full data set. We 

see also that if the residual correlations are negligible then the variances 

of the predicted values will remain essentially unchanged when any point 

is deleted. 

Next, 

2 
t. ( . ) J -J. 

(y. - x~~( .))2 
= J -1 _ -1._ 

2 
s( .)(1 - w •• ) 

-1. JJ 
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Using the results in equations (5) - (7) a little algebra will verify that 

2 
t. ( . ) J -1. 

2 
= s [t. 

J 

2 2 
p •• t.] /s( .)(1 J.J 1. col. 

where t. and t. are studentized residuals from the full data seto Using 
1. J 

equation (8) this reduces to 

2 
t.( .) = J -1. 

2 
(n - p - l)(t. - p •• t.) 

1 1.J 1. 

2 2 
(n - p t. )(1 p •• ) 

]. 1.J 

(11) 

Notice that if the residual correlations are negligible then the 

deletion of any point with a studentized residual larger than one will 

cause all remaining studentized residuals to increaseo 

Finally, combining (10) and (11) we have, 

D. ( • ) J -1. 

2 2 2 
(n - p - 1) [ t. ""' p •• t.] V •• ( 1 - p •• ) + p 1.· 

1
. 

= J 1.1 1. 11 · 1.1 _ 

(n - p - ti)(l - p~j)
2

(1 - vjj)p 
(12) 

The rather complicated form of this expression makes definite 

predictions concerning its behavior difficulto Two general observations 

seem worthy of mention, however: If the residual correlations are all 

negligible then D.( ") '2= D. 
J -1. J 

for all j ~ i.whenever 2 
t. > lo 

l. -
Also, a 

large residual correlation can cause D.( .) to increase substantiallyo 
J c:oJ. 

It is clear from the previous discussion that residual correlations 

can play a substantial role in the isolation of influential observationso 

It seems natural to question those characteristics of two observations which 

cause their residuals to be highly correlatedo This will be considered in 

Section 4o 



- 12 -

3o2 Partial F-Tests 

Partial F-tests for the hypothesis that the individual coefficients 

of ! are zero are commonly used to simplify the original model. When 

using this procedure it is not uncommon to find that whether a particular 

coefficient is retained in the model depends on the presence of a single 

observation. This behavior seems particularly prevalent when the model 

contains polynomial terms.o 

Let ~k denote the kth component of ! and define 

where dk is the kth diagonal element of (!_'X)-lo The partial 

F-statistic, Fk, for the hypothesis that ~k is zero can be expressed as 

,.. 
Further, let ~k(-i), Tk(-i), dk(-i), and F k_(-i) denote the analogous 

quantities based on the data set without the ith observationo 

The factors controlling the behavior of the partial F-statistics can 

be seen by expressing F~(-i) in terms that depend only on the complete 

data set. We consider the three components comprising Fk(-i) 

separately: Using equation (7), 

sk( ") = sk - ck.r./(1 - v .. ) I"' -]. I"' 1. 1. 1.1. 

where 

""'l 
C = e'(X 1X) x. 
ki -k - - -l. 
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and ..=k is a pxl vector with a 1 in the kth position and zeros elsewhereo 

Also, 

2 
dk(-i) = dk + cki/(l - vii) 0 

The desired expression for 
2 

s(-i) derives immediately from equation (8). 

After substituting these three forms into 

"2 2 
Fk(-i) = ~k(-i)/8 (-i)dk(-i) 

a little algebra will verify that 

Fk(-i) -

2 (n-p-l)t. 
l. 

2 (n-p-t.) 
l. 

Tk V.. \ 2 
l t.i -v <r-~;.:) 1 

2 
(1 +y v . ./(1-v .. )) 

J.l. l.l. 

,... 
where y denotes the correlation between ~k 

I ,.. 
and x. ~. 

-1. -

(12a) 

Recall that v .. /(1-v .. ) appears in the expression of the distance 
l.l. l.l. 

measure, D., and will be relatively large for points on the boundary of 
l. 

the IVH. The term (n-p-l)t~/(n-p-t~) is monotonic in t~ and 
l. 1. ]. 

may be used to test whether the ith observ~tion is an outlier. In 

fact, under the null hypothesis it is distributed as an F random variable 

with 1 and n-p-1 degrees of freedom. (This will be discussed in more 

detail in Section 5.) 

It seems clear from inspection of equation (12a) that almost 

anything can happen to the partial F-statistics when an observation is 

removed. Two general observations seem particularly interesting, however: 

Suppose that the deleted observation appears to be an outlier (t~ is 
1. 

~ 
large) and that y (v •. /1-v .. ) 2 is negligibleo The latter supposition 

l.1. 1.l. 
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would hold when y is small or the deleted observation lies in a dense 

region of the design space. (Empirical investigations indicate that 

typically y is not negligible by itself.) In this case, 

Thus, deleting an observation with ·t~ > 1 in a dense region of the 
l. 

design space will tend to increase all paitial F-statisticso 

Next, consider the deletion of a point that fits the model quite 

well 
2 

(t. < 1). 
]. - In this case, 

. \ 2 
[Tk - yt. (v . ./1-v .. ) ] 

~ ]. l.l. l.l. 

2 
1 + y V • ./1-v .. u. 11. 

Using this approximation it is easily verified that 

2 
[VTkv . ./(1-v •. ) + t.] 

• l.l. .].]. l. 

2 
1 + V v . ./1-v .. 

l.l. l.l. 

t~ 
]. 

Thus, we can generally expect all partial F-statistics greater than one 

to decrease when a conforming point on the boundary of the design spac~ 

is deletedo 
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4. RESIDUAL CORRELATIONS 

2 
The squared correlation coefficient, p •• , between the ith and jth 

l.J 

residuals can be expressed as, 

2 2 
p • • = v. ./ ( 1-v .. )( 1-v. . ) o 

l.J l.J l.l. J J 
(13) 

To investigate the causes of a large value for 2 
p •• , we shall hold the 

1.J 

jth design point fixed and find how to choose the ith design point so 

that the correlation between the associated residuals is maximized. 

Specifically, we consider 2 sup p.. where the supremum is to be taken 
1.J 

over sowe convex subset of the factor space that consists of all 

permissible values for the ith design pointo The required calculation 

is facilitated by writing 

X. o 
-1. 

Using equations (5) 

2 
p •• 

l.J 

and (6) 

2 

in terms of explicit quadratic forms in 

it is easily verified that 

2 
w . . 

1.J 
and w •• 

1.l. 

2 
Pij = 

w •. 
l. 

2 ( 1-+w •.• ) ( 1-w . j ) + w . • 
1.1. J 1.J 

are quadratic forms in x. 
-1. 

while w •• 
JJ 

(14) 

is independent 

of x. and may be considered constanto If the model contains a constant 
-1. 

term the first component of x. 
-1. 

is constrained to be 

supremum must be taken with respect to the last p-1 

1 and the 

components of x. O 

-1. 

Let x; = (1, z;) and, assuming that the independent variables in the 

reduced data set are measured around their means, 

/ -1 
(X{-i) X(-i)) 

1 

= ( n:1 
A 

0 

)· 
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The correlation may now be expressed in a more manageable form by 

substituting 

1 
w •• =--1 +z!Az. 

J.J n- -1. - -J 

into equation (14) •. 

The largest possible value for p7. will obviously depend on the 
J.J 

subset of the factor space over which the supremum is takeno Lacking 

definite guidance we choose a subset that seems reasonable and is, at 

least, expedient: For an arbitrary positive constant c, the supremum 

will be taken over G(c) = {.~\.~'~ ~ ~ c}. Of course, c may be chosen 

so that G contains the IVH corresponding to the reduced data 

seto From .equation (14) it is not difficult to see that the supremum 

must be obtained on the boundary of 

follows that 

G(min[c, n
2 (w .. - 1/(n-l))])o 

JJ 

where 

and 

2 
sup Pij 

z.eG 
-l. 

Q .• = 
JJ 

c' Q~. 
= 

( 1-W .. ){ 1 + _1.._l + C 
1

) + C
I Q: . 

JJ n- JJ 

1 

<'~-l)Jc I 
+ ( 

1 ~ 
w .. - -)2 

JJ n-1 

c' = min(c, n
2

(w .. -
1

1)) o 
JJ n-

(15) 

It 
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r \ 
This value is attained at z. = z.(c'/(w .. - n-l)) o 

-1. -J JJ 
If the model does 

not contain a constant term the analogous 

setting c'=c and l/n-1 to zeroo 

expression is obtained by 

This result shows that the higher correlations will arise 

between points on the boundary of the IVH and proportional 

points in the interioro Moreover, since equation (15) · is monotonically 

increasing in w •• 
JJ 

we see that the highest correlations should occur 

between replicated design points on the boundary of the IVH. 

This observation confirms a conclusion reaching in Section 3; namely, 

if ona of two highly correlated observations is deleted· the· 

remaining observation is likely to become extremely important. 

If one of two replicates of a design point on the boundary of the 

IVH is deleted the. remaining point will stand alone and, 

thus, may become extremely important. 

The previous discussion shows the general relationship between 

points whose residuals are the most highly correlatedo It may be, 

however, that the highest possible correlation is quite smallo If n is 

large and c' = n2
(w .• - 1/n .. 1) 

JJ 

equation (15) is ·. 

2 
sup p •• ~ w. . • 

t.eG l.J JJ 
-1. 

then a convenient approximation for 

Since equation (15) is monotonically increasing in c ~ c', 
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for all io This in combination with equation (4) justifies the 

previous comment. Equation (16) may be used as a rough guide to the 

behavior of the correlations between any influential point and all 

other pointso 

Finally, it is worth noting that the correlations between 

residuals corresponding to replicated design points are ~v .. /1-v ..• 
].]. J.l. 
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5. OUTLIERS 

Outliers play an important role in the concept of influential 

observationso The approaches used in the detection of outliers are 

·manifold and no pretence of an exhaustive presentation is madeo In 

this section we consider briefly the problem of detecting multiple 

outlying points as it relates to the previous discussiono 

Consider the model, 

.!_=!i+!+.!-

All quantities are as previously defined except that ! is a vector 

consisting of n-1, zeros and .e, < n-p unknown parameterso Without 

loss of generality we may assume that we wish to test the last .e, 

.observations as outliers. The unknown parameters in e will now occupy 

the last .e, positions. Generally, we are concerned with estimation of 

e and the test of H:0 = Oo The development is greatly facilitated 

by reparameterizing the model to obtain the following form: 

! = ! ~ + J ze ~ + .! 

-1 
where ct = (~'X) ! 1 (X J?.. + ~) 

T = (I - X(X 1X}-l X') ....... ____ ........ -

z = (o(n-.e,)x1,) 

I.e,x.e, 

(17) 

and !.e, is the i,xl vector consisting of the last .e, components of 80 
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Since X and T are orthogonal the least squares estimate of ~t 

can be written as, 

,.. 
ft = (Z'T'Tz)-l z'T'Y --~ ---

= (f '.'.!.__)-1 Z 'TY. (18) 

It can be shown that Z1TZ is positive definite as long as [X'f!l 

is of full rank. 
,.. 

Alternatively, !t may be written as 

,.. -1 
!t = (!_t) RJ, 

where T.e, is the submatrix of T consisting of the last t rows and 

columns, and !t is a vector of the last t components of Rt residual 

vector from the model with e = O. 
,.. 

The reduction in the sums of squares due to fitting ft is 

/ -1 
R:t T.e, R:t 

and the usual normal theory F-statistic for the hypothesis 

H:8:t = 0 is 

. alR 
Rif.J. --'J, -1 

F J, = R;R - l' ,,r,, RJ, ---
n-t-p 

t 

(19) 

The dependence on the studentized residuals and residual correlations 

can be seen by writing Ft in the alternate form, 



-1 
n-p-t!o t 

-lll-L -t 
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(20) 

where ti and .e_L are the matrices of studentized residuals and residual 

correlations for the last L observations. For L ·= 1 we have 

which is clearly a montonically increasing function of the last 

studentized residual, 

The above presentation is conditional on the!_ priori specification 

of the observations to be tested. It is perhaps·more common to ask for 

the L most likely outlying points. When this is the case the quadratic form in 

equation (19) must be computed for all possible combinations of 

points. The combination producing the maximum value is then chosen to 

be tested using the· statistic 

(21) 

which, of course, has the distribution of the maximum of 

correlated F-random variableso It is important to notice that the two 

most likely outlying points will not, in general, correspond to the two 

points with the largest studentized residualso The residual correlations 

can produce two seemingly unlikely candidates as the most outlying 

valueso 

When L ~ 2 and J?_L is strongly diagonal the well-known 

approximation 
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-1 
.e...e, :!= 21 - .e.1, 

can be used to display the effects of the residual correlations in 

determining the critical points: Substituting this approximation 

into equation (19) we obtain, 

t. t .p •. 
]. J l.J 

where the summations are over those observations in the subset in 

question. 

In short, if two or more outlying values are suspected the residual 

correlations should be inspected. The observations, if any, which are 

disturbing the analysis may not be the ones with the larger 

studentized residuals. Points on the boundary of the IVH will 

generally be associated with higher residual correlations. At the 

very least, it seems wise to give these points special attention. 
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6. EXAMPLE 

Daniel and Wood (1971) considered a set of data on the oxidation- of 

ammonia to nitric acid. The original data set is from Brownlee (1965) and 

consists of 21 observations with three possible explanatory variables. After a 

reasonably extensive analysis, Daniel and Wood.decided that 4 observations 

(1, 3, 4 and 2l)·were-outliers and that one of the explanatory variables was 

not needed. Their final model.contained a linear and quadratic term for one 

explanatory variable, a linear term for the other and was based on 17 

"valid" observationso 

In this example we adopt the final model of Daniel and Wood but 

include all data points. For ease of reference the data set has been 

given in Table lo The general purpose of this example is to illustrate 

selected results of the previous sections by considering 6 selected 

subsets of the data from Table lo Tables 2, 3, and 4 give the values 

of D., v .. , and t., respectively, for the six data sets. Table 5 
]. ].]. ]. 

gives the estimated coefficients, partial F-statistics, and mean 

square error for each data seto Note that the last data set used in 

each table consists of the observations that Daniel and Wood judged 

valid. 

Consider first the complete data set. Inspection of the first 

column of Table 2 reveals that observation 21 is the most influentialo 

Removal of this observation would move the least estimate of ~ to 
,. 

the edge of a 40% confidence ellipse for ~ based on ~· The reasons 

for this importance can be obtained from Tables 3 and 4. The four 

largest v .. values are, 
l.l. 

Observations 1 and 2 lie on the edge of the IVH 
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and are replicates. The spacing of these values indicates two gaps in 

the coverage of the design space. Observation 21 has the third largest 

value of v .. and, thus, lies near the edge of the IVH. 
11 

Moreover, from Table 4 we see that it has the largest studentized 

residual. Using Lund's (1975) tables of critical values we see that 

observation 21 may be declared an outlier at the 0.1 level but not 

at the 0.05 level of significance. Thus, there is some evidence to 

suggest that it is an outlier, although it is not overwhelming. 

We are now faced with the decision to declare observation 21 an 

·outlier or accept the data set as it stands. It must be remembered 

that when inspecting the studentized residuals we are implicitly assuming the 

existence of at most one outlier, (i.e •. the vector e in equation (16) 

has at most one nonzero component). The two most likely candidates as 

outliers are found, using the quadratic form in equation (19), to be 

4 and 21. These observations also have the two largest studentized 

residuals. The value of the statistic in equation (21) is 

max F
2 

= 2.82 which is about the 90% probability point of the 

F-distribution with 2 and 15 degrees of freedom. Since this probability 

point is an upper bound for the probability point of the distribution of 

max F2 , we cannot justify the simultaneous deletion of observations 4 

and 21.on significance levels alone. 

In this example, we shall treat observation 21 as an outlier. Now, 

the conditional hypothesis H:ai = O\e21 ~ 0 might be of interest. It 

seems intuitively obvious and is easy to show that the tests of this 

hypot~esis is the same as the test of H:e. = 0 based on the data set 
1 
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with observation 21 removed. The second column in each table shows the 

results after the removal of observation 21. Note that now observation 4 

appears to be an outlier although it is not the most influential, 
~ 

max Di= n2 = 0.593. A comparison of the first two columns in Table 3 

shows that all values of v .. increased when observation 21 was 
ii 

deleted. Of course, this was predicted by equation {lO)o Also, the 

values in the second column of Table 3 may be taken as upper bounds 

on the residual correlations P!, 21 (i = "i, 20) in the full data seto 

Next, considering the data set·with observations 4 and 21 deleted, 

we find ourselves in a situation similar to that of the full data seto 

Observation 2 is the most influential, n2 = lo33o Removal of this 

observation will move the latest estimate of ~ to the edge of a 70% 

confidence ellipseo The reasons for this importance are that observation 2 

lies on the edge of the IVH and appears to be an outlier. (It 

may be rejected at the Oo05 level.) From Table 5 we see that now the 

2 A 
coefficient of x

1
, ~

3
, is highly significanto The increase in the 

A 

partial F-statistic for ~
3 

is due to the large value of t
4 

and a 

A A 
small value of the correlation between ~3 and ~~ (y = 0957) in 

the data set with only observation 21 deleted. 

Recall that observation 2 is very influential and is one of two 

replicates (1 and 2) on the edge of the IVH. The residual 

correlation between observations 1 and 2 is p12 = -0421/(1 - .421) = -00727. 

Thus, when entertaining the removal of observation 2 we should anticipate 

that the characteristics of the IVH may change considerably and 

that observation 1 will become more influentialo Inspection of the fourth 

column in each table shows this change. Notice that now the gaps .. in the 

spacing of the design points have widened considerablyo 
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In the latest data set (2, 4, and 21 deleted) design points 1 and 

3 are approximately proportional and thus have a very high residual 

correlation, p 13 = -Oo988o (If the third design point were replaced 

with a replicate of the first the residual correlation would increase to 

-00993.) This high residual correlation suggests that we should anticipate 

extreme changes if observation 3 were deletedo ~he fifth column in each 

table shows the results of deleting observation 3o 

For comparison, we have included in the last column of each table 

the results based on the subset of the data that Daniel and Wood judged 

valido Notice that observation 2 is extremely influentialo The removal 

of this observation would move the least squares estimates beyond the 

edge of a 99.95% confidence ellipseo This observation fits the model 

quite well and is important because it stands alone on the edge of the 

IVH. From this we can anticipate that.if it were removed all 

partial F-statistics would decreaseo In fact, when observation 2 is 

removed the first three partial F-statistics are all less than one while 

F
4 

decreases but remains fairly largeo It appears that for the final 

data set of Daniel and Wood the quadratic term is needed to model a single 

observation. 
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TABLE 1 

DATA ON THE OXIDATION OF AMONIA 
TO NITRIC ACID 

Observation Air Flow (Air Flow) 2 Cooling Water Stack 
Number 2 Inlet Temperature Loss 

xl xl x2 y 

1 80 6400 27 42 

2 80 6400 27 37 

3 75 5625 25 37 

4 62 3844 24 28 

5 62 3844 22 18 

6 62 3844 23 18 

7 62 3844 24 19 

8 62 3844 24 20 

9 58 3364 23 15 

10 58 3364 18 14 

11 58 3364 18 14 

12 58 3364 17 13 

13 58 3364 18 11 

14 58 3364 19 12 

15 50 2500 18 8 

16 50 2500 18 7 

17 50 2500 19 8 

18 so 2500 19 8 

19 50 2500 20 9 

20 56 3136 20 15 

21 70 4900 20 15 



TABLE 2 

Distance Measures, D., Based on Selected 
l.. 

Subsets of Observations From Table 1. 

Observations Deleted 

Observation None (21) (4,21) (2 ,4, 21) (1,2,4,21) (1,3,4,21) 

1 0.162 0.107 0.210 2.042 * * 
2 0.193 0.593 1.331 * * 12.175 

3 0.125 0.123 0.333 0.403 21.160 * 
4 0.304 0.539 * * * * 
5 0.003 0.012 0.003 0.006 0.006 0.001 

6 0.021 0.037 0.019 0.031 0.033 0.021 

7 0.042 0.050 0.007 0.010 0.008 0.003 

8 0.014 0.014 0.010 0.023 0.034 0.056 

9 0.043 0.040 0.010 0.008 0.002 0.028 

10 0.028 0.008 0.013 0.030 0.049 0.051 

11 0.028 0.008 0.013 0.030 0.049 0.051 

12 0.062 0.009 0.002 0.009 0.019 0.028 

13 0.001 0.044 0.107 0.177 0.190 0.213 

14 0.001 0.019 0.034 0.054 0.055 0.068 

15 0.002 0.007 0.005 0.005 0.002 0.006 

16 0.002 0.001 0.007 0.019 0.035 0.027 

17 0.004 0.000 0.000 0.001 0.003 0.003 

18 0.004 0.000 0.000 0.001 0.003 0.003 

19 0.008 0.001 0.008 0.011 0.007 0.006 

20 0.008 0.010 0.037 0.078 0.117 0.088 

21 0.699 * * * * * 



TABLE 3 

Values of v .. Based on Selected Subsets 
11 

of Observations From Table 1. 

Observations Deleted 

Observation None (21) (4,21) (2,4,21) (1,2,4,21) (1,3,4,21) 

1 0.409 0.421 0.421 o. 727 * * 
2 0.409 0.421 0.421 * * 0.993 

3 0.176 0.199 0.201 0.308 0.983 * 
4 0 ._191 0.192 * * * * 
5 0.103 0.108 0.125 0.125 0.125 0.131 

6 0.134 o. 134 0.164 0.164 0.165 0.169 

7 0.191 0.192 0.238 0.239 0.240 0.242 

8 0.191 0.192 0.238 0.239 0.240 0.242 

9 0.163 0.170 0.206 0.208 0.218 0.208 

10 0.139 0.175 0.175 0.176 0.179 0.179 

11 0.139 0.175 0.175 0.176 0.179 0.179 

12 0.212 0.272 0.275 0.276 0.279 0.280 

13 0.139 0.175 0.175 0.176 0.179 0.179 

14 0.092 0.110 0.111 0.112 o. 116 0.113 

15 0.188 0.189 0.191 0.191 0.195 0.193 

16 0.188 0.189 · 0.191 0.191 0.195 0.193 

17 0.187 0.195 0.195 0.195 0.198 0.197 

18 0.187 0.195 0.195 0.195 0.198 0.197 

19 0.212 0.232 0.234 0.234 0.236 0.237 

20 0.064 0.064 0.069 0.070 0.076 0.070 

21 ' 0.288 * * * * * 



TABLE 4 

Studentized Residuals, t., Based on 
1 

Selected Subsets of Observations from Table 1. 
Observations Deleted 

Observation None (21) (4,21) (2,4,21) (1,2,4,21) (1,3,4,21) 

1 0.97 0.77 1.08 -1. 75 * * 
2 -1.06 -1.81 -2.71 * * 0.57 

3 1.54 1.40 2.30 1.91 1.21 * 
4 2.27 3.01 * * * * 
5 -0.31 -0.63 -0.31 -0.40 -0.40 -0.12 

6 -0.73 -0.97 -0.62 -0.80 -0.82 -0.64 

7 -0.84 -0.92 -0.30 -0.35 -0.31 -0.18 

8 -0.50 -0.48 0.36 -0.54 0.66 0.84 

9 -0.94 -0.89 -0.39 -0.36 -0.18 -0.66 

10 0.84 0.38 0.49 0.75 0.94 0.96 

11 0.84 0.38 0.49 0.75 0.94 0.96 

12 0.96 0.31 0.16 0.30 0.45 0.53 

13 -0.17 -0.91 -1.42 -1.82 -1.87 -1.98 

14 -0.25 -0. 79 -1.04 -1.30 -1.29 -1.41 

15 0.17 0.34 0.29 0.29 0.19 0.32 

16 -0.17 -0.10 -0.35 -0.57 -0.76 -0.67 

17 -0.26 -0.01 -0.01 -0.10 -0.23 -0.21 

18 -0.26 -0.01 -0 .. 01 -0 .. 10 -0.23 -0.21 

19 -0.35 0.09 0.33 0.37 0.31 0.27 

20 0.68 0.75 1.42 2.04 2.38 2.16 

21 -2.63 * * * * * 



,. 

Term 

1 

xl 

X 2 
1 

x2 

MSE 

Term 

1 

xl 

X 2 
1 

x2 

MSE 

TABLE 5 

A 

Estimated Coefficients, $k, Partial F-

Statistics, Fk, and Mean Square Error, MSE, Based 

on Selected Subsets of Observations from Table 1. 

Observations Deleted 
None (21) (4 21) 

A : A A 

ak Fk ak Fk ak Fk 
-14.30 0.19 -25.90 1.00 -3.74 0.04 

· -0.46 0.21 0.07 0.01 -0.51 0.80 

0.009 1.27 0.006 0.97 -0. 011 6.49 I 

1.25 11.63 0.79 6.00 0.47 4.19 I 

10.33 6.51 3.02 I 

1 2 4 21) ( l ,]_,_4, 21) 
A A 

ak Fk ak Flc' 

33.)4 3.96 -15.41 1.5 

-1.82 10.61 - 0.07 0.03 

0.023 24.09 0.007 4.60 

0.44 7.81 0.53 12.27 

1.39 1.26 

(2 4 21) 
A 

f3k Fk 
13.26 0.85 

-1.10 5.95 

0.017 21.34 

0.46 7.15 

1.65 


