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Abstract 

Acetate was added to two closed soil-water systems that are representative of the subsurface 

environment close to chromium ore processing residue disposal sites; one had a pH of 7.7, 

the other 9.3. Cr(VI) reduction occurred in both systems as part of a cascade of microbially 

mediated terminal electron accepting processes, occurring between nitrate and iron 

reduction. Cr(VI) and subsequently iron reduction took longer to start and were slower in the 

more alkaline system. At the point when Cr(VI) reduction was essentially complete, the 

microbial populations in both systems showed a significant increase in species closely related 

to β-proteobacteria that are capable of nitrate reduction. 

 

BACKGROUND 

Poorly controlled landfilling of chromite ore processing residue (COPR), particularly 

highly alkaline COPR from the high-lime process, is a globally widespread problem 

(Geelhoed et al. 2002). Chromite ore is processed by roasting it with an alkali-carbonate at 

1150°C to oxidise the insoluble Cr(III) to soluble Cr(VI) which is then extracted with water 

upon cooling. Traditionally, limestone was added to the reaction mixture to improve air 

penetration, and this “high-lime” process was the only commercial method of chromium 

smelting in the UK up to the 1960s (Darrie 2001). In that time vast quantities of COPR were 

produced, and many millions of tonnes have been deposited in and around urban areas (e.g. 
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Glasgow, Bolton (Breeze 1973; Geelhoed et al. 2002)). Additionally, the high lime process is 

still generating chromium contaminated wastes in countries such as China, Russia, India and 

Pakistan (a total of 600,000 t.yr-1 in 2001; Darrie 2001).  

 

COPR from the high-lime process and typically contains 2-6% total chromium by weight 

(Deakin et al. 2001; Geelhoed et al. 2002; Gemmell 1973). Much of the chromium in COPR 

is unreacted insoluble chromite ore (i.e. Cr(III)) but, as a result of oxidation during ore 

processing, up to 30% can be chromate (Cr(VI)) (Geelhoed et al. 2003). As a result, the pore 

water in abandoned waste piles can contain up to ca. 640 μmol.l-1 of chromate (Deakin 2002; 

Farmer et al. 1999). This is problematic because the chromate anion (CrO4
2-) is very mobile in 

groundwater systems, whereas Cr(III) is generally strongly retained by soil via sorption and 

precipitation as chromium(III) hydroxide (Fendorf 1995; Guertin et al. 2005; Lloyd and 

Macaskie 1996; Lovley 1993; Richard and Bourg 1991; Viamajala et al. 2002b). Cr(VI) is 

carcinogenic, mutagenic and toxic, whereas Cr(III) is an essential micronutrient for plant and 

animal metabolism (Fendorf 1995; Geelhoed et al. 2003; Richard and Bourg 1991).  

 

Addition of a suitable organic substrate to a groundwater system stimulates growth in the 

indigenous microbial population and rapidly depletes the dissolved oxygen (Scherer et al. 

2000). Typically, as microbial anoxia develops a cascade of reducing reactions then occur due 

to increased activity of indigenous microbes (Burke et al. 2005) that can conserve the free 

energy yield from coupling reduction processes to the oxidation of organic matter.  Microbial 

processes releasing most energy are favoured, so the sequence observed typically follows the 

decreasing order of redox potentials shown in Table 1 (calculated from standard 

thermodynamic data using the Nernst equation). Thus dramatic increases in the numbers of 
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nitrate-, metal- and sulphate-reducing bacteria usually develop in sequence (Anderson et al. 

2003; Holmes et al. 2002).  

 

There is an extensive body of research on microbially mediated chromate reduction, both 

in pure microbial cultures (e.g. Daulton et al. 2007; Viamajala et al. 2002a; e.g. Viamajala et 

al. 2002b; Viamajala et al. 2004) and in environmental samples (e.g. Bader et al. 1999; 

Donmez and Kocberber 2005; Fude et al. 1994; Moser et al. 2003; Schmieman et al. 2000). 

This literature suggests that microbially mediated reduction of contaminant metal ions is often 

a secondary reaction of a microorganism respiring with another electron acceptor (Chen and 

Hao 1998; Fude et al. 1994; Holmes et al. 2002). Reduction can be either the result of 

enzymatic reactions within the cell or cell wall (Chen and Hao 1998; Daulton et al. 2007), or 

the result from an extracellular reaction with reduced species produced by respiration (Lloyd 

et al. 1998). Cr(VI) can readily cross cell membranes by the sulphate transport system 

(Cervantes et al. 2001), where anaerobic enzymatic reduction to Cr(III) appears to proceed via 

unstable Cr(V) and Cr(IV) intermediates (Neal et al. 2002; Suzuki et al. 1992), with evidence 

that the terminal microbial reduction step produces Cr(II) (Daulton et al. 2007); once expelled 

from the cell the Cr(II) oxidizes to the more stable trivalent state. Equally, though, Cr(VI) is 

readily reduced to Cr(III) by species such as Fe(II) and S2- produced by anaerobic cell 

respiration (Richard and Bourg 1991). 

 

Nearly all the reported work on microbially mediated Cr(VI) reduction has been conducted 

at near neutral pH, and much less is generally known about metal reduction in the alkaline 

environments that will be representative of COPR disposal sites (Ye et al. 2004). This paper 

reports a comparative study into microbially mediated chromate reduction in circum-neutral 

and more alkaline soil-water systems representative of those around the margins of COPR 
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disposal sites. It reports geochemical changes that occur as microbially induced anoxia 

develops in closed systems, changes in the microbial population that develop concurrently, 

and highlights differences between the circum-neutral and alkaline systems. 

 

METHODOLOGY 

Sampling Site Description.  The site (Figure 1) covers an area of around 8 hectares (80,000 

m2) in the north west of England (Breeze 1973; Gemmell 1973). Some 800,000 m3 of COPR 

produced between 1893 and 1966 is deposited at the site. Site restoration was undertaken in 

the late 1960’s, when the waste was capped with gravel (20 cm) as a capillary break, and 

topsoil (15 cm) to provide a rooting medium (Breeze 1973). The site was landscaped to direct 

infiltration into a drainage system at the site margins. The site is now covered with grass, and 

has trees around its margins. However, some grassed areas show signs of distress and there 

are frequent leachate over- flow incidents due to precipitates blocking the drainage system. 

The pore water in COPR has elevated sulphate, calcium and sodium concentrations, high pH 

and can contain ca. 600 μmol.l-1 of chromate (see table 2). 

 

Soil Sampling and Characterisation.  Samples from topsoil and subsoil horizons were 

taken at two locations (sample H4 was taken on 4th April, 2006 from location 1 and sample 

FL9 was taken on 8th May, 2006 from location 2). These were within 20m down slope from 

the edge of the COPR waste material (see site plan, Figure 1). Both locations were visibly 

affected by periodic influxes of high pH COPR waste leachate (both were immediately down-

slope of areas where precipitate formation marked the emergence of leachate from the waste). 

Several samples taken from each location but only one sample from each area was used in the 

experiments reported here. Sample H4 came from a depth of 50 cm under sparse grass cover 

and had a water content of 24%, whereas sample FL9 came from a depth of 10 cm in scrub 
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woodland (the soil cover was very thin) and had a water content of 22%. A spade was used to 

reach the required depth before the soils were sampled into clean polythene containers using a 

clean steel spatula (washed in 70% ethanol/water prior to use). Soils were transported back to 

the laboratory within 2 hours of sampling and stored at 4°C until use. Experiments were 

started within one month of collecting the second sample and soil manipulation was kept to a 

minimum prior to incubation. In addition, following the protocol of Burke et al. (2005) brook 

water was taken from a location unaffected by either COPR waste or site leachates as close as 

possible upstream from location 1 (Figure 1) for creating soil microcosms.  

 

X-ray diffraction (XRD) analysis of soil samples ground to <75μm was undertaken on a 

Philips PW1050 Goniometer, and x-ray fluorescence (XRF) analysis of fused soil samples 

was undertaken on an ARL 9400 wavelength dispersive sequential spectrometer. These 

analyses indicated that the dominant crystalline phase in H4 is quartz with some feldspar. The 

dominant mineral phase in FL9 is also quartz, but with some calcite and small amounts of 

haematite and feldspar. The loss on ignition was 6% and 14% for the two samples, 

respectively, representing organic matter, bound water and, in the case of the second sample, 

CO2 lost from calcite. H4 contained 1.8 g.kg-1 of chromium and FL9 contained 1.4 g.kg-1. A 

leaching test was conducted on each soil where 10g of each soil was shaken with 100 ml of 

deionised water and allowed to equilibrate for 48 hours. The aqueous sulphate concentrations 

in the leaching tests on H4 and FL9 (determined by ion chromatography on a Dionex ICS-90 

with an AS14 analytical column) were 18 and 540 μmol.l-1, respectively. 

 

The water sample taken from the brook immediately upstream of the site in April 2006 had a 

pH of 7.3 and contained 133 μmol.l-1 nitrate, 350 μmol.l-1 sulphate (measured by ion 

chromatography), and 130 mg.l-1 total dissolved salts. Total alkalinity, measured by titration 
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with HCl to pH 5 using bromocreosol green/methyl red indicator, was equivalent to 880 ± 70 

μmol.l-1 of CaCO3. 

 

Reduction Microcosm Experiments.  Microcosms were made up using 10 g of soil and 100 

ml of brook water in 120 ml glass serum bottles (Wheaton Scientific, NJ, USA) and sealed 

with butyl rubber stoppers (Bellco Glass Inc., NJ, USA) and aluminium crimps. Soil 

microcosms containing soil from H4 and FL9 when equilibrated with brook waters produced 

microcosm experiments at pH 7-8 and pH 9-10 respectively. For each pH system three repeat 

microcosms were amended to produce a final concentration of 250 μmol.l-1 Cr(VI) (as 

potassium chromate) and 20 mmol.l-1 sodium acetate (called the active microcosms). Cr(VI)- 

and acetate-amended sterile control microcosms were established by heat treatment for 20 

minutes at 120°C (sterile). In addition unsterilised control microcosms containing only 

unamended soils and brook water (unamended), and unsterilised control microcosms 

containing 250 μmol.l-1 Cr(VI) but no acetate addition (chromate only) were also established. 

All microcosm experiments and controls were incubated anaerobically at 25 ±2°C in the dark. 

Microcosm experiments and controls were periodically sub-sampled for geochemical and 

microbiological analysis over 72 days to produce a progressive anoxia time series. During 

sampling soil microcosms were shaken and 3 ml of soil slurry withdrawn using aseptic 

technique with sterile syringes and needles (Burke et al. 2006). Samples were centrifuged (5 

min, 16,000g) and then pore water and soil were analysed for a range of redox indicators, 

Cr(VI) and microbiology (see below).  

 

Geochemical Methods.  Cr(VI) and total Fe were determined by standardised UV-vis 

spectroscopy methods on a Cecil CE 3021 (US-EPA 1992; Viollier et al. 2000) and sulfate 

and nitrate were determined by ion chromatography on a Dionex ICS-90 with AS14 analytical 
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column. Fe(II) in solids was determined after extraction by 0.5 N HCl and reaction with 

Ferrozine™ (Lovley and Phillips 1986). Standards were used regularly to check method 

quality and calibration linear regressions or quadratic fits normally produced r-squared values 

of 0.99 or better. Eh and pH readings were taken using Orion bench-top meters and calibrated 

electrodes.  

 

Extraction of DNA from soil microbes.  Microbial DNA was extracted from soil samples 

(0.25g) using a FastDNA spin kit and FastPREP instrument (Qbiogene, Inc.). DNA fragments 

in the size range 3 kb to ~20 kb were isolated on a 1% agarose “1x” Tris-borate-EDTA (TBE) 

gel stained with ethidium bromide for viewing under UV light (10x TBE solution supplied by 

Invitrogen Ltd., UK). The DNA was extracted from the gel using a QIAquick gel extraction 

kit from (QIAGEN Ltd, UK); final elution was by 1/10th strength elution buffer (unless 

explicitly stated, the manufacturer’s protocols supplied with all kits employed were followed 

precisely). 

 

16S rRNA Gene Sequencing.  A fragment of the 16S rRNA gene of approximately ~500 bp 

was amplified by Polymerase chain reaction (PCR) using broad-specificity bacterial primers 

in a Mastercycler gradient thermal cycler (Eppendorf, Germany). The DNA primers were 8f 

(5'-AGAGTTTGATCCTGGCTCAG-3') (Eden et al. 1991) and 519r 

(5'-GWATTACCGCGGCKGCTG-3') (Lane et al. 1985). Each PCR reaction mixture 

contained 25 µl of purified DNA, 5 units of either Taq DNA polymerase or GoTaq DNA 

polymerase (both from Promega Corp., USA), 1× PCR reaction buffer, 1.5mM MgCl2 

(already in the GoTaq reaction buffer), 0.2mM PCR nucleotide mix (Promega Corp., USA), 

and 0.6 µM DNA primers in a final volume of 50 µl. The reaction mixtures were incubated at 

94°C for 4 min, and then cycled 30 times through three steps: denaturing (94°C, 30 s), 
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annealing (50°C, 30 s), primer extension (74°C, 60 s). This was followed by a final extension 

step at 74°C for 7min (the extension and final extension steps were conducted at 72°C when 

using GoTaq). The PCR products were purified using a QIAquick PCR Purification Kit 

(QIAGEN Ltd, UK). Amplification product sizes were verified by electrophoresis of 10 µl 

samples in a 1.0% agarose TBE gel with ethidium bromide straining.  

 

The PCR product was ligated into a standard cloning vector (p-GEM-T Easy supplied by 

Promega), transformed into competent E. coli cells (JM109 competent cells or XL1-Blue 

supercompetent cells from Stratagene), and colonies were grown on LB- agar plates 

containing  ampicillin (100 μg.ml-1) surface dressed with IPTG and X-gal (as per the 

Stratagene protocol) for blue-white colour screening. Colonies containing the insert were re-

streaked on LB-ampicillin agar plates, and single colonies from these plates were incubated 

overnight in liquid LB-ampicillin. Plasmid DNA was extracted using a QIAprep Spin 

minprep kit (QIAGEN Ltd, UK) and sent for automated DNA sequencing (ABI 3100xl 

Capilliary Sequencer) using the T7P primer. Sequences (typically ~520 bp) were analysed 

against the EMBL release nucleotide database in Sept 2007 using NCBI-BLAST2 program 

and matched to known 16S rRNA gene sequences.  Default settings were used for the BLAST 

parameters (match/mismatch scores 2, -3, open gap penalty 5, gap extension penalty 2). 

 

RESULTS 

Reduction Microcosm Experiments.  With the exception of the sterile control, the 

microcosms containing sample H4 had an initial pH of 7.7 ±0.1, and aqueous nitrate and 

sulphate concentrations of 137 ±8 and 360 ±36 μmol.l-1 (see Figure 2), which are the same as 

the brook water concentrations. The H4 sterile control had an initial pH of 7.0, and aqueous 

nitrate and sulphate concentrations of 114 and 381 μmol.l-1. The H4 active and chromate-only 
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microcosms had an aqueous Cr(VI) concentration of 255 ±8 μmol.l-1. The sterile control and 

unamended microcosm had aqueous Cr(VI) concentrations of 225 and 0.5 μmol.l-1, 

respectively.  

 

In the microbially active microcosms containing sample H4 60% of the nitrate was 

removed from solution within 2 days and all the nitrate was removed in 4 days, whereas there 

was about a 15% increase in the nitrate in the three control tests. The aqueous chromate 

concentration in the active microcosms decreased by 22%, 63% and 90% in 2, 4, and 7 days, 

respectively, and was all removed by day 14. The aqueous chromate concentration in the 

sterile control decreased by about 12% over the first 36 days, but recovered to only 5% below 

its initial concentration after 72 days. The chromate-only control showed no significant 

change in the aqueous chromate concentration over 72 days, and the unamended control 

showed a small but steady increase in aqueous chromate concentration, reaching 19 μmol.l-1 

on day 72. The sulphate concentration in the microbially active microcosms showed very little 

change during the first 21 days, reduced by 10% after 36 days and sulphate had completely 

gone by day 72. The sulphate concentration in the controls showed small, random variation 

without any significant change over 72 days. The average pH active microcosms typically 

fluctuated by ±0.2 pH units without any trend, but final pH was 0.4 higher than the initial 

average value. The pH of the controls fluctuated by up to 0.3 pH units without a significant 

overall change. 

 

The percentage of the total 0.5 N HCl extractable iron present as Fe(II) was initially zero, 

but increased from 2% after 4 days to 91% after 21 days, increasing to 99% after 72 days. The 

percentage of 0.5 N HCl extractable iron present as Fe(II) in the control experiments was 
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initially zero, has a low values without a trend at later times, and at no time exceeds 5% in any 

control test. 

 

The microcosms containing sample FL9 had an initial pH of 9.3 ±0.1 (see Figure 3). The 

control microcosms and active samples a and b had an aqueous nitrate concentration of 149 

±13 μmol.l-1; active sample c had an aqueous nitrate concentration of 208 μmol.l-1. The FL9 

sterile control had a sulphate concentration of 1266 μmol.l-1, but the remaining FL9 

microcosms had a sulphate concentrations of 719 ±64 μmol.l-1. The FL9 active and chromate-

only microcosms had an aqueous chromate concentration of 260 ±4 μmol.l-1. The sterile 

control and unamended microcosm had aqueous chromate concentrations of 230 and 12 

μmol.l-1, respectively.  

 

In the active microcosms containing sample FL9 75% of the nitrate was removed from 

solution within 2 days and 98% was removed in 4 days, whereas there was little overall 

change in the nitrate in the three control tests (both the unamended and the chromate-only 

controls showed decrease at some intermediate time points but the final concentration was 

close to the initial concentration). The aqueous chromate concentration decreased 

significantly in all three microbially active experiments, but at differing rates. Averaging the 

divergent behaviour in these replicates (FL9a, b and c) could obscure the processes that are 

occurring, and therefore their behaviour is reported separately where appropriate. Chromate 

removal was most rapid in microcosm FL9b where aqueous concentration decreased by 11%, 

88% and >99% in 7, 14, and 21 days, respectively. In microcosm FL9a the aqueous 

concentration decreased by 13%, 31% and 97% in 14, 21, and 36 days, respectively. 

Chromate removal was slowest in microcosm FL9c where aqueous concentration decreased 

by 14%, 59% and 92% in 14, 36, and 72 days, respectively. The aqueous chromate 
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concentration in the sterile control showed no significant change in the aqueous chromate 

concentration over 72 days, whereas that of the chromate-only control decreased by about 

11% over 72 days. The aqueous chromate concentration of the unamended control increased 

over the test, reaching 25 μmol.l-1 on day 72. The sulphate concentration showed the same 

increasing trend in all three active microcosms, roughly doubling in the first 7 days and nearly 

trebling over 72 days. The FL9 unamended and the chromate-only controls also showed a 

similar increasing trend, increasing by 250% and 160%, respectively, over 72 days, however 

the sulphate concentration of the sterile control remained relatively stable at its slightly higher 

initial value. The average pH of the active microcosms increased by 0.2 pH units over 72 

days. The pH of the chromate only control was steady over the test period, whereas the pH of 

the sterile and unamended controls increased by 0.3 pH units. 

 

The percentage of 0.5 N HCl extractable iron present as Fe(II) in the microbially active 

FL9 microcosms was initially about 13%. This proportion decreased during the first 4 days to 

about 5%, where it remained until day 14, when it increased at different rates in the three 

active microcosms. The proportion of total iron in the Fe(II) oxidation state increased most 

rapidly in microcosm FL9b where it was 13, 23 and 46% in 21, 36, and 72 days, respectively. 

In microcosm FL9a and FL9c it was 14%, 13% and 22%, and 11, 12 and 6% at the same time 

points. The percentage of total iron in the controls in the Fe(II) oxidation state varied between 

0 and 6%, without a trend apparent, over the test period. 

 

Microbiological Community Analysis.  In order to evaluate potential changes in the 

microbial community associated with removal of Cr(VI) from solution in the neutral and 

alkaline microcosms, 16S rRNA gene sequences from the initial soils and of soil samples 

taken on day 14 of microcosm H4a and day 72 of microcosm FL9c were analyzed. These 
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times during the microcosm experiments were selected as the point when aqueous Cr(VI) 

removal from solution was substantially complete. Each 16S rRNA gene sequence has been 

assigned to a phylum (class in the case of proteobacteria) based >95% homology over a 

sequence length >400bp to a known sequence in the database (see figures 4 and 5). Full 

details of each 16S rRNA gene sequence for which an assignment has been made are reported 

in Appendix A. 

 

From the initial H4 sample 42 clones were sequenced and 27 were assigned to a phylum. 

From the H4a-T14 sample 43 clones were sequenced and 37 were assigned to a phylum. The 

most significant changes over the first 14 days of microcosm H4a were an increase in the 

sequences closely related to β-proteobacteria, the appearance of sequences closely related to 

actinobacteria and δ-proteobacteria, a decrease in unidentified sequences, and a smaller 

decrease in sequences related to γ-proteobacteria.  

 

Of the total number of clones from H4a-T14 that were sequenced, 9% were ≥97% 

homologous to Rhizobium species of α-proteobacteria (Rhizobium species are nitrogen fixing 

α-proteobacterium that often found existing symbiotically in plant roots; (Martinez-Romero 

2003; Willems 2006), 19% of sequences were ≥95% homologous to a denitrifying 

Rhodocyclus specie of β-proteobacterium (AY691423; Smith et al. 2005), 7% of sequences 

were ≥99% homologous to nitrate reducing Comamanadaceae species of β-proteobacterium 

(either AJ505857 or AJ505848; Probian et al. 2003), and 9% of sequences were ≥97% 

homologous to Geobacteraceae specie of δ-proteobacterium (EF668930) found in Fe(III)-

reducing subsurface environments. 
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From the initial FL9 sample 40 clones were sequenced and 21 were assigned to a phylum. 

From the FL9c-T72 sample 43 clones were sequenced and 36 were assigned to a phylum. The 

most significant change in microcosm FL9c was a large increase in the sequences from β-

proteobacteria and a decrease in unidentified sequences. Of the total number of clones from 

FL9c-T72 that were sequenced, 63% of sequences were related to genera within the 

Comamonadaceae family of β-proteobacteria (≥96% identity), including 42% of the total 

number that were ≥99% homologous to Acidovorax species.   

 

DISCUSSION 

In the circum-neutral H4 microcosms, the three microbially active replicates responded 

similarly. Nitrate was rapidly removed shortly after the start of testing, iron reduction (from 

Fe(III) to Fe(II)) occurred next, sulphate removal followed on, and most of the sulphate had 

been removed from solution by day 72. This is only happened in the microbially active 

experiments, which demonstrates that these processes were microbially mediated and 

indicative of a cascade of terminal-electron-accepting processes developing in the normal 

sequence expected during the onset of progressive anoxia (Burke et al. 2005; NABIR 2003).  

 

In the microbially active H4 experiments Cr(VI) removal from solution started sometime 

within the first two days, and was complete before day 14. Thus it started in a period when 

there was a significant rate of nitrate reduction, but continued after the aqueous nitrate had 

been exhausted. Cr(VI) removal was not observed in ether the sterile or chromate only 

controls, so is most likely to have been microbially mediated reduction of Cr(VI) to Cr(III). 

Cr(VI)-reduction occurs before Fe(III)-reduction is observed as an increase in % Fe(II) in the 

soil which suggests that Cr(VI) reduction may have been the result of direct enzymatic 

processes rather than an abiotic reaction with accumulated Fe(II). On day 14, when chromate 
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removal was essentially complete, a significant proportion of the microbial population 

appears to have been closely related to known nitrate reducing species. However four 

sequences were closely related to a Geobacteraceae specie of δ-proteobacteria. Such species 

are more usually associated with iron reducing environments (Lloyd and Macaskie 1996; 

Lovley et al. 1995). This may show that the total population may not be a guide to the active 

population. The latter sequences may be indicative of a switch to iron as the terminal electron 

acceptor. 

 

In the alkaline FL9 microcosms the three active replicates responded at different rates, but 

followed a similar pattern of behaviour. Nitrate was rapidly removed near the start of the tests. 

A period followed in which the proportion of the total iron in the lower Fe(II) oxidation state 

is indistinguishable from the controls, and then period of iron reduction that in two of the 

active microcosms extended until the end of testing. This sequence of nitrate removal 

followed by iron reduction was only observed in the active microcosms indicating that was 

microbially mediated, and is strongly suggestive of the start of a cascade of terminal-electron-

accepting processes indicating that nitrate removal was probably a reductive transformation. 

Where the alkaline FL9 microcosms differ significantly from the neutral H4 tests is that the 

aqueous sulphate concentration increased in all the microcosms except the sterile control. In 

the sterile control the sulphate concentration after autoclaving was initially higher than the 

other microcosms but remained steady throughout the test period. The increase in sulphate 

concentration was greatest in active microcosms (which all behaved similarly), and least in 

the chromate-only microcosm. The final concentration and general pattern of behaviour are 

compatible with desorption or dissolution of the solid phase sulphate found in the FL9 soil 

into the brook water, which would have occurred rapidly during autoclaving in the sterile 

control. Differences in final concentration are probably indicative of variability in the sulphate 
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concentration of the FL9 soil. Thus, in the alkaline microcosms, there is no indication of a 

cascade of stable-element terminal-electron-accepting processes had developed to the point of 

sulphate reduction.   

 

In all three microbially active FL9 microcosms chromate removal started after nitrate 

removal was substantially complete, but before appreciable iron reduction was apparent, 

which suggests that Cr(VI) reduction was a direct enzymatic process as part of a cascade of 

terminal electron accepting processes. Microbial community analysis at the end of FL9c, 

where chromate removal was nearing completion indicates that species closely related to 

members of the Comamonadaceae family of β-proteobacteria dominated the population. 

Genera in the Comamonadaceae family and neighbouring phylogenetic groups are 

phenotypically highly diverse, even if they are phylogenetically closely related (Spring et al. 

2005). However the sequences analysed had greatest similarity to members of the Acidovorax 

genus, most of which are capable of nitrate reduction (Straub et al. 2004; Willems et al. 

1990). 

 

The mineralogy of the two soil specimens was similar, with the small differences probably 

arising out of greater exposure of the FL9 specimen to highly alkaline COPR leachate; i.e 

higher calcite content, and greater sulphate concentration. It is probably the calcite 

precipitated during expose to COPR leachate that is responsible for buffering the FL9 

microcosm pH to ~9.5. This pH difference would also be expected to influence the initial 

microbial populations of the two samples. In the neural H4 microcosms iron reduction 

followed nitrate removal more quickly, and occurred rapidly and completely, and was itself 

followed quite closely by sulphate removal. In the alkaline FL9 microcosms there was a lag 

period after nitrate removal (which occurred at similar rate in the neutral and alkaline 
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microcosms) before iron reduction was detectable, and then the rate and extent was quite 

variable between the FL9 microcosms but in all cases slower and less extensive than at neutral 

pH.  

 

Cr(VI) reduction is far more rapid in the near neutral microcosms than in the alkaline ones. 

In the former case chromate reduction, like nitrate reduction, started within the first 48 hours, 

and an equimolar amount of each (~150 μmol.l-1) was removed in the first 4 days. The nitrate 

was exhausted at that point, and the remainder of the chromate (~100 μmol.l-1) was removed 

as iron reduction became established. In the alkaline FL9 microcosms chromate reduction did 

not appear to start until nitrate removal was complete. There was then a period when Cr(VI) 

was removed from solution with very little change in the amount of the total iron in the lower 

oxidation until some time after chromate removal started. The results from both H4 and FL9 

microcosms are consistent with a cascade of terminal electron accepting process in redox 

potential order as show in Table 1 with chromate-reduction occurring between nitrate-

reduction and iron-reduction. The redox potentials shown in Table 1 can be used to calculate 

the potential free energy yield per mole of acetate consumed at pH 7 and pH 9. The free 

energy yield of nitrate reduction barely changes (from -776 kJ.mol-1 to -769 kJ.mol-1) when 

the pH increases from 7 to 9, and hence it is not surprising that nitrate-reduction occurs 

rapidly in both neutral and high pH systems. Chromate- reduction (-537 kJ.mol-1to -397 

kJ.mol-1), iron- reduction (-236 kJ mol-1 to -64 kJ mol-1) and sulphate-reduction (-58 kJ.mol-1 

to -46 kJ.mol-1), however, all show a reduction in free energy yield between pH 7 and 9. This 

decrease in free energy yield at higher pH, in combination with a less diverse microbial 

population, may help to explain why terminal electron accepting processes beyond nitrate 

reduction occur less vigorously in FL9 microcosms when compared to H4 microcosms. 
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This study has clearly shown that microbially mediated chromate reduction can be 

stimulated in both neutral and alkaline soil-water systems by addition of acetate. However, if 

this is to be the basis of a remedial treatment for contaminated sites, it is important that the 

chromium is not readily remobilised. It is reported that re-oxidation of Cr(III) by dissolved O2 

is kinetically inhibited in the near surface environment (van de Weijden and Reith 1982), and 

that the only important chemical oxidation pathway in natural systems is by Mn(IV)-oxides 

which is restricted by very low solubility of Cr(III) at neutral and high pH (Fendorf 1995; 

Fendorf and Zasoski 1992; Geelhoed et al. 2002). Thus, it appears that the stimulation of 

microbially mediated chromate reduction by addition of an electron donor has the potential to 

be a successful long-term treatment for soils affected by COPR contaminated sites  

 

CONCLUSIONS 

The addition of acetate to soil-water systems representative of soils contaminated by 

leachate from chromium ore processing residue resulted in chromate being removed from 

solution. Cr(VI) removal was consistent with a cascade of terminal electron accepting 

processes in soils, with Cr(VI) removal occurring between nitrate reduction and iron 

reduction. Removal only occurred in systems when microbially induced anoxia developed, 

indicating a microbially mediated process probably involving the reduction of the chromate to 

an insoluble Cr(III) species. At pH 7.7 Cr(VI) reduction started when there was still a 

significant rate of nitrate reduction, whereas at pH 9.3 Cr(VI) reduction occurred after nitrate-

reduction was substantially complete but before there was clear evidence that iron-reduction 

had started. Thus microbially mediated Cr(VI) reduction is not dependant on establishing 

iron-reducing conditions, and may have been a direct enzymatic process.  In both systems the 

microbial populations showed a significant increase in species closely related to β-

proteobacteria capable of nitrate reduction at the point when Cr(VI) reduction was essentially 
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complete. Nitrate reduction occurred at a similar rate in the two soil-water systems, but 

Cr(VI) reduction and iron reduction were slower in the more alkaline system. This partial 

inhibition of terminal electron accepting processes in alkaline systems means that further 

work is needed to understand the process at high pH before biostimulation would be a viable 

treatment technology for COPR waste leachate affected soils.  
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Table 1: Microbially significant half-reaction reduction potentials: Standard Reduction Potential, 
E0, and redox potential, Eh, at pH 7 and 9 (at 25°C and atmospheric pressure). 

Transformation Reaction  
E0 
 

(V) 

Eh 
@ pH 

7 
(V) 

Eh 
@ pH 

9 
(V) 

Assumptions 

O2 depletion + O2 + 4H+ + 4e– = 2H2O  1.230 0.805 0.687 PO2
=0.2 bar 

Denitrification + NO3
– + 6H+ + 5e– = ½N2 + 3H2O  1.240 0.713 0.571 

[NO3
−]=1 mmols l-1

PN2
=0.8 bar 

Mn reduction +
Mn(IV) to Mn(II)  MnO2 + 4H+ + 2e– = Mn2+ + 2H2O 1.230 0.544 0.308 [Mn2+]=18 μmols l-1

Fe reduction +
Fe(III) to Fe(II) Fe(OH)3 + 3H+ + e– = Fe2+ + 3H2O  0.975 0.014 -0.342 [Fe2+]=18 μmols l-1

Sulfate reduction +
S(VI) to S(–II)  SO4

2– + 10H+ + 8e– = H2S + 4H2O  0.301 –0.217 -0.365 [SO4
2−]=[H2S] 

Methane generation 
+

C(IV) to C(–IV) 
HCO3

– + 9H+ + 8e– = CH4 + 3H2O  0.206 –0.260 -0.393 [HCO3
−]=[CH4] 

H2 generation +
H(I) to H(0)  H+ + e– = ½H2  0.000 –0.414 -0.533 PH2

=1 bar 

Cr reduction * 
Cr(VI) to Cr(III) CrO4

2– + 8H+ + 3e– = Cr3+ + 4H2O 1.507 0.404 0.089 [CrO4
2−]=[Cr3+] 

Bicarbonate 
reduction to acetate 
×

C(VI) to C(0) 

2HCO3
− + 9H+ + 8e− = CH3COO− + 4H2O 0.187 -0.292 -0.425 

[HCO3
−]=[CH3COO−

] 
= 20 mmols l-1

+ after (Langmuir 1997) 
* calculated using thermodynamic data from (Stumm and Morgan 1996) 
× calculated using thermodynamic data from (Thauer et al. 1977) 
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Table 2: Pore water composition of COPR at the study site (Deakin 2002)  

Na+ K+ Ca+ SO4
2- Cl- AlO2

- CrO4
2- CO3

2- pH 

Concentration 
(mmol.l-1) 10 0.6 10 6.2 0.7 0.1 0.6 0.3 12.3 

Cations were measured by ICP-AES, anions were measured by Ion Chromatography on a Dionex DX-100, 
except for carbonate which was measured by the flow injection method. 
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Figure 1:  Sketch map of the site showing the sampling locations (redrawn from a Google Earth 
image of the site). 
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Figure 2:  Geochemical response of the microcosms containing soil H4: (a) – (d) pH, nitrate, 
sulphate and Cr(VI) concentrations in the aqueous phase, and (e) speciation of iron extracted 
from solid phase (error bars of ±1 standard deviation are shown on average data from the 
microbially active microcosms).
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Figure 3: Geochemical response of the microcosms containing soil FL9: (a) – (d) pH, nitrate, 
sulphate and Cr(VI) concentrations in the aqueous phase, and (e) speciation of iron extracted 
from solid phase (data from microbially active microcosms a, b, and c are shown separately 
where appropriate, otherwise error bars of ±1 standard deviation are shown on average data).
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Figure 4.  Shifts in the microbial community of the sample H4; untreated soil (top) (42 
clones), and after incubation under anaerobic conditions with added acetate (bottom) (43 
clones). Charts show phylogenetic affiliation of the 16S rRNA gene sequences. 
 

 26



 

Alpha-
proteobacteria

5%

Beta-proteobacteria
10%

Gamma-
proteobacteria

12%

Actinobacteria
10%

Plancto-mycetacia
8%

Unidentified
47%

Gemmatimonadetes
3%

Firmicutes
5%

 

Deinococcus-
Thermus

2%Unidentified
16%

Chloroflexi
2%

Beta-proteobacteria
68%

Alpha-
proteobacteria

12%

 
 

 
Figure 5.  Shifts in the microbial community of the sample FL9; untreated soil (top) (40 
clones), and after incubation under anaerobic conditions with added acetate (bottom) (43 
clones). Charts show phylogenetic affiliation of the 16S rRNA gene sequences. 
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Appendix A 
 
Table A.1. Clone table showing the Genebank accession number and phylogenetic affiliation of the 16S rDNA gene 

sequences 
ID Accession 

number 
Closest identified microorganism  
(accession number) 

Identity % 
Match 

E- 
Value* 

Phylogenetic Division 
 

       

H4 T0-1 AM884621 Gamma proteobacterium clone (AY144261) 482/489 98 0 γ-proteobacteria 
H4 T0-2 AM884622 Acidobacterium clone (AY922096) 534/538 99 0 Acidobacteria 
H4 T0-4 AM884623 Beta proteobacterium clone (EU043637) 466/471 98 0 β-proteobacteria 
H4 T0-5 AM884624 Beta proteobacterium clone (AY921702) 513/521 98 0 β-proteobacteria 
H4 T0-7 AM884625 Comamonadaceae clone (EF018476) 507/522 97 0 β-proteobacteria 
H4 T0-9 AM884626 Xanthomonadaceae clone (DQ230964) 499/522 95 0 γ-proteobacteria 
H4 T0-11 AM884627 Gemmatimonadetes clone (EF555722) 449/454 98 0 Gemmatimonadetes 
H4 T0-13 AM884628 Hyphomicrobiaceae (EF019366) 468/473 98 0 α-proteobacteria 
H4 T0-15 AM884629 Alpha proteobacterium clone (AB252934) 431/446 96 0 α-proteobacteria 
H4 T0-16 AM884630 Beta Proteobacterium clone (AY948000) 465/477 97 0 β-proteobacteria 
H4 T0-18 AM884631 Beta Proteobacterium clone (AY435511) 500/521 95 0 β-proteobacteria 
H4 T0-19 AM884632 Green nonsulfur clone (AY043952) 433/452 95 0 Chloroflexi 
H4 T0-21 AM884633 Alpha proteobacterium clone (AB252934) 403/423 95 0 α-proteobacteria 
H4 T0-22 AM884634 Gemmatimonadetes clone (DQ828292) 463/476 97 0 Gemmatimonadetes 
H4 T0-23 AM884635 Bacteroidetes clone (AM747101) 449/454 98 0 Bacteriodetes 
H4 T0-27 AM884636 Xanthomonadaceae clone (DQ230964) 416/433 96 0 γ-proteobacteria 
H4 T0-28 AM884637 Aquabacterium sp. (DQ167099) 487/496 98 0 β-proteobacteria 
H4 T0-32 AM884638 Firmicutes clone (EF651037) 400/420 95 0 Firmicutes 
H4 T0-34 AM884639 Hydrogenaphaga sp. (EF540470) 499/499 100 0 β-proteobacteria 
H4 T0-35 AM884640 Acidovorax sp. (DQ128112) 457/461 99 0 β-proteobacteria 
H4 T0-36 AM884641 Alpha proteobacteria (AB252934) 430/445 96 0 α-proteobacteria 
H4 T0-37 AM884642 Psuedomonas sp (AY880304) 493/496 99 0 γ-proteobacteria 
H4 T0-38 AM884643 Rhodocyclaceae clone (EF018601) 484/494 97 0 β-proteobacteria 
H4 T0-39 AM884644 Hyphomicrobiaceae clone (EF020212) 456/471 96 0 α-proteobacteria 
H4 T0-b AM884645 Green nonsulfur clone (AY043952) 435/455 95 0 Chloroflexi 
H4 T0-d AM884646 Xanthomonadales sp. (EF664375) 457/457 100 0 γ-proteobacteria 
H4 T0-e AM884647 Xanthomonas sp. (DQ128122) 483/501 96 0 γ-proteobacteria 
       

H4aT14-1 AM884648 Hyphomicrobiaceae clone (EF019849) 460/473 97 0 α-proteobacteria 
H4aT14-2 AM884649 Rhodocyclus sp. (AY691423) 505/523 96 0 β-proteobacteria 
H4aT14-3 AM884650 Rhizobium giardinii (U86344) 458/470 97 0 α-proteobacteria 
H4aT14-4 AM884651 Comamonadaceae sp. (AJ505857) 486/487 99 0 β-proteobacteria 
H4aT14-5 AM884652 Rhodoferax ferrireducens (CP000267) 516/524 98 0 β-proteobacteria 
H4aT14-8 AM884653 Rhodocyclus sp. (AY691423) 503/523 96 0 β-proteobacteria 
H4aT14-9 AM884654 Hydrogenophaga sp. (AB166889) 476/499 95 0 β-proteobacteria 
H4aT14-11 AM884655 Rhodocyclus sp. (AY691423) 483/501 96 0 β-proteobacteria 
H4aT14-12 AM884656 Comamonadaceae sp. (AJ505858) 494/499 98 0 β-proteobacteria 
H4aT14-13 AM884657 Arthrobacter sp. (DQ157989) 482/482 100 0 Actinobacteria 
H4aT14-15 AM884658 Fusibacter sp. (AF491333) 485/510 95 0 Firmicutes 
H4aT14-16 AM884659 Arthrobacter sp. (EF540513) 476/478 99 0 Actinobacteria 
H4aT14-17 AM884660 Actinobacterium sp. (AB265917) 460/482 95 0 Actinobacteria 
H4aT14-20 AM884661 Actinobacterium clone (EF219697) 487/500 97 0 Actinobacteria 
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ID Accession 
number 

Closest identified microorganism  
(accession number) 

Identity % 
Match 

E- 
Value* 

Phylogenetic Division 
 

H4aT14-21 AM884662 Aquaspirillum metamorphum (Y18618) 474/494 95 0 β-proteobacteria 
H4aT14-22 AM884663 Propionivibrio sp. (AY643079) 483/501 96 0 β-proteobacteria 
H4aT14-24 AM884664 Pseudomonas sp (DQ985230) 515/521 98 0 γ-proteobacteria 
H4aT14-25 AM884665 Geobacteraceae clone (EF668930) 531/540 98 0 δ-proteobacteria 
H4aT14-26 AM884666 Chloroflexi clone (AY922044) 471/492 95 0 Chloroflexi 
H4aT14-27 AM884667 Comamonadaceae sp. (AJ505857) 507/511 99 0 β-proteobacteria 
H4aT14-28 AM884668 Rhodocyclus sp. (AY691423) 508/525 96 0 β-proteobacteria 
H4aT14-29 AM884669 Geobacteraceae clone (EF059536) 507/517 98 0 δ-proteobacteria 
H4aT14-30 AM884670 Rhodocyclus sp. (AY691423) 500/525 95 0 β-proteobacteria 
H4aT14-31 AM884671 Rhizobium sp. (AF345554) 462/470 98 0 α-proteobacteria 
H4aT14-32 AM884672 Rhizobium sp. (AF345554) 467/470 99 0 α-proteobacteria 
H4aT14-33 AM884673 Actinobacterium clone (AB265835) 438/460 95 0 Actinobacteria 
H4aT14-34 AM884674 Rhodocyclus sp. (AY691423) 507/523 96 0 β-proteobacteria 
H4aT14-35 AM884675 Hyphomicrobiaceae clone (EF018692) 448/471 95 0 α-proteobacteria 
H4aT14-36 AM884676 Geobacteraceae clone (EF668930) 509/515 98 0 δ-proteobacteria 
H4aT14-39 AM884677 Rhodocyclus sp. (AY691423) 502/520 96 0 β-proteobacteria 
H4aT14-40 AM884678 Rhodocyclus sp. (AY691423) 509/525 96 0 β-proteobacteria 
H4aT14-41 AM884679 Rhizobium sp. (DQ096643) 464/469 98 0 α-proteobacteria 
H4aT14-42 AM884680 Comamonadaceae clone (DQ628936) 496/501 99 0 β-proteobacteria 
H4aT14-43 AM884681 Arthrobacter sp. (DQ157989) 505/506 99 0 Actinobacteria 
H4aT14-45 AM884682 Clostridium puniceum (X71857) 465/472 98 0 Firmicutes 
H4aT14-46 AM884683 Methylibium petroleiphilum (CP000555) 504/521 96 0 β-proteobacteria 
H4aT14-48 AM884684 Geobacteraceae clone (EF668930) 524/538 97 0 δ-proteobacteria 
       

FL9 T0-5 AM884685 Gamma proteobacterium (DQ507153) 508/525 96 0 γ-proteobacteria 
FL9 T0-6 AM884686 Arthrobacter luteolus (AJ243422) 480/489 98 0 Actinobacteria 
FL9 T0-9 AM884687 Nitrosospira sp. (X90820) 479/499 95 0 β-proteobacteria 
FL9 T0-10 AM884688 Gamma proteobacterium (F072052) 480/493 97 0 γ-proteobacteria 
FL9 T0-11 AM884689 Planctomycete (BX294900) 407/419 97 0 Planctomycetes 
FL9 T0-14 AM884690 Gamma proteobacterium (AY632508) 474/487 97 0 γ-proteobacteria 
FL9 T0-15 AM884691 Nitrosospira sp. (X90820) 501/523 95 0 β-proteobacteria 
FL9 T0-20 AM884692 Acidovorax sp. (DQ133409) 480/486 98 0 β-proteobacteria 
FL9 T0-21 AM884693 Micromonospora peucetia (X92603) 467/474 98 0 Actinobacteria 
FL9 T0-22 AM884694 Planctomycete clone (AY922083) 486/477 98 0 Planctomycetes 
FL9 T0-25 AM884695 Xanthomonas sp. (DQ128122) 484/500 96 0 γ-proteobacteria 
FL9 T0-X3 AM884696 Beta proteobacteria sp. (AJ853867) 492/496 99 0 β-proteobacteria 
FL9 T0-X4 AM884697 Xanthomonas sp. (DQ128122) 484/503 96 0 γ-proteobacteria 
FL9 T0-X5 AM884698 Clostridium gasigenes (AF092548) 475/492 96 0 Firmicutes 
FL9 T0-X7 AM884699 Micromonospora sp. (EF212015) 487/500 97 0 Actinobacteria 
FL9 T0-X8 AM884700 Planctomycete sp. (AY921993) 486/499 97 0 Planctomycetes 
FL9 T0-X9 AM884701 Gemmatimonadetes sp. (DQ828292) 479/502 95 0 Gemmatimonadetes 
FL9 T0-X13 AM884702 Endosymbiont of Acanthmoeba sp. (EF140634) 461/485 95 0 α-proteobacteria 
FL9 T0-X15 AM884703 Alpha proteobacteria sp. (AF445680) 446/465 95 0 α-proteobacteria 
FL9 T0-X17 AM884704 Micromonospora pattaloongensis (AB275607) 489/498 98 0 Actinobacteria 
FL9 T0-X24 AM884705 Clostridium gasigenes (AF092548) 476/494 96 0 Firmicutes 
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FL9cT72-1 AM884706 Rhodobacter gluconium (DQ363135) 446/468 95 0 α-proteobacteria 
FL9cT72-2 AM884707 Deinococcus sp. (DQ128152) 460/472 97 0 Deinococcus-Thermus 
FL9cT72-3 AM884708 Burkholderiales clone (EF667920) 494/520 95 0 β-proteobacteria 
FL9cT72-4 AM884709 Rhodobacter gluconium (DQ363135) 447/468 95 0 α-proteobacteria 
FL9cT72-5 AM884710 Acidovorax sp. (DQ133409) 481/484 99 0 β-proteobacteria 
FL9cT72-6 AM884711 Hydrogenophaga taeniospiralis (AY771764) 492/505 97 0 β-proteobacteria 
FL9cT72-7 AM884712 Hydrogenophaga atypica (AJ585992) 507/522 97 0 β-proteobacteria 
FL9cT72-9 AM884713 Chloroflexi sp. (AB265904) 453/472 95 0 Choroflexi 
FL9cT72-10 AM884714 Acidovorax sp. (DQ128112) 480/486 98 0 β-proteobacteria 
FL9cT72-11 AM884715 Comamonadaceae sp. (AJ505857) 511/514 99 0 β-proteobacteria 
FL9cT72-12 AM884716 Acidovorax sp. (DQ133409) 480/484 99 0 β-proteobacteria 
FL9cT72-13 AM884717 Acidovorax sp. (DQ128112 and DQ133409) 482/484 99 0 β-proteobacteria 
FL9cT72-14 AM884718 Acidovorax sp. (DQ128112 and DQ133409) 484/486 99 0 β-proteobacteria 
FL9cT72-15 AM884719 Acidovorax sp. (DQ128112 and DQ133409) 476/484 98 0 β-proteobacteria 
FL9cT72-16 AM884720 Acidovorax sp. (DQ128112 and DQ133409) 482/484 99 0 β-proteobacteria 
FL9cT72-18 AM884721 Burkholderiales clone (EF667920) 495/520 95 0 β-proteobacteria 
FL9cT72-24 AM884722 Acidovorax sp. (DQ128112 and DQ133409) 481/484 99 0 β-proteobacteria 
FL9cT72-25 AM884723 Hyphomicrobiaceae sp. (EF073503) 412/420 98 0 α-proteobacteria 
FL9cT72-26 AM884724 Acidovorax sp. (DQ128112) 477/486 98 0 β-proteobacteria 
FL9cT72-27 AM884725 Acidovorax sp. (DQ128112) 484/486 99 0 β-proteobacteria 
FL9cT72-28 AM884726 Hyphomicrobiaceae sp. (EF019706) 468/473 98 0 α-proteobacteria 
FL9cT72-29 AM884727 Acidovorax sp. (DQ128112 and DQ133409) 482/484 99 0 β-proteobacteria 
FL9cT72-30 AM884728 Acidovorax sp. (DQ128112) 469/484 96 0 β-proteobacteria 
FL9cT72-31 AM884729 Comamonadaceae sp. (AJ505858) 488/491 99 0 β-proteobacteria 
FL9cT72-32 AM884730 Acidovorax sp. (DQ128112) 485/486 99 0 β-proteobacteria 
FL9cT72-33 AM884731 Acidovorax sp. (DQ128112 and DQ133409) 464/465 99 0 β-proteobacteria 
FL9cT72-34 AM884732 Acidovorax sp. (DQ128112 and DQ133409) 484/486 99 0 β-proteobacteria 
FL9cT72-35 AM884733 Acidovorax sp. (DQ128112 and DQ133409) 450/457 98 0 β-proteobacteria 
FL9cT72-36 AM884734 Acidovorax sp. (DQ128112 and DQ133409) 485/486 99 0 β-proteobacteria 
FL9cT72-37 AM884735 Acidovorax sp. (DQ128112 and DQ133409) 482/484 99 0 β-proteobacteria 
FL9cT72-38 AM884736 Acidovorax sp. (DQ128112) 463/463 100 0 β-proteobacteria 
FL9cT72-39 AM884737 Acidovorax sp. (DQ128112 and DQ133409) 485/486 99 0 β-proteobacteria 
FL9cT72-40 AM884738 Acidovorax sp. (DQ128112 and DQ133409) 482/484 99 0 β-proteobacteria 
FL9cT72-43 AM884739 Acidovorax sp. (DQ128112 and DQ133409) 485/486 99 0 β-proteobacteria 
FL9cT72-45 AM884740 Alpha proteobacterium sp. (DQ211366) 452/466 96 0 α-proteobacteria 
FL9cT72-46 AM884741 Acidovorax sp. (DQ128112) 458/460 99 0 β-proteobacteria 

* The BLAST E-value indicates the likelihood that a match has arisen by chance. 
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