Nano-sized local magnetic field induced by circular motion of ions and molecules in a nanotorus under gigahertz rotating electric fields

Maryam Kowsar ${ }^{1}$ and Hassan Sabzyan ${ }^{2 *}$
${ }^{1}$ Department of Chemistry, Shahid Beheshti University, Tehran 19839-63113, I. R. Iran.
${ }^{2}$ Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, I. R. Iran.

Supplementary Materials

Figure S-1. Variations of the magnetic field components B_{x}, B_{y} and B_{z} induced at the center by the cyclotron motion of the (a) Na^{+}and (b) K^{+}ions in the $(6,6)$ carbon nanotorus of circle radius of $\mathrm{R}_{\mathrm{NT}}=3.914 \mathrm{~nm}$ and tube radius of $\mathrm{r}_{\mathrm{CNT}}=0.406 \mathrm{~nm}$ in the presence of a rotating EF ($\mathrm{E}_{\circ}=1.0 \mathrm{~V} / \mathrm{nm}, v=16 \mathrm{GHz}$). Note the different scales used for different plots.

Figure S-1. ... Continued

Figure S-2. Variations of the components of the MF ($\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}$ and B_{z}) induced by the cyclotron motion of the ions $\left(\mathrm{Ca}^{2+}, \mathrm{Na}^{+}\right.$and K^{+}depicted respectively in blue, yellow and red) in the $(6,6)$ carbon nanotorus of radius of $\mathrm{R}_{\mathrm{NT}}=39.144 \AA$ in the presence of the rotating EF of $\mathrm{E}_{\mathrm{o}}=$ $1.0 \mathrm{~V} / \mathrm{nm}$ strengths $v=16 \mathrm{GHz}$ frequency, at the two corresponding points $\left(0,0,-1.5 \mathrm{R}_{\mathrm{NT}}\right)$ and $\left(0,0,+1.5 \mathrm{R}_{\mathrm{NT}}\right)$ on the z -axis. These results are obtained for the simulations with fixed carbon atoms.

Water Molecules: at $Z=+2 \mathbf{R}_{\mathrm{NT}}$

Figure S-3. The same as Fig. S-2, but for the MF induced by cyclotron motion of 81 water molecules induced by the rotating EF of $\mathrm{E}_{\mathrm{o}}=0.5,1.0$ and $2.0 \mathrm{~V} / \mathrm{nm}$, at $\mathrm{z}=2 \mathrm{R}_{\mathrm{NT}}$ (left column) and $z=-2 R_{N T}$ (right column) points on the z-axis.

