Nano-sized local magnetic field induced by circular motion of ions and molecules in a nanotorus under gigahertz rotating electric fields

Maryam Kowsar¹ and Hassan Sabzyan²*

Supplementary Materials

¹ Department of Chemistry, Shahid Beheshti University, Tehran 19839-63113, I. R. Iran.

² Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, I. R. Iran.

Figure S-1. Variations of the magnetic field components B_x , B_y and B_z induced at the center by the cyclotron motion of the (a) Na^+ and (b) K^+ ions in the (6,6) carbon nanotorus of circle radius of $R_{NT}=3.914$ nm and tube radius of $r_{CNT}=0.406$ nm in the presence of a rotating EF ($E_{\circ}=1.0 \text{ V/nm}, \nu=16 \text{ GHz}$). Note the different scales used for different plots.

Figure S-1. ... Continued

Figure S-2. Variations of the components of the MF (B_x , B_y and B_z) induced by the cyclotron motion of the ions (Ca^{2+} , Na^+ and K^+ depicted respectively in blue, yellow and red) in the (6,6) carbon nanotorus of radius of $R_{NT}=39.144$ Å in the presence of the rotating EF of $E_o=1.0 \text{ V/nm}$ strengths $\nu=16 \text{ GHz}$ frequency, at the two corresponding points (0,0,-1.5 R_{NT}) and (0,0,+1.5 R_{NT}) on the z-axis. These results are obtained for the simulations with fixed carbon atoms.

Figure S-3. The same as Fig. S-2, but for the MF induced by cyclotron motion of 81 water molecules induced by the rotating EF of $E_{\circ} = 0.5$, 1.0 and 2.0 V/nm, at $z = 2~R_{NT}$ (left column) and $z = -2~R_{NT}$ (right column) points on the z-axis.