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Starting from the many-particle Smoluchowski equation, we derive dynamical density functional
theory for Brownian particles with an arbitrary shape. Both passive and active (self-propelled)
particles are considered. The resulting theory constitutes a microscopic framework to explore the
collective dynamical behavior of biaxial particles in nonequilibrium. For spherical and uniaxial parti-
cles, earlier derived dynamical density functional theories are recovered as special cases. Our study
is motivated by recent experimental progress in preparing colloidal particles with many different
biaxial shapes.

PACS numbers: 82.70.Dd, 05.40.Jc, 61.20.Gy, 61.30.Cz
Keywords: dynamical density functional theory, self-propelled biaxial colloidal particles, active soft matter,
Brownian dynamics of anisotropic particles

I. INTRODUCTION

In its original form, classical dynamical density func-
tional theory (DDFT) was derived by Marconi and Tara-
zona [1] in 1999 for spherical, i.e., isotropic, colloidal
particles. Their derivation started from the Langevin
equation for spherical particles [2] that interact via a
pair potential. Later, in 2004, DDFT was rederived by
Archer and Evans [3] from the Smoluchowski equation
that corresponds to the Langevin equation for interact-
ing spherical particles. In 2007, DDFT was generalized
by Rex, Wensink, and Löwen [4] to systems of uniaxial
anisotropic particles with orientational degrees of free-
dom. This generalization is based on the Smoluchowski
equation for rigid rods [5]. It made DDFT applicable to
the important class of uniaxial liquid crystals.

Nowadays, it is already possible to produce colloidal
particles with rather complicated shapes including biax-
ial particles. Although static classical density functional
theory (DFT) has presently available very powerful tools
like fundamental measure theory [6] that allow to con-
sider also such complicated colloidal particles in the con-
text of DFT, the dynamics of these biaxial particles could
up to now not be investigated on the basis of DDFT. For
these reasons, it is of high importance to push forward
the development of DDFT.

In this paper, we present a further generalization of
DDFT, which is now also applicable to biaxial particles.
This extension of DDFT contains the previous DDFT
equations as special cases and does not assume a cer-
tain shape for the colloidal particles. Instead, it is de-
rived for arbitrarily shaped colloids. In comparison with
the former DDFT approach, this leads to three indepen-
dent rotational diffusion coefficients instead of only one.
Since our new DDFT equation holds also for screw-like
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particles, it takes even a possible translational-rotational
coupling into account. Additionally, we consider a possi-
ble self-propulsion mechanism of the particles so that our
results are also relevant for the investigation of the collec-
tive dynamics of active particles like swarms of swimming
microorganisms as, for example, protozoa [7].

The paper is organized as follows: after giving a short
overview in Sec. II about anisotropic colloidal particle
shapes that can already be synthesized, we present our
derivation of the extended DDFT equation in Sec. III
and discuss special cases that are known from literature.
Sec. IV is addressed to possible applications of the DDFT
equation. Finally, we give conclusions and mention pos-
sible further extensions of DDFT in Sec. V.

II. GEOMETRIC CLASSIFICATION OF
COLLOIDAL PARTICLES

Induced by technological advance in the processing
of nanomaterials, a large number of differently shaped
colloidal particles became synthetizable during the last
years. The different shapes of these colloidal particles
can be classified by means of their geometric properties.
Figure 1 shows a detailed classification of colloidal shapes
with respect to symmetry and convexity. Such a classifi-
cation is of big importance since colloidal particles may
form a huge set of mesotropic phases (mesophases) [8, 9]
that go along with different states of translational and
orientational order. The possible states of translational
and orientational order depend strongly on the shapes of
the particles and a classification of their shapes is there-
fore also a classification of the possible phases that these
particles may evolve.

The most simple and at once full symmetric, i.e.,
isotropic, shape is the sphere. This is the traditional
shape for colloids in theoretical soft matter physics, be-
cause it is simple to produce and due to a lack of orien-
tational degrees of freedom relatively simple to describe
theoretically. Since spheres possess only translational de-
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FIG. 1. Classification of synthetizable colloidal particles with respect to their shape. Geometrical properties that were used to
classify the shapes are symmetry and convexity.

grees of freedom, they solely appear in the completely dis-
ordered isotropic phase and in the crystalline state [10].
The shape of a sphere is globally convex and there is no
non-convex analog with full symmetry. All other colloidal
particle shapes are anisotropic and either uniaxial or bi-
axial. The characteristic property of uniaxial particles
is a symmetry axis, whose orientation is denoted by the
unit vector û in the following. These particles have rota-
tional symmetry and possess one orientational degree of

freedom in two spatial dimensions and two orientational
degrees of freedom in three spatial dimensions. Uniaxial
particles are further distinguished into apolar and polar
particles. An uniaxial particle is called apolar, if it has
head-tail symmetry and polar otherwise. Rod-like parti-
cles [11, 12] like spherocylinders, spheroids, and ellipsoids
are the most simple anisotropic colloidal particles. They
are convex and apolar and of big importance since they
may evolve the industrially important nematic phase and
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serve as excellent model systems for most liquid crystals
[13–15]. A further member of convex and apolar particles
are the platelets [16–20]. They have a similar phase dia-
gram to rod-like particles with a strong affinity to form
columnar stacks [21]. Systems of such disk-like particles
are realized in nature for example by clay suspensions
[22–24]. Examples for non-convex apolar particles are
dumbbells (dimers) [25–27], that are produced by mer-
gence of two spheres of equal size, and rings [28, 29], that
can be made by etching from colloidal spheres that are
partially embedded in a metal layer. The complement
of apolar particles is built by the polar particles, that
have no head-tail symmetry. A famous member of this
particle class are the Janus particles [30–32]. They are
spheres with a different coating at one half of the sur-
face. The original Janus particles had a hydrophilic and
a hydrophobic coating. Nowadays, one coating is often
reactive like a platinic coating that decomposes hydrogen
peroxide catalytically. Such particles are immersed into
a hydrogen peroxide solution to realize active particles
(micro-swimmers) that are driven by an intrinsic drive
[33]. Cones are a further member of uniaxial polar par-
ticles. Carbon nanocones appear naturally in graphite
[34–36] and do not need to be produced by an elaborate
method. By the mergence of two spheres with different
diameters, one obtains a pear-like particle [37, 38]. Pears
and also bowls [39, 40] are non-convex particles that are
uniaxial and polar. The latter stack into each other and
form columnar structures [41].

Particles with less symmetry are biaxial. They are the
complement to the uniaxial particles in the class of the
anisotropic particles. Biaxial particles have either only
discrete symmetries, like inflection symmetry and dis-
crete rotational symmetry, or are completely asymmet-
ric. In both cases, the biaxial particles have three orien-
tational degrees of freedom and a unit vector is no longer
sufficient to describe their orientation. Instead, two per-
pendicular unit vectors or Eulerian angles have to be used
[42]. Due to the additional orientational degree of free-
dom, the phase diagrams of biaxial colloidal particles are
much richer than those for uniaxial particles [43]. Convex
colloidal particles with discrete rotational or inflection
symmetry are, for example, polyhedra like cubes [44–47]
and tetrahedra [48, 49], boards [50], pyramids [51–53],
and regular patchy particles [54–57]. The latter differ
from Janus particles by a patchy coating with a regular, e.
g., tetrahedral, arrangement. Non-convex particles with
discrete rotational or inflection symmetry include special
colloidal molecules that are realized by more than two
spheres that are merged in a regular arrangement. Exam-
ples for this include trimers [58] consisting of three equal
spheres and chiral particles [59, 60] consisting of many
equal spheres in a helical arrangement, multipod-shaped
nanocrystals [61, 62], stars [46, 63], and some lock-and-
key particles [64]. Patchy particles may also belong to the
class of colloidal particles without any kind of symmetry.
This is the case, if the patches are arranged or sized in an
irregular way. Irregular patchy particles that are made

by coating of spherical particles are always convex. Col-
loidal molecules of arbitrary shape and size belong on
the other hand to the completely asymmetric colloidal
particles that are not convex [65–68].

III. DERIVATION OF THE DDFT EQUATION

In this derivation, we consider a set of N asymmetric
rigid particles in a solvent with dynamic (shear) viscos-
ity η and neglect possible additional (for example vibra-
tional) degrees of freedom. We choose the center-of-mass
positions ~ri = (x1,i, x2,i, x3,i) and the Eulerian angles
~$i = (φi, θi, χi) with i = 1, . . . , N to describe their po-
sitions and orientations completely. Alternatively, the
orientation of the particles could also be described by
means of two perpendicular axes [69], but for our pur-
poses, the use of Eulerian angles is more appropriate,
since they do not involve additional geometric constraints
and lead to simpler equations with a more compact nota-
tion. The angular velocities ~ωi that describe the instanta-
neous rotational motion of the particles can be expressed
in terms of the Eulerian angles and their temporal deriva-
tives [70]. For convenience, we use the convention of Gray
and Gubbins [71], which is equivalent to the second con-
vention of Schutte [70], for the Eulerian angles, since with
this convention, the first two Eulerian angles φ and θ
are identical to the usual azimuthal and polar angles of
the spherical coordinate system, respectively. The whole
set of particles is then characterized by the positional
and orientational ”multivectors” ~rN = (~r1, . . . , ~rN ) and
~$N = (~$1, . . . , ~$N ), respectively. For completeness, we
also introduce the abbreviation ~ωN = (~ω1, . . . , ~ωN ), here.
The particles are exposed to the (time-dependent) total
potential

U(~rN, ~$N, t) = Uext(~r
N, ~$N, t) + Uint(~r

N, ~$N ) , (1)

which consists of the external potential

Uext(~r
N, ~$N, t) =

N∑
i=1

U1(~ri, ~$i, t) (2)

and the total particle interaction potential

Uint(~r
N, ~$N ) =

N∑
i,j=1
i<j

U2(~ri, ~rj , ~$i, ~$j) . (3)

For both the one-particle interaction potentials
U1(~ri, ~$i, t) and the two-particle interaction poten-
tials U2(~ri, ~rj , ~$i, ~$j), we assume pairwise additivity.
Moreover, we neglect many-particle interaction poten-
tials of higher order than pair interaction potentials. We
further introduce the N -particle probability distribution
function P (~rN, ~$N, t) for the probability density to find
the N particles at time t with the orientations ~$N at
the positions ~rN . Successive integration of this function
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with respect to its positional and orientational degrees
of freedom leads to the n-particle density [3]

ρ(n)(~rn, ~$n, t) =
N !

(N − n)!

∫
V
dVn+1· · ·

∫
V
dVN

×
∫
S
dΩn+1· · ·

∫
S
dΩNP (~rN, ~$N, t) ,

(4)

where V = R3 and S = [0, 2π) × [0, π) × [0, 2π) are the
domains for spatial and orientational integration, respec-
tively, dV = dx1dx2dx3 and dΩ = dφdθ sin(θ)dχ are the
corresponding differentials, and∫

V
dV =

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 ,∫
S
dΩ =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)

∫ 2π

0

dχ

(5)

are common abbreviations.

A. Smoluchowski equation

We start with the derivation of the Smoluchowski equa-
tion for the overdamped Brownian dynamics of N self-
propelled biaxial particles. In analogy to the uniaxial
passive case (see reference [5]), we define the translational

gradient operator ~∇~r = (∂x1
, ∂x2

, ∂x3
) and the rotational

gradient operator ~∇~$ = iL̂, where i is the imaginary unit
and L̂ = (Lx1

,Lx2
,Lx3

) is the angular momentum oper-
ator, which can be expressed in terms of the Eulerian
angles by [70]

iLx1
= − cos(φ) cot(θ)

∂

∂φ
− sin(φ)

∂

∂θ

+ cos(φ) csc(θ)
∂

∂χ
,

iLx2
= − sin(φ) cot(θ)

∂

∂φ
+ cos(φ)

∂

∂θ

+ sin(φ) csc(θ)
∂

∂χ
,

iLx3 =
∂

∂φ
.

(6)

We further define the vectors ~xN = (~rN, ~$N ) and ~vN =

(~̇rN, ~ωN ) with ~̇rN = d~rN/dt and the operators ~∇~rN =

(~∇~r1 , . . . , ~∇~rN ), ~∇~$N = (~∇~$1
, . . . , ~∇~$N

), and ~∇~xN =

(~∇~rN , ~∇~$N ) and write down the continuity equation

∂

∂t
P (~xN, t) = −~∇~xN ·

(
~vNP (~xN, t)

)
, (7)

which is a trivial generalization of the continuity equation
for passive rods that is described by Dhont in Ref. [5]. On
the Brownian time scale, the total force and torque, act-
ing on an arbitrary particle i ∈ {1, . . . , N} are zero. The

total force and torque consist of the force ~F
(A)
i (~xN, t) and

torque ~T
(A)
i (~xN, t) due to the activity of the self-propelled

particle i, the hydrodynamic force ~F
(H)
i (~xN ) and torque

~T
(H)
i (~xN ), the interaction force ~F

(I)
i (~xN, t) and torque

~T
(I)
i (~xN, t) due to the potential U(~xN, t), and the Brow-

nian force ~F
(Br)
i (~xN, t) and torque ~T

(Br)
i (~xN, t). With the

definition ~X = ( ~X1, . . . , ~XN ) for ~X ∈ {~F ( · ), ~T ( · ), ~K( · )}
and the abbreviations

~K(A)(~xN, t) = (~F (A)(~xN, t), ~T (A)(~xN, t)) ,

~K(H)(~xN ) = (~F (H)(~xN ), ~T (H)(~xN )) ,

~K(I)(~xN, t) = (~F (I)(~xN, t), ~T (I)(~xN, t)) ,

~K(Br)(~xN, t) = (~F (Br)(~xN, t), ~T (Br)(~xN, t)) ,

(8)

this force balance for the N colloidal particles can be
expressed by

~0 = ~K(A)(~xN, t) + ~K(H)(~xN )

+ ~K(I)(~xN, t) + ~K(Br)(~xN, t) .
(9)

The forces and torques resulting from the self-propulsion
mechanism of the particles are supposed to be constant
with respect to their orientations in the respective body-
fixed coordinate systems, but their strengths may vary
slowly with time. We denote these forces and torques
for a certain particle i in body-fixed Cartesian coordi-

nates by the vector ~K
(A)
0,i (~ri, t) for i = 1, . . . , N and the

corresponding vector in space-fixed coordinates by

~K
(A)
i (~ri, ~$i, t) = R−10 (~$i) ~K

(A)
0,i (~ri, t) (10)

with the diagonal block rotation matrix

R0(~$) = diag
(
R(~$),R(~$)

)
, (11)

where the rotation matrix R(~$) is defined by

R(~$) = R3(χ) R2(θ) R3(φ) ,

R−1(~$) = RT(~$) = R3(−φ) R2(−θ) R3(−χ)
(12)

with the elementary rotation matrices

R2(ϕ) =

cos(ϕ) 0 − sin(ϕ)
0 1 0

sin(ϕ) 0 cos(ϕ)

 ,

R3(ϕ) =

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 .

(13)

Note that ~K
(A)
0,i depends most often only on time t, but

one could also think of swimming microorganisms in a

poisoned environment, where ~K
(A)
0,i also depends on ~ri.

To simplify the notation in the following, we collect all

the N vectors ~K
(A)
i (~ri, ~ωi, t) in the vector

~K(A)(~xN, t) = R−1(~$N ) ~K
(A)
0 (~rN, t) (14)
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with the 6N×6N -dimensional rotation matrix

R(~$N ) = diag
(
R0(~$1), . . . ,R0(~$N )

)
(15)

and the 6N -dimensional vector

~K
(A)
0 (~rN, t) =

(
~K

(A)
0,1 (~r1, t), . . . , ~K

(A)
0,N (~rN , t)

)
. (16)

Next, we focus on the hydrodynamic force and torque.
They are given by

~K(H)(~xN ) = −Υ(~xN ) · ~vN (17)

with the microscopic friction matrix [5]

Υ(~xN ) =

(
ΥTT(~xN ) ΥTR(~xN )
ΥRT(~xN ) ΥRR(~xN )

)
, (18)

where ΥTT(~xN ), ΥTR(~xN ), ΥRT(~xN ), and ΥRR(~xN ) are
3N × 3N -dimensional submatrices. The submatrices
ΥTT(~xN ) and ΥRR(~xN ) correspond to pure translational
and rotational motion, respectively, while ΥTR(~xN ) and
ΥRT(~xN ) have to be taken into account for particles
with a translational-rotational coupling as, for example,
screw-like particles. For many other particles like those
that are orthotropic, however, ΥTR(~xN ) and ΥRT(~xN )
vanish. In the following, we neglect hydrodynamic in-
teractions between the colloidal particles. With this as-
sumption, the microscopic friction submatrices simplify
to the block diagonal matrices

ΥTT(~$N ) = diag
(
ΥTT

11 (~$1), . . . ,ΥTT
NN (~$N )

)
, (19)

ΥTR(~$N ) = diag
(
ΥTR

11 (~$1), . . . ,ΥTR
NN (~$N )

)
, (20)

ΥRT(~$N ) = diag
(
ΥRT

11 (~$1), . . . ,ΥRT
NN (~$N )

)
, (21)

ΥRR(~$N ) = diag
(
ΥRR

11 (~$1), . . . ,ΥRR
NN (~$N )

)
(22)

with the 3×3-dimensional matrices

ΥTT
ii (~$i) = ηR−1(~$i) K R(~$i) , (23)

ΥTR
ii (~$i) = ηR−1(~$i) C(S)T R(~$i) , (24)

ΥRT
ii (~$i) = ηR−1(~$i) C(S) R(~$i) , (25)

ΥRR
ii (~$i) = ηR−1(~$i) Ω(S) R(~$i) (26)

for i = 1, . . . , N , which are related to the translation ten-
sor K, the coupling tensor C(S), its transposed C(S)T, and
the rotation tensor Ω(S) [72] by an orthogonal transfor-
mation with the rotation matrix R(~$). The tensors K,
C(S), and Ω(S) are constant and depend on shape and
size of the colloidal particles that are considered, but are
independent of the viscosity of the solvent. In addition,
C(S) and Ω(S) depend also on the reference point S, for
which the center-of-mass position of the considered col-
loidal particle should be chosen. In the special case of no
hydrodynamic interaction, the inverse of the microscopic
friction matrix

Υ−1(~xN ) = βD(~xN ) (27)

with the inverse temperature β = 1/(kBT ), the Boltz-
mann constant kB, and the microscopic short-time diffu-
sion matrix

D(~xN ) =

(
DTT(~xN ) DTR(~xN )
DRT(~xN ) DRR(~xN )

)
, (28)

which we need in the following, has the same structure
as the microscopic friction matrix. We further have the
equation

~K(I)(~xN, t) = −~∇~xNU(~xN, t) (29)

for the interaction force and torque. Moreover, the Brow-

nian force and torque ~F (Br)(~xN, t) and ~T (Br)(~xN, t) can be
derived from the equilibrium condition

lim
t→∞

P (~xN, t) ∝ e−βU(~xN,t) (30)

when ~K(A)(~xN, t) is neglected and the vector ~vN in Eq.

(7) is expressed in terms of the vectors ~xN , ~K(I)(~xN, t),

and ~K(Br)(~xN, t) with the help of Eq. (9). This results in

~K(Br)(~xN, t) = − 1

β
~∇~xN ln

(
P (~xN, t)

)
. (31)

Using Eqs. (9), (17), (29), and (31), the Smoluchowski
equation

∂

∂t
P (~xN, t) = L̂P (~xN, t) (32)

with the Smoluchowski operator

L̂ = ~∇~xN ·
(
D(~xN ) ·

(
β ~∇~xNU(~xN, t)

− β ~K(A)(~xN, t) + ~∇~xN
)) (33)

follows now directly from the continuity equation (7).

B. DDFT equation

Next, we proceed in our derivation by applying the
integration operator N

∫
VdV2· · ·

∫
VdVN

∫
SdΩ2· · ·

∫
SdΩN

from the left on the Smoluchowski equation (32) and ob-
tain the expression

∂

∂t
ρ(~x, t) = ~∇~x ·

(
D(~x) ·

(
− β ~KA(~x, t)ρ(~x, t)

+~∇~xρ(~x, t) + βρ(~x, t)~∇~xU1(~x, t)− βK̄(~x, t)
)) (34)

with the short-time diffusion tensor [73]

D(~$) =

(
DTT

11 (~$) DTR
11 (~$)

DRT
11 (~$) DRR

11 (~$)

)
(35)

for the one-particle density ρ(~x, t) ≡ ρ(1)(~x, t), where we
omitted the index 1 in ~r1 and ~$1 and used the abbrevi-

ations ~x = (~r, ~$), ~∇~x = (~∇~r, ~∇~$), ~KA(~x, t) = ~K
(A)
1 (~x, t),
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and K̄(~x, t) = (F̄ (~x, t), T̄ (~x, t)). When we further intro-
duce the integration operator∫

G

dV =

∫
V
dV

∫
S
dΩ (36)

with the total integration domain G = V × S and the
corresponding differential dV = dV dΩ, the average force
F̄ (~x, t) and torque T̄ (~x, t) due to the interaction with
other particles in Eq. (34) are given by

K̄(~x, t) = −
∫
G

dV′ ρ(2)(~x,~x′, t)~∇~xU2(~x,~x′) . (37)

In equilibrium with ~KA(~x, t) = ~0 and U1 = U1(~x), Eq.
(34) reduces to the first equation of the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy for molecular flu-
ids [71]:

βK̄0(~x) = ~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x) . (38)

Here, a zero in the index of a function denotes the
time-independent equilibrium state of this function. For
example, the function ρ0(~x) denotes the equilibrium
one-particle density field that corresponds to the time-
independent prescribed external potential U1(~x). On the
other hand, we have in equilibrium the relation

~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x)

= −βρ0(~x)~∇~x
δFexc[ρ0(~x)]

δρ0(~x)

(39)

with the equilibrium Helmholtz excess free-energy func-
tional Fexc[ρ0(~x)]. This relation follows with

~∇~xc
(1)
0 (~x) =

∫
G

dV′ c
(2)
0 (~x,~x′)~∇~x′ρ0(~x′) , (40)

where c
(n)
0 (~x1, . . . ,~xn) is the n-particle direct correlation

function in equilibrium, and

c
(1)
0 (~x) = −β δFexc[ρ0(~x)]

δρ0(~x)
(41)

from the more general form

~∇~xρ0(~x) + βρ0(~x)~∇~xU1(~x)

= ρ0(~x)

∫
G

dV′ c
(2)
0 (~x,~x′)~∇~x′ρ0(~x′)

(42)

of Eqs. (14) and (16) in reference [74]. Equations (38)
and (39) lead to the equilibrium relation

K̄0(~x) = −ρ0(~x)~∇~x
δFexc[ρ0(~x)]

δρ0(~x)
, (43)

which we use instead of Eq. (37) as closure relation for
Eq. (34) in the time-dependent (non-equilibrium) situa-
tion. A similar adiabatic approximation was used in the
derivations of the DDFT equations for isotropic [1, 3]

and uniaxial [4] colloidal particles. The approximation
results in the generalized DDFT equation

∂ρ(~x, t)

∂t
= β ~∇~x ·

(
D(~x) ·

(
ρ(~x, t)

(
~∇~x

δF [ρ(~x, t)]

δρ(~x, t)

− ~KA(~x, t)

))) (44)

for anisotropic colloidal particles with the total equilib-
rium Helmholtz free-energy functional

F [ρ0(~x)] = Fid[ρ0(~x)] + Fexc[ρ0(~x)] + Fext[ρ0(~x)] (45)

that can be decomposed into the ideal rotator gas part
[75]

βFid[ρ0(~x)] =

∫
G

dV ρ0(~x)
(

ln
(
Λ3ρ0(~x)

)
− 1
)

(46)

with the thermal de Broglie wavelength Λ, the excess
free-energy part Fexc[ρ0(~x)], and the contribution [75]

Fext[ρ0(~x)] =

∫
G

dV ρ0(~x)U1(~x, t) (47)

due to the external potential U1(~x, t). The DDFT equa-
tion (44) describes the time evolution of the one-particle
density for a system of similar anisotropic self-propelled
colloidal particles that interact over a pair potential and
is the main result of this paper.

IV. SPECIAL CASES AND POSSIBLE
APPLICATIONS

There is no translational-rotational coupling in the uni-
axial case, which means that DTR(~xN ) and DRT(~xN ) and
therefore also DTR

11 (~$) and DRT
11 (~$) vanish in this case.

Furthermore, the one-particle density and the free-energy
functional do not depend on the angle χ for uniaxial par-
ticles and the translational diffusion tensor can then be
written as the matrix DTT(û) = D‖û⊗û+D⊥(1−û⊗û),
which obviously only depends on the two independent
short-time diffusion coefficients D‖ and D⊥ for diffusion
parallel and perpendicular to the orientation of the sym-
metry axis û = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) of the
uniaxial particle, respectively, where 1 denotes the 3×3-
dimensional unit matrix. Also the rotational diffusion
matrix becomes quite simple for uniaxial particles. When
we use DRR = DR1 with the rotational short-time dif-
fusion coefficient DR and the considerations above and
neglect the self propulsion, we obtain the uniaxial DDFT
equation [4] from our more general DDFT equation (44).
From the uniaxial DDFT equation, one can in turn de-
rive the DDFT equation for two spatial dimensions [76]
as well as the traditional DDFT equation for colloidal
particles with spherical symmetry [1, 3] as special cases.

The generalized dynamical density functional theory
for passive and active biaxial particles as proposed in
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Eq. (44) can be numerically solved for a plenty of dif-
ferent problems. For passive particles, one can explore
for example: i) the relaxation dynamics towards equilib-
rium [4], ii) the response of the system to time-dependent
external potentials [77], iii) the growth of a thermody-
namically stable phase into an unstable phase [78]. In-
teresting effects for self-propelled particles include among
others: i) the swarming and clustering behavior of biaxial
particles in the bulk and in confinement [76, 79], ii) the
combined impact of self-propulsion and external forcing
[76], iii) the effect of space- and time-dependent internal
forcing [80].

V. CONCLUSIONS AND OUTLOOK

In conclusion, starting from the multi-body Smolu-
chowski equation, we have derived dynamical density
functional theory for self-propelled Brownian colloidal
particles with arbitrary shape. This study was moti-
vated by recent progress in synthesizing colloidal par-
ticles with (almost) arbitrary shape. Our results consti-
tute an important framework for further numerical explo-
rations. This is in particular appealing as since recently
an equilibrium density functional is known for arbitrar-
ily shaped hard colloids [6, 81, 82] which can serve as an
input for the dynamical density functional theory. An-
other possibility to construct a density functional for bi-
axial particles is a mean-field approximation for repulsive
segment potentials [4], which works for soft interactions

[83], or a perturbation theory [84, 85] for anisotropic at-
tractions around a spherical reference system. A large
number of dynamical problems can then in principle be
addressed including the dynamics [86–88] and relaxation
of nematic-like order in confined systems [4, 89], nematic
phases driven by external fields [77], nucleation kinetics
of liquid crystalline phases [90–93], and collective behav-
ior of self-propelled particles [76, 79]. The results can
be checked against Brownian dynamics computer simu-
lations [94, 95].

Possible extensions for the future are the inclusions of
hydrodynamic interactions between the particles which
are mediated by the solvent. Dynamical density func-
tional theory of spherical particles was generalized for
hydrodynamic interactions [96–98], but this is not yet
done for anisotropic particles. Another interesting exten-
sion would be towards molecular dynamics which is the
appropriate dynamics for molecular liquid crystals. But
even for spheres it is much more complicated to formu-
late a dynamical density functional theory for molecular
dynamics [99–101]. Finally, the theory can readily be
generalized towards binary mixtures [102].
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[76] H. H. Wensink and H. Löwen, Physical Review E 78,

031409 (Sep. 2008).
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[81] H. Graf and H. Löwen, Journal of Physics: Condensed

Matter 11, 1435 (Feb. 1999).
[82] H. Hansen-Goos and K. Mecke, Journal of Physics:

Condensed Matter 22, 364107 (Aug. 2010).
[83] C. N. Likos, N. Hoffmann, H. Löwen, and A. A. Louis,
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[86] T. Kirchhoff, H. Löwen, and R. Klein, Physical Review
E 53, 5011 (May 1996).
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