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Abstract 

Capital goods companies produce high value products such as power plant or ships, which have deep 

and complex product structures, with components having long process routings. Contracts usually include 

substantial penalties for late delivery. The high value of items can lead to substantial holding costs. Efficient 

schedules minimise earliness and tardiness costs and need to satisfy assembly and operation precedence 

constraints as well as finite capacity. This paper presents the first advanced planning and scheduling (APS) tool 



for the capital goods industry that uses a Discrete Bat Algorithm (DBA), modified DBA (MDBA) and hybrid 

DBA with Krill Herd algorithm (HDBK) to optimise schedules. The tool was validated using four datasets 

obtained from a collaborating capital goods company. A sequential experimental strategy was adopted. The first 

experiment identified appropriate parameter settings for the DBA. The second experiment evaluated and 

compared the performance of the proposed HDBK algorithm with an Artificial Bee Colony, Krill Herd (KH), 

Modified KH, DBA and MDBA metaheuristics. The experimental results revealed that the HDBK performed 

best in terms of the minimum penalty cost for all problem sizes and achieved up to a 47.837% reduction in mean 

total penalty costs of extra-large problem size. 

 

Keywords: Advanced planning and scheduling; Capital Goods; Bat Algorithm; Krill Herd; 

Artificial Bee Colony. 

1       Introduction 

Suppliers of capital goods are an important sector of the world economy that enhances 

the productivity and supports the diffusion of superior technologies (Fauceglia 2014). The 

main business activities of capital goods companies are the design, manufacture and 

construction of plant. Typical products include cranes, large steam turbines, offshore 

production facilities, oil platforms and ships. These products are important because they 

underpin manufacturing, services, trade and distribution (Acha et al. 2004). 

Scheduling is “a decision-making process that plays an important role in most 

manufacturing and service industries” (Pinedo and Chao 1999, p.2). It can enhance the 

productivity of a production process (Gen and Lin 2014). Scheduling is one of the most 

popular research topics in the area of production and operations management (Chaudhry and 

Luo 2005). Production scheduling problems may be categorised as: single machine, parallel 

machines, flow shop, job shop, open shop and others (Pinedo and Chao 1999). Most 

production scheduling research has focused on single machine, parallel machines or flow 

shops (Lei 2009). Most of the production scheduling literature is theoretical and does not 



model the many of the complexities experienced in practice (Fuchigami and Rangel 2017). 

There is a limited literature that has taken into account multiple-level assembly relationships 

(Na and Park 2014). 

In the capital goods industry, production scheduling is a complex combinatorial 

optimisation (CO) problem. This is because there are a large number of components and 

subassemblies and the product structures are usually deep and complex. Major subassemblies 

require a range of components which are produced using a mix of jobbing, batch, assembly 

and flow processes. Many components require numerous machining operations which take 

place on many types of machine (Hicks 1998).  Production scheduling must take into account 

operation and assembly precedence relationships and finite capacity (Hicks and Braiden 

2000; Hicks 1998). Effective production schedules minimise production lead-time and meet 

customer due dates whilst satisfying resource constraints (Chen, Ji, and Wang 2011; Dayou, 

Pu, and Ji 2009). Production scheduling problems are non-deterministic polynomial (NP) 

hard combinatorial optimisation problems which means that the amount of computation 

required increases exponentially with problem size (Blum and Roli 2003). 

Metaheuristics are particularly suitable for solving very large combinatorial problems, 

however, it is impossible to search the whole solution space, therefore an optimal solution 

cannot be guaranteed (Nagar, Haddock, and Heragu 1995). Metaheuristic algorithms may be 

classified in alternative ways (Talbi 2009; Yang 2010a). Single-point algorithms are 

trajectory methods that use local search heuristics e.g. Tabu Search (TS) (Glover 1990), 

Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi 1983), Multi-start local search 

(MS), Greedy Randomised Adaptive Search Procedure (GRASP) and Iterated Local Search 

(ILS) (Lourenco, Martin, and Stützle 2003). They intensify search in the local region, which 

is also called exploitation oriented search (Gen and Cheng 1997). Population-based 

algorithms produce multiple solutions that explore the whole search space to produce greater 



diversity. Well-known algorithms include Genetic Algorithms (GA) (Goldberg 1989), Ant 

Colony Optimisation (ACO) (Dorigo 1992) and Particle Swarm optimisation (PSO) 

(Kennedy and Eberhart 1995). 

The literature reports the application of many established nature-inspired optimisation 

algorithms (see Table 1), which are broadly classified into five categories (Nanda and Panda 

2014; Gupta and Sharma 2016; Fister Jr et al. (2013); Zambonelli and Viroli 2011): 

evolutionary-based, physics and chemistry based, swarm intelligence based, bio-inspired 

based and other algorithms. 

 

Table 1. Classification of nature-inspired metaheuristic algorithms. 

Types Algorithms References 

Evolutionary based Genetic Algorithm (GA) Holland (1975) 

Genetic programming (GP) Koza (1990) 

Evolutionary Strategy (ES) Rechenberg (1965) 

Evolutionary Programming (EP) Fogel, Owens, and Walsh (1966) 

Differential Evolution (DE) Storn and Price (1997) 

Physics and Chemistry 

based 

Simulated Annealing (SA) Kirkpatrick et al. (1983) 

Memetic Algorithm (MA) Moscato and Norman (1992) 

Harmony Search (HS) Geem et al. (2001) 

Shuffled Frog-Leaping Algorithm Eusuff, Lansey, and Pasha (2006) 

Swarm Intelligence 

based 

 

Ant Colony Optimisation (ACO) Dorigo (1992) 

Particle Swarm Optimisation (PSO) Kennedy and Eberhart (1995) 

Artificial Bee Colony (ABC) Karaboga (2005) 

Firefly Algorithm (FA) Yang (2010a) 

Bat Algorithm (BA) Yang (2010a) 

Krill Herd (KH) Gandomi and Alavi (2012) 

Earthworm Optimisation Algorithm (EOA) Wang, Deb, and Coelho (2016) 

Monarch Butterfly Optimisation (MBO) Wang, Deb, and Cui (2015) 

Moth search algorithm (MSA) Wang (2016) 

Cuckoo Search (CS) 

Chaotic Cuckoo Search (CCS) 

Yang and Deb (2009)  

Wang et al. (2016) 

Elephant Herding Optimisation (EHO) Wang et al. (2016) 

Bio-inspired based Flower Algorithm (FA) Yang (2012) 

Dolphin Echolocation Algorithm (DEA) Lenin, Reddy, and Kalavathi (2014) 

Japanese Tree Frogs Calling  Hernandez and Blum (2012) 

Atmosphere Clouds Model Yan, Hao, and Xie (2013) 

Other algorithms Backtracking Optimisation Search (BOS) Civicioglu (2013b) 

League Championship Algorithm (LCA) Kashan (2009) 

Social Emotional Optimisation (SEO) Xu, Cui, and Zeng (2010) 

Artificial Cooperative Search (ACS) Civicioglu (2013a) 

 

Advanced planning and scheduling (APS) systems are based on optimisation and 

constraint-based planning algorithms that aim to meet customer requirements whilst 



satisfying specified constraints (Hvolby and Steger-Jensen 2010). APS systems aim to 

manage the supply chain to improve customer satisfaction, increase efficiency and reduce 

costs (Dayou, Pu, and Ji 2009). APS systems have been based upon GA (Chen, Ji, and Wang 

2011) and GA with local search (Pu et al. 2007), but there are no reports of the BA being 

used to for APS. 

The objectives of this paper were to: (i) review Swarm Intelligence based Algorithms 

including, the Artificial Bee Colony (ABC), Krill Herd (KH) and Bat Algorithms (BA); (ii) 

explain a novel APS scheduling tool that meets the requirements of the capital goods industry 

that manufacture complex products with multi-level assemblies. The tool incorporates a novel 

Discrete Bat Algorithm (DBA), a Modified Discrete Bat Algorithm (MDBA) and a Hybrid 

Discrete Bat Algorithm with Krill Herd algorithm (HDBK) for optimisation; (iii) conduct a 

series of computational experiments that identified appropriate parameter settings for the DBA; 

iv) outline the development of the MDBA and the HDBK; and v) compare the performance of 

the proposed methods (DBA, MDBA and HDBK) with other approaches (ABC, KH and 

modified KH). 

The next section explains the characteristics of population-based metaheuristics. 

Section 3 describes the development of advanced planning and scheduling (APS) tool. 

Section 4 presents the experimental design and analyses the results. The last section provides 

conclusion and suggestions for future research. 

 

2      Population-based metaheuristics 

Population-based algorithms have been widely used to solve real world problems. 

They simultaneously consider multiple potential solutions and tend to perform better than 

single-point algorithms (Manda, Satapathy, and Poornasatyanarayana 2012). Prugel-Bennett 

(2010) identified five mechanisms that help give population-based algorithms an advantage: 



(i) building blocks from different solutions are combined; (ii) the crossover operator focuses 

the search and can dramatically reduce the time taken to find a solution; iii) the population 

acts as a low pass filter, which ignores local distractions; iv) a population has the ability to 

search different parts of the search space simultaneously, which hedges against bad luck in 

the initial position; and v) it is possible to identify parameter values that make an appropriate 

balance between exploitation and exploration. 

Pongcharoen (2001) developed a comprehensive Genetic Algorithm (GA) tool for 

scheduling the production of capital goods using the objective function shown equation (1) 

that aggregates earliness and tardiness costs (Pongcharoen, Hicks, and Braiden 2004). This 

objective function was also used to solve the same problems using the Artificial Bee Colony 

(Pongcharoen et al. 2012) and the Krill Herd (Puongyeam, Pongcharoen, and Vitayasak 

2014) algorithms. 

 

Total penalty cost = ∑ ∑ 𝑃𝑒(𝐸𝑗𝑘) + ∑ 𝑃𝑒(𝐸𝑘)𝑃
𝑘=1

𝑃
𝑘=1

𝐶
𝑗=1 + ∑ 𝑃𝑡(𝑇𝑘)𝑃

𝑘=1    (1) 

Notation: 

j assembly or component j (j = 1, 2, …, Cmax) 

k final product k (k = 1, 2, …, Pmax) 

Pe     earliness penalty rate (currency units per day) 

Pt     tardiness penalty rate (currency units per day) 

Ek earliness of product k 

Ejk earliness of component j in product k 

Tk tardiness of product k 

 



2.1    Artificial Bee Colony (ABC) algorithm 

The Artificial Bee Colony (ABC) algorithm is a popular swarm intelligence-based 

algorithm developed by Karaboga (Karaboga 2005; Karaboga and Akay 2009; Karaboga et 

al. 2014). This approach is based on the collective foraging behaviour of a bee colony, which 

includes three categories of bee: employed bees, which forage for nectar; onlookers waiting 

in the hive; and scouts, which undertake random search. There is only one bee that visits each 

source, so the number of employed bees is the same as the number of food sources.  Once a 

food source is identified (a candidate solution), the nectar (fitness) is identified and 

computed. The scouts share information with the onlooker bees. Onlooker bees choose their 

food source depending on the probability of the food occurring. If bees are unable to improve 

the fitness of the food source, their solutions are rejected (see Karaboga and Basturk 2007). 

De Oliveira and Schirru (2011) developed an ABC for combinatorial optimisation that 

used random keys (Bean 1994) for mapping discrete variables to continuous variables. Cui 

and Gu (2012) developed a discrete ABC for hybrid flow shop scheduling that included a 

three-step differential evolution scheme (mutation, crossover and selection) for allocating 

employed bees to food sources. They used the algorithm developed by Nawaz, Enscore, and 

Ham (1983) in their procedure. Pansuwan, Rukwong, and Pongcharoen (2010) developed a 

scheduling tool for capital goods companies that used a discrete ABC together with the 

objective function shown in equation (1). 

 

2.2 Krill Herd (KH) algorithm 

The Krill Herd (KH) algorithm (Gandomi and Alavi 2012) is a swarm intelligence 

algorithm which is based on the herding of the krill swarms. The time-dependent position of 

an individual krill is determined by three main actions: (i) movement induced other krill; (ii) 

foraging action; and (iii) random diffusion. 



Initially, a swarm of krill are randomly generated in the search space. Krill try to 

maintain a high density and move according to their mutual effects (Gandomi and Alavi 

2012). Each krill moves through n dimensional search space to look for a potential solution 

by moving towards the highest density of food. To improve the performance and convergence 

speed, crossover and mutation genetic operations were incorporated into the algorithm. The 

iterative search is ended when the termination criteria are met. 

Wang, Deb, and Thampi (2015) developed a discrete krill herd method for flexible 

job shop scheduling. Puongyeam, Pongcharoen, and Vitayasak (2014) developed a discrete 

krill herd for scheduling in the capital goods industry which used the objective function 

shown in equation (1). 

 

2.3    Bat Algorithm (BA) 

In 2010, Yang (2010b) presented a new metaheuristic algorithm, called the Bat 

Algorithm (BA) which is based on the echolocation capability of the micro-bats. In nature 

bats fly randomly in their search for prey with velocities vi at positions xi with varying 

wavelength/frequency (/f), pulse rate ri and loudness A0. The position of each bat represents 

a possible solution. Depending on the proximity of the prey, bats can automatically adjust 

their wavelength/frequency and pulse emission rate ri[0,1]. The loudness can vary from a 

minimum loudness (Amin) to a maximum loudness (A0) with a typical range of [1,2]. 

Frequencies are normally in the range 25kHz to 150kHz (Yang 2010b). 

Yang (2010b) outlined the BA as follows. The process starts by initialising a swarm 

(population) of n virtual bats, each of which has a random initial position (initial solution), 

where the ranges are problem specific, together with random values for pulse rate, loudness 

and frequency. Then, all of the bats move from their initial positions seeking a global best 

solution. Each individual bat randomly selects a frequency (fi) where f[0,fmax], using 



equation (2), where [0,1] is a random number drawn from a uniform distribution. The 

velocity of each bat i is updated using equation (3), where t is the iteration number, tmax is the 

maximum number of iterations (0 <= t <= tmax), 𝑣𝑖
𝑡−1 is the previous velocity, 𝑥𝑖

𝑡 is the 

current position of bat i in iteration t, and x* is the position of the best-so-far bat. Equation (4) 

calculates the new position based upon the previous position and current velocity. For local 

search, once a solution is selected among the current best solutions, a new solution xnew for 

each bat is generated locally using random walk using equation (5), where xold = 𝑥𝑖
𝑡, [-1,1] 

is a random number, At is the arithmetic mean loudness of all bats in the current iteration. 

Equation (6) updates the loudness 𝐴𝑖
𝑡+1 for each individual bat, where  is the loudness 

coefficient, a parameter in the range [0,1]. The pulse emission rate 𝑟𝑖
𝑡+1 is updated by 

equation (7), where 𝑟𝑖
0 is the initial pulse emission rate for the bat and , the pulse rate 

emission coefficient is a parameter that is greater than 0. This process is repeated until the 

maximum number of iterations tmax has been completed. 

𝑓𝑖 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽                        (2) 

𝑣𝑖
𝑡 =  𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗)𝑓𝑖                      (3) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡                       (4) 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡                       (5) 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡                        (6) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)]                        (7) 

The Bat Algorithm (BA) is a continuous optimisation algorithm, whereas 

combinatorial optimisation problems require discrete optimisation. There are two ways to 

apply the BA to discrete problems: i) use continuous optimisation, if it is possible to map the 

problem to a continuous variable; or ii) develop a discrete BA (Luo et al. 2014). Marichelvam 

and Prabaharam (2012) used the mapping approach to solve flow shop scheduling problems. 



Luo et al. (2014) used the BA for solving permutation flow shop scheduling problems. 

Random keys (Bean 1994) were used to map from discrete to continuous variables. This was 

an approach that had previously been adopted by Tasgetiren et al. (2007) for use in Particle 

Swarm Optimisation. Dao, Pan, and Pan (2018) developed a parallel BA that used random 

key mapping for job shop scheduling. 

 

2.4 A comparison of the proposed population-based metaheuristics 

The concept, terminology and parameters of metaheuristics vary. Table 2 provides a 

summary of the population-based metaheuristics (ABC, KH and BA) presented in this work. 

 

Table 2. Concept and terminology comparison of ABC, KH and BA. 

Comparison Artificial Bee Colony (ABC) Krill Herd (KH) Bat Algorithm (BA) 

Natural inspiration Foraging behaviour of a bee 

colony 

Herding behaviour of krill Echolocation behaviour 

of micro-bats 

Solution initialisation Random Random Random 

Candidate solution Food source individual’s position Krill individual’s position Bat individual’s position 

Old solution Old food source position  Old krill position  Old bat position 

New solution New food source position New krill position New bat position 

Best solution Any food source with the best 

fitness 

Any krill with the best 

fitness 

Any bat with the best 

fitness 

Fitness/objective Nectar amount of the food 

source 

Distance between krill 

individual and food and the 

densest location in the herd 

Distance between bat 

individual and target 

Size of candidates Colony Herd Population 

Iterative search Number of cycles Number of generations Number of iterations 

Process for generating 

new solution 

The employed bee becomes a 

scout. 

Motion induced by krill 

herd, foraging activity and 

physical diffusion 

Adjusting frequency, 

update velocity and 

position 

Intensification Neighbourhood search carried 

by employed and onlooker bees 

Foraging motion Random walk 

Diversification Random search of scout bees Random diffusion Flying randomly  

Parameters - Combination of the population 

size and the number of 

maximum cycles (nMCN)  

- Limit factor which is a 

predefined value that limits the 

number of times that a food 

source can be moved without 

producing an improvement 

before it is abandoned. 

(percentage of the maximum 

number of cycles) 

- Combination of 

population size and the 

number of max generations 

(nImax)  

- Inertia weight of motion 

induced (n) 

- Inertia weight of the 

foraging motion (0) 

- The maximum diffusion 

speed (Dmax) 

- The crossover operation 

(COP)  

- The mutation rate (MR) 

- Combination of 

population size and the 

number of maximum 

iterations (nImax) 

- Pulse rate emission 

coefficient () 

- Loudness coefficient 

() 

 



 Due to the different inspirations adopted within the metaheuristics, the unique 

mechanisms embedded in the metaheuristics have their own properties to avoid iterative 

search becoming trapped in local optima whilst performing the search in a more intelligently 

than random search. The advantages and disadvantages of the proposed of the classical 

algorithms, including ABC, KH, and BA are summarised in Table 3. 

 

Table 3. Advantages and disadvantages of ABC, KH and BA. 

Methods Advantages Disadvantages 

ABC - Not sensitive to initial parameter values (Bansal, 

Sharma, and Jadon 2013). 

- Not affected by the number of dimensions of the 

problem (Bansal, Sharma, and Jadon 2013). 

- Can avoid local minimum (Karaboga and Basturk 

2007). 

- Efficient for multivariable, multimodal function 

optimisation (Karaboga and Basturk 2007). 

- Good exploration (Khorsandi, Hosseinian, and 

Ghazanfari 2013; Gao and Liu 2012). 

- Quick convergence (Cui and Gu 2015). 

- Few control parameters (Cui and Gu 2015; Luo, 

Wang, and Xiao 2013). 

- Premature convergence (Bansal, Sharma, 

and Jadon 2013). 

- Long execution times because of its 

stochastic nature (Kang, Li, and Li 2013). 

- Poor exploitation (Khorsandi, Hosseinian, 

and Ghazanfari 2013; Gao and Liu 2012). 

- Slow to converge (Luo, Wang, and Xiao 

2013). 

- Can easily fall into the local optimum 

(Luo, Wang, and Xiao 2013). 

- Hard to find the best solution from all 

feasible solutions (Luo, Wang, and Xiao 

2013). 

KH - Powerful exploration (Wang et al. 2013). 

- Unnecessary derivative information (Wang et al. 

2013; Wang, Guo, et al. 2012). 

- Each agent can contribute to the search process 

according to its fitness.(Gandomi and Alavi 2012). 

- Each neighbour has an attractive/repulsive effect on 

the movement of the krill individual. (Gandomi and 

Alavi 2012). 

- Very few control variables (Mukherjee and 

Mukherjee 2016; Wang et al. 2013). 

- Good balance between global and local search 

(Agrawal, Pandit, and Dubey 2016). 

- Few parameters to regulate (Wang, Hossein 

Gandomi, and Hossein Alavi 2013). 

- Able to shrink the search region towards the 

promising area within a few generations (Wang et al. 

2013). 

- Easy to fall into the local optimum 

(Gandomi and Alavi 2012; Wang et al. 

2013). 

- No guarantee of fast convergence (Wang 

et al. 2013). 

- Poor exploitation (Wang et al. 2013). 

 

BA - Powerful exploitation (Yilmaz and Kucuksille 2013; 

Dos Santos Coelho and Askarzadeh 2016). 

- Parameter control (automatically switching from 

exploration to exploitation) (Kaur and Chhabra 

2016; Yang 2013). 

- Frequency tuning (Kaur and Chhabra 2016; Yang 

2013). 

- Automatic zooming (Yang 2013). 

- Quick convergence at the initial stage by switching 

from exploration to exploitation (Yang 2013). 

- Balance between exploration and exploitation (Chua 

et al. 2015). 

- Can easily to fall into the local optimum 

(Li and Zhou 2014; Pravesjit 2016). 

- Premature convergence (Ahmadi and 

Nikravesh 2016). 

- May be trapped in local optima (Dos 

Santos Coelho and Askarzadeh 2016). 

- May lead to stagnation after the initial 

stage (Yang 2013). 

- Obtains poor results when dealing with 

high-dimensional problems (Fister Jr, 

Fister, and Yang 2013). 



 

Table 4 summarises a comprehensive literature review of previous research that has 

used the proposed population-based metaheuristics (including ABC, KH and BA) for solving 

production scheduling problems. The hybridisation of the KH algorithm with other 

metaheuristics for solving the production scheduling problem is a gap in the literature. 

 

Table 4. Applications of metaheuristics to solve production scheduling problems. 

Algorithms Single metaheuristics Hybridisation 

BA 2012: Musikapun and Pongcharoen (2012); 

Marichelvam and Prabaharam (2012) 

2013: Chansombat et al. (2013); Marichelvam et al. 

(2013); Xie, Zhou, and Tang (2013) 

2014: Luo et al. (2014) 

2016: Kongkaew (2016) 

2017: Xu, Bao, and Zhang (2017); Zaher, Ragaa, and 

Sayed (2017) 

2018: Dao, Pan, and Pan (2018) 

2016: Tosun and Marichelvam (2016) 

2017: Pei et al. (2017) 

ABC  2010: Pansuwan, Rukwong, and Pongcharoen (2010); 

Tasgetiren et al. (2010) 

2011: Li, Pan, and Gao (2011); Pan et al. (2011); 

Tasgetiren et al. (2011) 

2012: Deng, Xu, and Gu (2012); Pongcharoen et al. 

(2012); Banharnsakun, Sirinaovakul, and Achalakul 

(2012); Cui and Gu (2012); Sang, Gao, and Pan (2012); 

Li and Yin (2012); Sundar and Singh (2012); Wang, 

Zhou, Xu, and Liu (2012); Wang, Zhou, Xu, Wang, et 

al. (2012) 

2013: Han et al. (2013); Lei (2013); Pan et al. (2013); 

Tasgetiren et al. (2013); Wang, Xie, and Cheng (2013) 

2014: Vijaychakaravarthy, Marimuthu, and Sait (2014); 

Kizilay et al. (2014); Li, Pan, and Tasgetiren (2014); 

Muthiah and Rajkumar (2014); Pan et al. (2014) 

2015: Ribas, Companys, and Tort-Martorell (2015); Al-

Salamah (2015); Caniyilmaz, Benli, and Ilkay (2015); 

Cui and Gu (2015); Gao et al. (2015) 

2016: Asadzadeh (2016); Gao et al. (2016) 

2017: Zhang et al. (2017); Li (2017); Pan et al. (2017) 

2011: Li et al. (2011) 

2013: Liu and Liu (2013); Han et al. 

(2013); Lin, Ying, and Huang (2013); 

Thammano and Phu-Ang (2013); 

Zhang, Song, and Wu (2013) 

2014: Lin and Ying (2014); Selvi, Uma 

Rani, and Sankar (2014) 

2015: Li and Pan (2015); Nasiri (2015) 

2016: Yue et al. (2016) 

2017: Li et al. (2017); Muthulakshmi 

and Somasundaram (2017); Sundar et 

al. (2017); Wang et al. (2017) 

KH 2014: Puongyeam, Pongcharoen, and Vitayasak (2014) 

2015: Wang, Deb, and Thampi (2015) 

No reported research 

 

3  The development of Advanced Production and Scheduling (APS) tool 

The APS tool was developed for solving production scheduling problems in the 

capital goods company using a Discrete Bat Algorithm (DBA), a Modified DBA (MDBA), 

and a Hybrid Discrete Bat Algorithm with Krill Herd (HDBK) algorithm. The objective was 



to find an optimal schedule which minimised the total cost of earliness and tardiness penalties 

(equation 1). The tool was coded in a modular style using the C sharp programming 

language. The APS tool starts by obtaining input data. The input data comprises: (a) order 

information - due dates, the number of products for the penalty cost coefficients for earliness 

and tardiness; (b) product information - product structure (including all assemblies, 

subassemblies and components); (c) operational information - process routings, set-up, 

machining and transfer times (for all assemblies, subassemblies and components); (d) 

resource information - list of machines and their availability; (e) the DBA’s parameters - the 

size of the population (n), the number of iterations (I), the pulse rate emission coefficient (), 

the loudness coefficient () and the repositioning operation either using the swapping 

operator (Wang et al. 2003) or the adjustment operator (Wang et al. 2005). 

A flowchart representing the proposed DBA, MDBA and HDBK used in the APS tool 

is shown in Figure 1, which includes: 

i) The main menu of the APS tool is displayed when the mouse is double clicked. The 

problem dataset can be selected and uploaded into the APS tool. All operations are 

encoded into alphanumeric strings that represent sequences of operations. These are 

analogous to the discrete vector position of a bat with the number of dimensions equal to 

the total number of operations in the schedule; 

ii) The graphical user interface (GUI) allows users to define parameters (pop, iteration, , , 

and repositioning operator), scheduling characteristics (Pe, Pt, and working hours per 

day), and the random seed number (if needed); 
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Figure 1. Flowchart of the DBA, MDBA and HDBK APS tool. 



iii) A swarm of bats is randomly generated. The product structure representation is 

illustrated in Figure 2 (a) using a simple example. The root node represents the final 

product (F1), which comprises assemblies (A1 and A2); subassemblies (S1, S2, and S3); 

and components (C1, C2, C3, and C4) as the leaf nodes. All the nodes in the product 

structure will have a sequence of machining operations O1, O2...On, which need to be 

completed sequentially. If the component C1 has three operations O1, O2, and O3, C1 can 

be represented as three intermediate items C1O1, C1O2, and C1O3 where C1O3 is the 

completed C1, since it has three operations. Each bat represents a candidate solution (see 

Figure 2 (b)); 

iv) Candidate solutions may be infeasible because they contravene assembly or operation 

precedence constraints. A repair process (Pongcharoen, Hicks, and Braiden 2 0 0 4 )  was 

adopted to change routings and/or assembly sequences (the position vectors) to ensure 

that all precedence constraints are satisfied. The repair process also takes into account 

timing, finite capacity and deadlock. Figure 3 illustrates the adjustment of an infeasible 

schedule (repair process). In bat 2, the intermediate item C1O3 is sequenced to take place 

before the intermediate item S1. Therefore the algorithm swaps these operations so that 

they are in the correct sequence; 

v) Initially, each bat is randomly assigned the velocity vi, the pulse rate ri in the range [0,1], 

the frequency fi in the range [0,1], and the loudness Ai in the range [1,2], settings adopted 

(Chansombat et al. 2013); 

vi)   The total penalty costs for all of the individuals within the initial population are 

calculated using equation (1); 

vii) The best-so-far position x* leading to the lowest penalty cost is identified; 

 



 
Figure 2. Representation of a population of candidate solutions. 

 

 
Figure 3. Check and reorder the part and operations precedence (repair process). 

 

viii) All bats move from their current location 𝑥𝑖
𝑡 to a new location 𝑥𝑖

𝑡+1. Instead of applying 

equation (3), which would apply for continuous optimisation, the discrete algorithm is 

based upon either the swapping operator (Wang et al. 2003) or the adjustment operator 

(Wang et al. 2005) which are described in steps ix) and x) below; 



ix) Swapping operator - the first stage is to calculate how many swaps would be required to 

map 𝑥𝑖
𝑡+1 to x* (the best-so-far solution) using the six steps illustrated in Figure 4(a). The 

first step compares the elements of x* from left to right with 𝑥𝑖
𝑡+1. When a difference is 

detected (in this case C2O2 / C3O1), the second step swaps the current element in 𝑥𝑖
𝑡+1 

with the element containing the same value as x* (C2O2) and step 3 does the reverse 

swap to produce 𝑥𝑖
𝑡+1′

(where the number of dashes “´” indicates the number of swaps). 

This process then continues until the number of swaps required to map 𝑥𝑖
𝑡+1 to x* is 

determined. In this case, steps 4,5 and 6 complete the process as 𝑥𝑖
𝑡+1′′

 is the same as x* 

so the total number of swaps is 2; The second stage is to multiply this number of swaps 

by the random number fi determined by step (v) above. The value is then rounded up to 

determine the actual number of swaps to be performed on 𝑥𝑖
𝑡+1 to determine its new 

position. This process is illustrated in Figure 4(b) that shows a situation where two swaps 

were required to transform, 𝑥𝑖
𝑡+1 to x*, the f value was 0.1, giving 0.2 swaps, which 

would round up to one swap, so 𝑥𝑖
𝑡+1 is changed to 𝑥𝑖

𝑡+1′
; 

x) Adjustment operator - the first step is to calculate how many adjustments would be 

required to map 𝑥𝑖
𝑡+1 to x*. This is illustrated in Figure 5. The procedure compares the 

elements of x* with 𝑥𝑖
𝑡+1. When a difference is detected the current element in x* is 

inserted into 𝑥𝑖
𝑡+1 , the duplicate value in 𝑥𝑖

𝑡+1 is deleted as shown. The remaining values 

to the right of the insertion point are moved one position to the right. This process is then 

continued until the number of adjustments required to map 𝑥𝑖
𝑡+1 to x* is determined. 

Again, this value is multiplied by f and rounded up to determine the number of 

adjustments to be made on 𝑥𝑖
𝑡+1 to determine its new position; 

 



 
Figure 4(a). Swapping operator (Amara, Hamdani, and Alimi 2015). 

 

 

Figure 4(b). Swapping procedure. 

 

xi) The new positions of the bats are checked and repaired as necessary; 

xii) The total penalty costs for all of the individuals within the initial population is calculated 

and the best-so-far value is identified; 

xiii) A random number (rand) in the range 0-1 is generated; 

xiv) rand is compared with the pulse rate (ri); 

xv) If rand > ri, the best-so-far solution x* is taken as the start point for a local search.  



 

 

Figure 5. Adjustment operator. 

 

xvi) If the MDBA is selected, this step is repeated 50 times to improve the exploitation 

capability, otherwise just once; 

xvii) To improve the exploration capability of the BA, the random diffusion of the KH was 

incorporated into the conventional BA. This is illustrated in Figure 6. 

xviii) A new solution is repaired if necessary; 

xix) The fitness of new solution is evaluated; 

xx) A new rand in the range 0-1 is generated. If rand < Ai and if the penalty cost of ix  < x* 

then ix becomes x*, iA will decrease using equation (6) and ir  will increase following 

equation (7). Otherwise, x* remains unchanged; 

xxi) If the specified number of bats has not been completed, the procedure returns to step 

xiii). Otherwise, all bats are ranked and the best-so-far position is saved; 

xxii) If the required number of iterations has not been completed the procedure returns to 

step (viii), otherwise the program terminates and reports the best-so-far solution and 

displays it graphically as a Gantt chart. 



 

 

Figure 6. HDBK procedure. 

 

4      Computational experiments 

The computational experiments used data representing an 18 months schedule from a 

collaborating capital goods company. The first experiment identified the best DBA parameter 

settings. The second experiment evaluated the performance of the proposed HDBK and 

compared the performance with the MDBA, DBA, ABC, KH and MKH algorithms. Both 

experiments used the same datasets. The APS tool was experimented on a personal computer 

with a Core I7, 3.50 GHz CPU and 6 GB RAM. 

 

4.1    Datasets 

 Pongcharoen et al. (2002) developed Genetic Algorithms for scheduling the 

production of capital goods and considered three problems (small, medium and large). 

Chainual, Lutuksin, and Pongcharoen (2007) developed an Ant Colony scheduling tool using 

the same problems. Xie, Hicks, and Pongcharoen (2010) additionally considered an extra-



large dataset that represented a complete schedule for a major product. These four datasets 

were used to test: the Artificial Bee Colony (Pansuwan, Rukwong, and Pongcharoen 2010; 

Pongcharoen et al. 2012) and Krill Herd (Puongyeam, Pongcharoen, and Vitayasak 2014). 

These algorithms can be directly compared because they were applied to common datasets 

with the same objective function outlined in equation (1). The characteristics of the problems 

considered are shown in Table 5. 

 

Table 5. The characteristics of the four problems. 

Problem 

sizes 

No. of products 

(part number) 

No. of 

items 

Machining/ 

assembly operations 

No. of 

machines 

Levels of 

product structure 

Small 2 (245, 451) 15 25/9 8 11 

Medium 2 (229, 451) 18 57/10 7 17 

Large 2 (4, 228) 29 118/17 17 19 

Extra-large 1 (227) 85 229/39 25 20 

 

4.2    Identifying appropriate parameter settings 

 It is important to select metaheuristic parameters that obtain optimal results. A design 

of experiments strategy is much more effective and efficient than a trial-and-error approach. 

Factorial designs may be necessary to avoid misleading conclusions when interactions are 

present. They allow the effects of a factor to be estimated at several levels of the other factors 

producing results that are valid over a wide range (Montgomery 2012). Previous research on 

production scheduling in the capital goods has used this approach to identify appropriate 

parameter settings (Pongcharoen 2001; Pansuwan, Rukwong, and Pongcharoen 2010; 

Puongyeam, Pongcharoen, and Vitayasak 2014). 

This experiment used the full factorial design to identify the appropriate parameter 

settings for the DBA. The factors included: (i) the combination of population size and the 

number of iterations (nI), which determines the amount of search. In the experiments the 

value was fixed at 2,500 to ensure comparability with previous research; (ii) the pulse rate 



emission coefficient (); (iii) the loudness coefficient (); and (iv) the repositioning operator 

(the swapping operation (SO) (Wang et al. 2003) or the adjustment operator (AO) (Wang et 

al. 2005). The experiment was replicated ten times with different random number seeds. The 

number of runs for each replicate was 33×2 = 54, giving a total of 540 runs. For each run the 

best-so-far penalty cost was the dependent variable. The results were analysed using a general 

linear model form of analysis of variance (ANOVA). The main effects and first level 

interactions were considered in accordance with the sparsity of effects principle that states 

that a system is usually dominated by main effects and low level interactions (Montgomery 

2012). Table 6 shows the ANOVA table, which shows the source of variation (Source), 

degrees of freedom (DF), sum of squares (SS), mean square (MS), F value, and P value. The 

factors with a P value of <=0.05 were statistically significant with a 95% confidence 

interval. All the DBA parameters were considered as the main sources of variation as well as 

the interaction effects. 

From Table 6, it can be seen that all of the DBA’s parameters except  were 

statistically significant. The only two-way interaction that was statistically significant was 

*Repositioning operation. The best parameter settings for the DBA were determined by 

considering the lowest mean best-so-far total cost obtained from main effect and interaction 

plots. Figure 7 shows the best combination for the interactions which were: (a)  = 0.9 with 

AO; (b) nI = 100*25 and  = 0.9; (c) nI = 100*25 and AO; and (d)  = 0.1 and AO. 

 

4.3    Performance comparison of the proposed algorithms with other approaches 

The performance of the proposed algorithms (DBA, MDBA and HDBK) were 

compared against the ABC algorithm (Pansuwan, Rukwong, and Pongcharoen 2010), the KH 

and MKH algorithms (Puongyeam, Pongcharoen, and Vitayasak 2014). In each case the 

appropriate parameter settings had been identified through a design of experiments approach. 



Each experiment was replicated 30 times to be consistent with Pansuwan, Rukwong, and 

Pongcharoen (2010) and Puongyeam, Pongcharoen, and Vitayasak (2014). 

 

Table 6. ANOVA analysis of DBA parameters. 

Source DF SS MS F value P value 

nI 2 5,637,225,926 2,818,612,963 42.160 0.000 

 2 160,270,370 80,135,185 1.200 0.302 

 2 29,966,267,593 14,983,133,796 224.110 0.000 

Repositioning operation 1 4,547,201,852 4,547,201,852 68.010 0.000 

𝑛𝐼* 4 142,679,630 35,669,907 0.530 0.711 

𝑛𝐼* 4 301,440,741 75,360,185 1.130 0.343 

𝑛𝐼*Repositioning operation 2 68,137,037 34,068,519 0.510 0.601 

 * 4 53,362,963 13,340,741 0.200 0.939 

 * Repositioning operation 2 17,403,704 8,701,852 0.130 0.878 

 * Repositioning operation 2 1,290,334,259 645,167,130 9.650 0.000 

Error 514 34,364,118,519 66,856,262   

Total 539     

 

 
Figure 7. Interaction plots of (a)  * Repositioning operation, (b) 𝑛𝐼*, (c) 𝑛𝐼*Repositioning 

operation and (d)  *Repositioning operation. 



Table 7 shows that the performance of the HDBK, MDBA, DBA, ABC, KH and 

MKH in term of minimum (Min), maximum (Max), and arithmetic mean best-so-far penalty 

value (Mean) and standard deviation (SD). The dependent variable in this analysis was the 

best-so-far result achieved by each replicate. In terms of minimum total penalty cost, the 

HDBK outperformed the MDBA, DBA, ABC, KH and MKH for all problem sizes except the 

small problem. 

 

Table 7. Performance comparison (penalty cost in currency units). 

Problems Total Penalty 

Cost 

Methods 

HDBK MDBA DBA ABC KH MKH 

Small Min 

Max 

Mean 

SD 

15,000 

15,000 

15,000 

0 

15,000 

15,000 

15,000 

0 

15,000 

19,000 

15,133 

730 

15,000 

15,500 

15,033 

127 

16,500 

19,500 

18,750 

728 

15,000 

15,500 

15,217 

252 

Medium Min 

Max 

Mean 

SD 

31,000 

57,000 

36,933 

6,276 

31,500 

54,500 

36,283 

5,474 

32,500 

57,000 

39,117 

6,867 

52,500 

57,500 

55,133 

1,293 

58,500 

60,500 

59,800 

581 

55,500 

59,000 

57,600 

1,029 

Large Min 

Max 

Mean 

SD 

163,000 

204,000 

181,767 

9,081 

165,000 

189,500 

178,033 

6,608 

165,000 

201,000 

182,733 

7,681 

234,500 

277,000 

258,417 

11,503 

282,000 

321,000 

304,367 

9,872 

244,000 

307,000 

291,883 

12,663 

Extra-large Min 

Max 

Mean 

SD 

5,251,500 

7,434,500 

6,350,617 

621,625 

5,664,000 

7,361,500 

6,572,750 

426,103 

5,664,000 

8,031,500 

6,890,500 

585,670 

9,089,500 

10,608,500 

9,860,517 

417,689 

11,822,000 

12,337,000 

12,174,600 

162,237 

9,906,500 

12,192,500 

11,412,867 

631,384 

 

A student t test established whether the mean differences were statistically significant. 

Table 8 shows the T value obtained by the t-test method, the P value, and the percentage 

improvement (%Imp) achieved by the algorithms. Almost all of the comparisons between the 

results obtained from the HDBK and the other approaches for extra-large problem were 

statistically significant with a 95% confidence interval (P value ≤ 0.05) except the modified 

DBA. For medium and large problems, the statistical comparisons indicated that the results 

obtained from the HDBK were significantly better than the results obtained from the ABC, 

KH and MKH. For small problems, the results obtained from the HDBK were significantly 

better than the results obtained from the KH and MKH. The performance of HDBK achieved 



the highest percentage improvement (%Imp) of 47.837% when compared with KH followed 

by 44.356% when compared with MKH and 35.595% when compared with ABC. 

 

Table 8. Statistical analysis using a t-test. 

Methods Statistical analysis 
Problems 

Small Medium Large Extra-large 

HDBK versus MDBA T value 

P value 

% Imp 

* 

* 

0 

0.97 

0.338 

-1.791 

2.87 

0.008 

-2.097 

-1.64 

0.111 

3.380 

HDBK versus DBA T value 

P value 

% Imp 

-1.00 

0.326 

0.879 

-2.21 

0.035 

5.582 

-0.96 

0.344 

0.529 

-3.69 

0.001 

7.835 

HDBK versus ABC T value 

P value 

% Imp 

-1.44 

0.161 

0.220 

-15.87 

0.000 

33.011 

-30.48 

0.000 

29.661 

-30.78 

0.000 

35.595 

HDBK versus KH T value 

P value 

% Imp 

-28.21 

0.000 

20.00 

-19.59 

0.000 

38.239 

-46.26 

0.000 

40.280 

-47.98 

0.000 

47.837 

HDBK versus MKH T value 

P value 

% Imp 

-4.71 

0.000 

1.426 

-18.29 

0.000 

35.880 

-38.75 

0.000 

37.726 

-30.31 

0.000 

44.356 

MDBA versus DBA T value 

P value 

% Imp 

-1.00 

0.326 

0.879 

-4.74 

0.000 

7.243 

-5.11 

0.000 

2.572 

-4.23 

0.000 

4.611 

MDBA versus ABC T value 

P value 

% Imp 

-1.44 

0.161 

0.220 

-19.10 

0.000 

34.190 

-34.11 

0.000 

31.106 

-30.25 

0.000 

33.343 

MDBA versus KH T value 

P value 

% Imp 

-28.21 

0.000 

20.000 

-22.97 

0.000 

39.326 

-53.54 

0.000 

41.507 

-63.97 

0.000 

46.013 

MDBA versus MKH T value 

P value 

% Imp 

-4.71 

0.000 

1.426 

-21.65 

0.000 

37.008 

-41.35 

0.000 

39.005 

-38.64 

0.000 

42.409 

DBA versus ABC T value 

P value 

% Imp 

0.73 

0.470 

-0.665 

-13.06 

0.000 

29.051 

-30.91 

0.000 

29.287 

-22.33 

0.000 

30.120 

DBA versus KH T value 

P value 

% Imp 

-19.86 

0.000 

19.291 

-16.27 

0.000 

34.588 

-50.65 

0.000 

39.963 

-44.26 

0.000 

43.403 

DBA versus MKH T value 

P value 

% Imp 

-0.63 

0.531 

0.552 

-14.78 

0.000 

32.089 

-38.54 

0.000 

37.395 

-35.45 

0.000 

39.625 
 Remark * mean that all minimum values (total penalty cost) are identical. 

5       Conclusions and future work 

This research has developed a novel APS tool that effectively solves production 

scheduling problems for capital goods with many levels of product structure and multiple 



resource constraints. It was the first research to adopt a Discrete Bat Algorithm (DBA), a 

Modified Discrete Bat Algorithm (MDBA) with additional local search and a Hybrid Discrete 

Bat Algorithm with Krill Herd (HDBK) for solving this problem. This required a novel 

representation to be developed that included product structure relationships and operations to 

be included. A repair process was included to ensure that operation and assembly precedence 

relationships were satisfied as well as taking into account finite capacity and avoiding 

deadlock. The tool was tested using four datasets obtained from a collaborating capital goods 

company. These had been used by previous researchers investigating ABC, KH and MKH 

optimisation. The first experiment identified appropriate parameter settings for the DBA. All 

of the DBA’s parameters except 𝛾 were statistically significant. The only two-way interaction 

that was statistically significant was *repositioning operation. The appropriate parameter 

settings for the DBA were determined by considering the lowest mean best-so-far total cost 

obtained from main effect and interaction plots. The best settings were nI = 100*25,  = 0.1, 

 = 0.9 with the adjustment operator (AO). 

The second experiment was aimed to evaluate and compare the performance of the 

proposed HDBK with MDBA, DBA, ABC, KH, and MKH by using the Student t-test. The 

minimum total penalty costs indicated that the HDBK outperformed the other approaches 

(MDBA, DBA, ABC, KH, and MKH) for all problem sizes except small problem. Almost all 

of the comparisons between the results obtained from the HDBK and the other approaches for 

extra-large problem were statistically significant with a 95% confidence interval (P value ≤ 

0.05) except the MDBA. The HDBK achieved the highest %Imp 47.837 when compared with 

the KH. These results demonstrate that the HDBK is a promising approach for advanced 

planning and scheduling systems for complex scheduling situations such as those 

encountered in the capital goods industry. 



Future research may focus on the application of mathematical analysis and/or 

metaheuristics to solve production scheduling problem in capital goods industry. The 

integration of production and preventive maintenance scheduling problem in the capital 

goods industry or other integrations (e.g. lot sizing, or uncertainty issues in manufacturing 

environment) can also be another research direction in the future. 
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