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The fluid equations for an electron beam are used to caiculate the equilibrium velocity and density
profiles, limiting current and space-charge wave properties of an annular beam undergoing magnetic
compression in a gyrotron beam tunnel. Both non-relativistic and relativistic equations are derived. The
beam tunnel may have a conventional smooth wall or an absorbing dielectric-loaded wall. Small values
of magnetic compression are seen to have a large effect on the profiles and the current limit of a given
tunnel. Common dielectric-loaded tunnels are also seen to reduce the limiting current by 5% - 20%.
Limiting current data for a wide range of beam parameters are shown. The dispersion relation for a
convective instability arising from the gradient in the equilibrium potential depression profiles is derived
using the linearized fluid equations. The growth rate is seen to increase for increasing current and pitch
angle, and for increasing wall effects of an absorbing tunnel. The average growth rate is calculated fdr a
typical gyrotron beam and beam tunnel as well as for a beam entering an interaction cavity. Growth rates
for all values of k, are seen to decrease to zero for a conventional conducting beam tunnel in a constant

magnetic field.



I. Introduction

Characteristics of electron flow from cathode to collector is of interest in the design
of present-day gyrotrons. Beam tunnels are commonly included in the design and
provide a conducting, grounded wall near the beam as it propagates from the cathode to
the interaction cavity. This tunnel is designed to keep the potential depression of the
beam at a minimum since the space charge of a beam creates a self-potential through
which the beam must pass. This self-potential affects the equilibrium velocity and
density profiles and if rises too high, a barrier forms and transmission becomes
impossible. These profiles and ultimately the limiting current depend on details of the
beam, of the beam tunnel, and of the magnetic field compression along the beam path.
The maximum beam current which can pass through a beam tunnel at constant magnetic
field as a function of beam energy and pitch angle has been calculated by several authors
(Drobot et al. 1981, Ganguly er al. 1984, for example). These calculations have been
performed at constant tunnel magnetic field and axial variations are not considered.
Often, though, a beam experiences magnetic compression and changing wall conditions
as it passes through the tunnel before it reaches the constant-B cavity interaction region.
In this paper the effect of this axial variation is included in the calculation of velocity and
density profiles and of limiting current.

Often the beam tunnel is highly overmoded for the design frequency of the gyrotron
(i.e. fro < fo). Reflected gyrotron power is therefore able to propagate in the beam
tunnel and may undergo a resonant interaction with the beam before it reaches the cavity.
Parasitic excitation may also develop and create enough power to affect beam properties.
These beam-wave interactions are thought, under certain conditions, to alter the beam
characteristics from those necessary for efficient cavity coupling. It is therefore common
to use a beam tunnel consisting of an absorbing material which attenuates this unwanted

microwave power before it can interact with the beam (Lawson er al. 1990, Alberti



1991). The absorbing structure however may affect the electron flow. This paper
therefore also examines how an absorbing beam tunnel alters the equilibrium velocity and
density profiles, limiting current and stability of gyrotron electron beams. Section II
defines the geometry of the absorbing tunnel and shows a specific case for an actual beam
tunnel used at the CRPP. Section III presents a method for calculating the self-consistent
axial velocity and density profiles and potential-depression limited current using the fluid
model equations allowing for both a conventional (smooth conducting) and an absorbing
beam tunnel. This is performed for both non-relativistic and relativistic models and
includes effects of magnetic-field compression along the beam path. In Sec. IV a
macroscopic fluid instability is discussed which is brought about by the density gradient
viewed by the beam as it traverses the beam tunnel. This gradient is due to the geometry
and material of the absorbing wall and to the magnetic field profile. The dispersion
relation shows that the growth rate for this instability is dependent on the magnitude of
the potential oscillations and on the beam current, size, and pitch angle. Concluding

remarks are presented in Sec. V.

II. Geome

An absorbing beam tunnel is commonly made of alternating rings of conducting
copper and absorbing dielectric. These tunnels, or variétions of them, are used in nearly
all gyrotrons. The geometry of such a tunnel is shown in Figs. 1(a) and (b). The
conducting rings serve to conduct away any charge Which might be intercepted by the
tunnel walls and the dielectric is recessed so as not to build up surface charge.
Microwave absorption in these structures can be computed at a given frequency for any
given TE or TM mode (Latham 1990). The relative dielectric constant of the absorbing
material is usually quite high (>5) and therefore the potential on the surface of the
dielectric facing the beam remains low. The effective radius of the tunnel as seen by the

beam then oscillates as the beam moves axially. The result of this oscillation is an axially



oscillating beam potential depression, true even for constant axial beam density. In
Figs. 2, Poisson's equation, V29 = -pl€o, is used to compute potential profiles for a
section of a tunnel used at the CRPP, the geometry and potential contours of which are
shown in Fig. 2(a). The beam characteristics and tunnel dimensions are given in the
figure. Here a beam density constant in r is assumed whose value varies axially
conserving current and magnetic moment. A Neumann boundary condition (V,¢ = 0) is
used at the tunnel ends. The value of the potential along the beam path for constant
density at r = rp - Ar/2 is plotted in Fig. 2(c) (solid curve). Even for a flat axial
density profile (Fig. 2(b) solid curve) the computed potential profile is seen to oscillate.
The oscillations in the potential profile cause B, to be locally lower between the
conducting rings where the potential is high. This then leads to charge bunching between
the rings which further lowers f,. This charge bunching and subsequent axial peaking of
the potential depression will create a current limit lower than that of a smooth wall tunnel.
If the constant density solution is iterated to account for this potential depression,
B,z = ﬁzzo - 2q¢/mc?, the self-consistent solution is found as shown in Fig. 2(b-c)
(dotted curves). Here, B, = v,/c where v, is the axial velocity and c is the speed of
light. All subscripted zeros of Secs. II and III indicate conditions at the entrance to the
beam tunnel where B, = B,,. The wall geometry and material clearly have a large effect

on the density profile of the traversing beam.
III, Equilibrium - Limiting Current

A method is derived by which the equilibrium velocity and density profiles as well
as the limiting current for a beam traversing a smooth beam tunnel may be computed.
The degree to which the limiting current is reduced by replacing the smooth tunnel with
an absorbing one, due to the effects described in Sec. II, is determined. As the magnetic
field is seldom constant in a gyrotron beam tunnel, located just before the interaction

cavity, the effects of magnetic field compression are included in the analysis. The



relevant non-relativistic fluid equations for the beam (relativistic equations shown later in

this section) are:

22 (.. -
mn[at+(y V)g]—qn(ﬁ-i-vxg), (12)
VeB=20, (1b)
V-E=-—£—.’;. (1c)

on |
§+V°(n2)=0. (1d)

In the above equations a monoenergetic beam is assumed. Further, azimuthal symmetry
(i.e. #d0@= 0), and knowledge of B,(z) is assumed. For an equilibrium solution
dlor = 0 is required. Taking the scalar product of Eq. (1a) with 6, expanding Eq. (1b)

to get B, = (-r/2)V,B,, and integrating with respect to z, we can derive,

ﬂ-l. = ﬁ-Lo (E‘B(%)‘) % ’ ()

where §, = v /c. Equation (2) is conservation of magnetic moment of the electron fluid.

Taking the scalar product of Eq. (1a) with p, it follows that,

_ 4E;
B:V.B. + B.V.B. = me? (3)

The expression for E, is found as E, = - V,¢ where ¢ is the solution of Poisson's
equation. The exact analytical soution for ¢ however would be intractable for a beam
tunnel of the geometry of Fig. 1 and therefore an approximate expression for ¢ will be

used. For an annular beam of radius 7, and thickness Ar, with a wall at constant radius,



rw, the analytical solution of Poisson's equation for the potential at the inner surface of

the beam, r = r - Ar/2, is,

=_In [ A}
9= tmeoch, ° (e 4 @

where,

byY - .
S(rb A’) S(a, b)=1- 2(a+2)2 ln(a+Q)+ 2(a )2 ln(a-é’-)v,

TR N

(5)

with a = rp/rw, b = Ar/r,,. Figure 3 shows contours of S as a function of r/r,, and
Ar/r,,.. The factor S is shown to be essentially independent of beam width, Ar/r,,, for all
values of rp/rw. The approximation Ar ~ 0 can therefore be used without introducing
significant error even for beams of large Ar. Expanding the logarithmic terms of Eq. (5)
for small Ar and letting Ar — 0, it is found that, S(rp/rw,4riry) ~ S(ry/ry,0) = -

2in(rp/ry), or,

S(e)=20n () - 6)

Since r,, is allowed to change abruptly in the absorbing beam tunnel as well as allowing
for dielectric wall material, an average radius, 7,4, and an oscillating function, f;( Z), are
defined and ¢ is written as, |

— 1 s W B,(z)
0 ()= —L — (1+F2)) S('rrfa_)
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where



s(’;;:,B (Z)) 2in [’;;: B.(2) “2] = 20n(29)+ In (Bz(z) .

(8)
fo(2) produces the ripple on the potential profiles due to the wall geometry and material
(f, = 0 for a smooth conducting wall). r,, is generally near to the average radius of the
conductors and the dielectric. Here conservation of flux has been used to allow for
changing beam radius with B,(z). Equation (7) is an approximation valid for slowly
varying values of §,, f,, and S. The effect of rapidly varying quantities is discussed at
the end of this section. Figure 1 shows rw;, and includes the general form of (I + ﬁ;) for
a typical absorbing beam tunnel. The precise form of 7, (always oscillatory about zero) is
chosen to give, using Eq. (7), exactly the correct potential depression (computed from
Poisson's equation) for a beam of constant density and magnetic field. f;( z) is therefore a
measure of the percentage excursion of ¢ at the inner surface of the beam from the case of
a smooth wall. In this way, all effects due to wall geometry and material may be included
in the function %( Z).

Eqg. (3) now becomes,

- . q T'wa
B Vet B Vi = -~ v [ (1f) s Be)
We let,
B Pt q1p - 10
TLEamC

And differentiating Eq. (2), .V f. = (B%,/ 2Bo)V,B,, substituting into Eq. (9) and

integrating from z, to z, after rearranging,

& ﬁs 2 [Bz(2) B, ﬂxo
ﬁz,,)J [1+2ﬁ S(z0) - 0f (Bza 1)] ﬁza) 2[3 S(z)(l+fo(z))._

Zo0

(11)



where o, = BB, With expression (11), given a magnetic field profile and initial
beam conditions B,(z) can be computed as the solution of Eq. (11) at each point in 2.
With the result of Eq. (1d), no(z) = no(Bze/B:(z)), the solution will be a spatially-
resolved profile of B;(z), ny(z) along the beam tunnel for any current below the limiting
current. An example is shown in Fig. 4 in which Eq. (11) has been used to compute the
equilibrium profile for a beam undergoing magnetic compression and' with a beam tunnel
for which fyme = 0.2. The effect of the walls and of the magnetic compression are
éleaﬂy seen. To determine the limiting current, B;(z) = Bzpax is chosen and B, is

defined as:

B, = maximum beam compression along beam tunnel = B max , (12)
20

and since B, is slowly varying with respect to f,, one can choose f, = Foma =fo,,, and
also § = Smax = Sm simultaneously. At the location of maximum beam compression,

Eq. (11) becomes,

3 3 3
F(-é’—)=(£i) '[1 r2Bes, g -1 )} (&)”&3"‘5’"”*’;‘”") =0

ﬁZa ﬁlo ﬁza 20 ﬁzo
(13)

where S, = S(z,). The condition for which no equilibrium exists, i.e., for which the

limiting current has been reached is,

e

k=0 o

where (B,/f,,); is the solution of
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d (B:/B:0) ' (14b)

The solution of Eqs. (13) and (14) yields an equation for S, at the limiting current in

terms of By, &, So. B, fom , and Sp:

Bxo¥ 223 7 23 ﬁ_xg)z 2 (r ) )=
25(Bf -3 8 @ (Bl (1B D) =0

which can subsequently be solved for the limiting current, pn:

[ = 4neamc3 B, Bx,
bm ' (16)

q B:,

If S, = 0 is chosen, the solution for /p,, can be written in closed form. This
correspbnds to a beam launched at z = z; where the wall is at r,, = rp. The '-' indicates a
position several tunnel diameters to the negative z side of z,. The potential depression is
therefore zero and the launch conditions can be specified exactly. Otherwise an iterative
solution of Eq. (15) is required to find the launch potential depression. With this

assumption, the expression for the limiting current from Egs. (15)-(16) becomes:

1y = dmemc Bl [1- (B
3325 |4 fou 2I(rwdry)+ InB. (17)

Expression (17) does not include effects of dispersion on the limiting current. This has
been addressed elsewhere (Antonsen et al. 1986, Tsimring 1990).
The relativistic analog of Eq. (11) can be derived to compute the relativistic

velocity and density profiles using conservation of energy and flux:

- q
Y(z) = 70-m7(¢(2)'¢(0)) ’ (18a)



pi=ri(E], (18b)

where ¥ = (I -B2- i)l and p, = ymv,. Equation (18a) can be rewritten as :

Ki(z) - K- Kz(z)

V1- g2 B (19a)

where,

Bl Si(1+f(0))
Ko=170+ 5., ' (19b)

KI(Z) =

e

Kaz) = B3, S(z) (1 + fol2)) .
Equation (19a) then becomes:

F(B.)= (K§)B/ - (2K:Ko)B;' + (K# + K7 - K§)B; + (2KeKo)B; - (K2)= 0
(20
Again, given all initial conditions, Eq. (20) can be solved for each point in z to yield the
relativistic velocity (and subsequently density) profile in the beam tunnel. As with the
derivation of Eq. (17), the condition for which no solution exists, i.e. for which the

limiting current has been reached, is determined by:

F(ﬂz;)= 0, (21a)
where f;; is the solution of:
x
B, (21b)
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This is performed numerically and the solution as a function of launch energy is plotted in
Fig. 5 for a gyrotron beam of rp/rywg = 0.5, = 1.0, Bc=1.2, fon = 0.2. This is
compared to the non-relativistic solution, Eq. (17), which is seen to be in good
agreement at low energies but becomes increasingly far from the relativistic result as
launch energy increases. Depending on the beam energy, one can choose the more
simple Egs. (11) and (17) to compute the velocity and density profiles and limiting
current for the non-relativistic case, or Eq. (20) for beam energies above 50-100keV
depending on the desired aécuracy.

The advantage of using this approach tb determine the limiting current over merely
iterating on the solution of [33 = 2q¢/mc? is that Egs. (15), (16), and (20) allow for
magnetic field beam compression and for an absorbing beam tunnel. To illustrate, the
case of a smooth beam tunnel (f; =0, rwq = 'w) is first considered. Launch a (o for
which the potential depression is zero) vs. limiting current is plotted in Fig. 6(a) for
r/rwa = 0.1. The values plotted are the relativistic self-consistent solutions of Egs. (20)
- (21). Curve (A) is the standard B,(z) = constant case and is consistent with other
published values (Drobot et al. 1981, Ganguly et al. 1984). Curves (B), (C), (D), and
(E) are plotted for magnetic compression values of B, = 1.2, 1.4, 1.6, and 1.8,
respectively. Note that curves (B) - (E) are not merely curve (A) adjusted in « for a
given magnetic compression. One sees that the limiting current is strongly affected by
even a slightly increasing tunnel magnetic field. For example, in Fig. 6(a) at o = 1.5,
an increase in B, of 20% results in a decrease of the limiting current by over 60%.

The solution of the equations given a launch a will yield a beam potential
depression at z = z, at the limiting current which will retard the beam as,
BZ,= B?, - (2q¢0/ mc?), oo=VE4,IE,,, Eo=Ei+E,,=E/+E; -q$o. The
values printed along the curves (A) - (E) of Fig. 6(a) show the percentage of original
beam energy remaining at the current 1ifnit, E,/E-, the remainder being lost due to the
potential depression. For example, a beam launched at rp/r,, = 0.10 with & = 1.0 and

with a tunnel beam compression of B, = 1.2, has lost over ~15% of its total energy at

11



the current limit at z = z,. It should be noted that at the limiting current, the value of f3,
is not zero. It always retains some positive value, below which no equilibrium solution
is possible. Figs. 6(b-e) show the results for values of ry/rys = 0.3, 0.5, 0.7, 0.9,
respectively. The current limits increase for otherwise equivalent beams, since the
potential depression decreases as the beam approaches the tunnel wall (Eq. (7) and
Fig. 3), illustrating the advantage of using large radius beams.

The case where £, # 0 is now considered, i.e. the case of an absorbing beam
tunnel. f,, is the maximum percentage ripple in the beam potential due to the beam
tunnel wall. This value is determined by solving Poisson's equation, numerically, for the
beam tunnel of interest. Three examples are shown in Figs. 7 which yield values of
fom = 0.05,0.15,0.25. The geometry of the beam tunnel as well as the dielectric value,
&y, must be known for this computation. In general, receded dielectrics will yield high
values of f,,, . Low values of & will also yield high fom . Figure 8 shows an example of
the change in limiting current for conditions of Fig. 6(d) with fo,,, = 0.0 and fo,, = 0.2
after Eqs. (20)-(21). The same relativistic as non-relativistic dependence of /5, on ﬁ,,,, is
found. Therefore, the limiting current for the relativistic case is seen to vary as 1V(1+fom )

and the decrease in limiting current between an absorbing and conducting beam tunnel of

the same r,,, can be written as:

_ Alpm = f‘:’m‘_ .

Therefore, to include the effect of an absorbing tunnel in the determination of the limiting
current, the appropriate plot of Figs. 6 is used to determine I, for a smooth beam tunﬁel
and this value is decreased by the percentage calculated by Eq. (22). It is seen that this
effect can be significant as typical absorbing beam tunnels have 0.05 < fo., < 0.25
which results in a limiting current decrease of 5% to 20%.

The limiting current of the interaction cavity of a quasi-optical gyrotron may be

different from that of the beam tunnel. A reasonable approximation may be made to

12



determine the limiting current of such a cavity by using Figs. 6 for an rw, = min(L/2,
rwc) (Alberti 1991) where L is the axial extent of the cavity and r,. is the distance
between the axis and the mirrors. For this case, one will most likely use curve (A) of
Figs. 6 since the magnetic field profile is usually flat in the interaction cavity. Genoni
(1987) presents an exact numeric method of determining cavity limiting current at
B, = 1.

As mentioned earlier, in the expressions (7) and (8) for the potential depression ¢, a
slowly varying B.(z), f,(z), and S(z) has been assumed. If these parameters vary rapidly
in z, the variations in the potential will be somewhat less that those estimated by Egs. (7)
and (8). This therefore would result in an estimate of the limiting current somewhat
lower than the actual value. Variations in the potential depression as the beam moves
axially arise due to magnetic field compression (seen as a change in f3, and S), and wall
conditions (seen as a change in 3, (through ¢) and in f,). Magnetic field compression for
all realistic cases is slow enough so as not to affect the estimate of Eq. (7). If the
oscillations in £, are rapid then near the limiting current, depending on the value of Au/r,,
Eq. (7) can overestimate somewhat the magnitude of the potential oscillations. Figure 9
shows an expanded view of the actual (dot/dash line) and modeled (solid line) potential
profiles for cases of Ay/r,., = 10, 4, 2, 1 with density profiles of those near the limiting
current for the example geometry given in the figure. (Solution of Eq. (20) for a wide
variety of geometries shows that axial oscillations in n, at the limiting current are
generally of the same magnitude as that of f;.) For large values of Ay/r,,, the modeled
and actual potential profiles will be equal as Eq. (7) is a good approximation to the
solution of V?¢ = -pl€o. As Ay/r,, decreases, the 21922 term of the V2 operator
becomes larger and Eq. (7) somewhat overestimates the value of the potential
oscillations, as seen in Figs. 9(b-c). This though only occufs near the limiting current
where the density is high and where Ay/r,, ,~2-5. For currents lower than the limiting
current, the actual and modeled profiles of Figs. 9(a-d) are identical. As Ao/r,, o decreases
to less than 1, oscillations in f,; and n, become small and Eq. (7) is again a good

approximation to the actual profile for all currents.
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In Fig. 9, it is also seen that as the factor Ad/r,,, decreases, the effect of the wall
geometry on the equilibrium profiles also decreases. Therefore, if one requires a given
percentage absorber along the beam tunnel, the smallest perturbation in the beam
equilibrium will be made with the smallest period size in the conductor/absorber cycles.
A small period size should not significantly affect the tunnel absorption characteristics but

would greatly reduce the wall's effect on the beam.

IV. Space-Charge Instability

The fluid equations of motion will now be examined to determine the stability
characteristics of a beam in the oscillating equilibrium potential profile of an absorbing

beam tunnel. The force balance equation (1a) is linearized to get:

%+ e Vo+ Lo VQI=%(EI+21XL3.0) , 23)

where v= v, + v, E=E, + E;, and B = B, + B;. Here, second order terms have
been neglected and the equilibrium solution, ( vo » V) vo= (¢/mXEo+ Lo X Bo), for the
beam has beén used in deriving Eq. (23). For this section IV on stability, the
subscripted zeros indicate equilibrium quantities and subscripted ones indicate perturbed
quantities. Expanding the second and third terms of Eq. (23) assuming azimuthal
symmetry and small radial motion (i.e. d/90@= 0, v, = 0, d/or = 0) and allowing only

for axial perturbations (i.e. v;e = 0), the z component of Eg. (23) becomes:

9v1,
ot

+ vy Vivog+ vo, Vv =LE), (24)

In the same fashion, the continuity equation (1d) is linearized:

14
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—+ no Vyu,+ v, Vino+ mt V0o, + 0o, Viny=0 . 25)

The set of Egs. (24) and (25) is closed with the expression for E,, which takes one of
two forms depending on the magnitude of the oscillation wave number. For slowly
spatially varying quantities (small k,), the electric field will be dominated by the geometry

of the tunnel and the linearized form of Eq. (7) is used:

E, (1 + fol2)) ma (26)

(for small k,)

Here I, has been written as gnv,A (A is the cross-sectional area of the beam). For
rapidly spatially varying quantities (large k;), the oscillations will be dominated by local

electric fields and we therefore use,

n
V,E,=LL. @

(for large £;)

Assuming an oscillatory form of », and v, such that d(n,,v,,)/dt = -iexXn,,v,;) and
Va(n,,0;2) = iks(n;,0;,), the dispersion relations for waves of small and large k, may be

derived from Egs. (24) - (27):

(w kzvoz + onz) = kz vs (1 _L_n_O) (1+ fo - _fO) ’ (28a)
(for small k)
@ -k,vo, + iV, 2=921-—L§é.
( z U0z oz) P k, Mo (28b)
(for large ;)
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where V? = (q?ASni4meom) = .Q: (AS/47) and €2, is the local plasma frequency. Here
the primed quantities denote derivatives with respect to z. Note that for waves of large
ks, the dispersion relation for v, = n,= 0 (smooth wall case), reduces to
W= k; Vo, 1 £2p, the dispersion relation for laminar electron flow.

The stability properties of the waves whose dispersion relation is given by
Eqgs. (28) can now be examined. For the small £, case, the oscillation frequency can be

solved as:

[~ » - n2 2
: .& I+ ono)z
= 112 + Ry
2 W .fQ_P_O_-I_fo

(29a)

i ~ . a2\12 2
h,lth zg)z
ks k, no

-, 1/2
Im(w)=y= 'Doz'i'%(%%-l -fa) 1+ =% 5 1
z (.&h- 1 -fo),
2 no
- Z .
(29b)
(for small k;)

In the above, ('f;/kzz) (ny/ne) > (1 +f;) is assumed. If k, = the equivalent
"wavenumber"” of the axial oscillations in f; or equivalently v,, or n,, and the limit is

taken as (ko / k,)>> 1, then Egs. (29) become:

= = N[z .12
Re(w)= kyvo, 2 %205 |fo o 1+ fo Mol fo Rto
2 \k, k; Tol\y2 Mo (30a)
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' n /12
Im(w)= 7= vo, T t s (f nz )1 (30b)

where v,;,= -Lo, (n,}/na) has been used. The second term on the right hand side of
Eq. (30a) varies with current, beam size, and k, for a given tunnel but is seen to be
typically a fraction of £2, for the largest &, allowed by the model. Eq. (30b) shows that

the oscillations are unstable (/m(w) > 0) for:

Vs, ;" >0 . (31)

Note that fo n, is always positive. Therefore, when the velocity is directed along the
density gradient, these oscillations are unstable and increase in growth rate as v, or
equivalently, density or current increase. One should remember that in an absorbing
beam tunnel, condition (31) is satisfied over only part of the beam path. The magnitude
of y will be examined later in this section.

Considering now the stability propérties for large k, oscillations, Eq. (28b) is used

to derive:

Q nel n 2
- P 0
Re(w) = k,vo, i—ﬁ [\/1 + "—kz——)z + 1] , (32a)
) Q ,/ ] 1/2
= Y= Bo +2%P Ro! No -
Im(w)= 7= vy, o + s [,\/“-(—Lk_z_—) 1] . (32b)

Taking the limit for (ks / k;) << 1, Egs. (32) become:

Re(w) = k;v0, £0, , (33a)

Im(w)= ¥ = vo, 72 QP(M) (33b)
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Like condition (31), for large k,, the velocity is required to be directed along the density
gradient for the instability to occur and it is seen that increasing density, or equivalently,
increasing beam current or launch & will increase the growth rate. The method of Briggs
(1964) has been applied to determine the characteristics of the instability described by the
dispersion relation (28b). Mapping of the complex roots of Eq. (28b) from the complex
o plane to the complex k plane show that the root described by Eq. (33b) represents a
convective amplifying instability. A perturbation occurring at the input to a beam tunnel
will propagate its length, amplifying in z. The average growth rate can be calculated as:
z
7 =L J 94z,
0

-1p
Z

(34)

where t = [dz/v,,. This calculation will be performed after deriving an approximate
expression for the maximum possible growth rate.
A relation between n, and £, from current and energy conservation and Eq. (7) can

be derived assuming small axial variations in n, and £, :

no-no(0) _ (velve)? = =z
w0 I-orw)? N (332)

and
ny _ (s vor)? I
no 2 0
1 ’(vs/ Uo:)

(35b)
An example of the growth rate, ¥, as a function of k. is shown in Fig. 10 for a beam
with rp/fwa = 0.7, Ip = 50A, Ep = 80keV, and &, = 1.5. Once the beam conditions
are fixed, the exact form of Fig. 10 becomes dependent only on the choice of £, and f,;,
or equivalently, the choice of the beam tunnel geometry and material. Using the fo
computed from, for example, Fig. 2 (fo,,, = 0.15, A, = 0.01m), the form of the curve
of Fig. 10 is calculated from Eqs. (30b) and (33b). Note that the growth rate decreases

to Y= 0 as fp, fo — 0 and that the distance between the asymptotes for large and small
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k, increases as the beam current increases for an unchanging f,. The assumptions which
have been made in deriving the curves for the small and large &, limit should be recalled.

For small k;, it is required that,

Ao
Ay >>n, = %<<rw ) (36a)
and
(5’-‘-’,{—"1) >>1 = KL<<( )fo.. . (36b)

For large %,, it is required that,

A, <<r, = kz >>&9- , (37a)
ko T'w
and
(_n(;/_noz<<1 = KL>> (.l‘.’_{.zf (37b)
, ko vOz om .

For the case of Fig. 10, (vs/U,,)? = 0.14, making the limit condition k,/k, < 0.025 for
the small k, limit and k,/k, > 1 for the large k, limit. In Fig. 10, y/£2.. has been

plotted for an arbitrary magnetic field of By = IT, for easy comparison to growth rates of
other instabilities. This instability, however, is independent of the value of 2., as the
oscillations occur parallel to the applied magnetic field. To estimate the maximum growth
rate at currents less than the limiting current, (vs/v,;)* << I is assumed and Eq. (35b)

becomes ny/ny = (VUs/Vgz)? fo and consequently the maximum growth rate, %,, from

Eqgs. (30b) and (33b) is:
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2
= o . (38)
It follows that:
Y _ 2qlp
(39

St e -4n'aomcv3, '

The contours of ¥,/S f,;c are shown in Fig. 11 as a function of I, and a, The
calculation was completed for values of a, and [ for which (vy/v,;)? < 0.2. If the
growth rate from Fig. 11 for a typical gyrotron beam of I}, = 504, a, = 1.5 is taken, it
is seen that y/(S fo'c) ~ 0 .‘0 7. Using the CRPP values of
fo = kofon=(2m10.01m)(0.15) = 94.2m-1, §=2In(1.0/0.56) = 1.16,
Y = 2.3x10%"1, gives Ym /S2ce = 1.4x1072 for an axial field of B, = IT.

The integral of Eq. (34) using expression (33b) can now be performed as an
estimate of 7 in an actual beam tunnel for large kz. Two cases are considered. The
first, an actual beam tunnel and the second 7 is estimated for a beam entering a quasi-
optical gyrotron cavity. For the beam tunnel, the solution of Eq. (20) is used yielding
the axial equﬂibrium profiles required for Eq. (33b). The parameters of the beam are
given in the figure. The result is shown in Fig. 12. An average positive growth rate of
YI1Qe=13x1 073 is seen for this case. The oscillations on the 7 curve are due to the
changing sign of n,/n, as the beam moves in z. The net ¥ is seen to be positive however
for any case in which B, > I. In Fig. 13, the average growth rate is estimated for a
beam entering the interaction cavity of a quasi-optical gyrotron where the scale lengths are
much longer than those in the beam tunnel. The potential depression for such a beam is
also much larger than that in the beam tunnel as the walls of the interaction cavity are
further from the beam. This will slow the beam significantly, increase the density
gradient and provide for a large overall / no/no dz. The average growth rate over the first
half of the cavity is seen to be several times that in the beam tunnel. The growth rate is

compared to that of the diocotron instability, known to be present in unneutralized
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electron beams. The diocotron instability, arising from azimuthal velocity shear, has a
growth rate, 7, of B = (Gs/2) (.Q,f / 28%.), where Gy is a unitless geometric constant
dependent on the beam geometry and instability harmonic number s. The maximum
value of G, occurs for thin beams with harmonic numbers above s ~ 6 and has a value
of Gmax s>6 ~ 0.75. For the beam conditions at z = z, of Fig. 13, the maximum
diocotron growth rate for B, = IT is 1 /$2ce = 7x10-3, Though this growth rate
varies with beam size, current, magnetic field, etc., it is seen that the growth rate for the
axial oscillations described here and for thé diocotron instability are of the same order of

inagnitude for parameters of typical gyrotron beams.
V. Conclusions

A model has been preécntcd which may be used to determine the self-consistent
axial density and velocity profiles as well as the limiting current of a beam undergoing
magnetic compression in a smooth-walled beam tunnel for a wide range of beam and
tunnel parameters. Magnetic compression is seen to decrease the limiting current
markedly and it is seen that if a beam is near its limiting current the uniformity of the
magnetic field becomes important. It has been shown how to calculate the effect on the
velocity and density profiles and limiting current of a beam when the smooth conducting
beam tunnel is replaced by an absorbing one. Depending on the geometry and dielectric
material, the limiting current may be lowered by as much as 20% in the most extreme
cases. A fluid model has been developed describing a convective instability which arises
due to the equilibrium density gradient present in a beam traversing an absorbing beam
tunnel in an increasing magnetic field. The instability is also present as the beam enters
the interaction cavity where the magnetic field is generally constant. It is electrostatic in
nature and results in axial oscillations. These oscillations occur when the beam velocity
is directed along the density gradient and the average growth rate has been estimated for
large and small values of k,. The growth rate is seen to increase with increasing current

and pitch angle. Itis seen that for all values of k; the growth rate decreases to zero in the
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absence of a density gradient brought about by the beam tunnel wall or magnetic field.
From a practical standpoint, one would like to minimize the effects of the beam tunnel
wall on the equilibrium profiles and limiting current as well as on the stability of the beamn
as discussed here. One sees that using the smallest possible period size in the
conductor/absorber cycles for a given absorber fraction will achieve this result. A small
period size, relative to the tunnel radius, will result in a relatively small change in the
equilibrium profiles from that of a smooth-walled tunnel. Indeed, rnoéleling shows that if
the period size is kept below 4, = 0.5 rwa for any beam with rp < 0.7r,,, the
oscillations in t-h'eAprofiles due to the absorbing tunnel wall is less than 5% of the value
for a smooth-walled beam tunnel. Choosing a small period size also minimizes the
possibility of unwanted cyclotron maser instability oscillations occurring between the

tunnel conducting rings.
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Figure captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Geometry of beam tunnel and beam showing beam, alternating conducting
and absorbing rings, rp = beam radius, Ar = beam width,
rwa = effective constant wall radius. The profile ﬁ, allows for calculation
of potential depression given the wall geometry and dielectric material - (a)
side view (b) end view. '

(a) Example beam tunnel geometry with potential contours drawn at
-p=05, 15, 25, 3.5, 4.5, 5.5, 6.5keV. Beam parameters are
Ep = 80keV, 0y =2.0,I, = 50A. The contours shown are the solution
for a self-consisent density profile. (b) constant (solid) and self-consistent
(dotted) density profiles (c) corresponding potential profiles.

Contours of S for variable rp/r,,, and Ar/r,, . S is seen to be essentially
independent of Ar/ry, .

(a) Magnetic field and ﬁ, profiles for a ten-period beam tunnel
(b) computed axial density and velocity profiles using Eq. (11) for a beam
of Ep = 80keV, oty = 1.0, I = 60A, ry/rywa = 0.5, fon = 0.2. The
current chosen is near the limiting current.

Limiting current as a funtion of energy for a beam of o, = 1.0,
ry/rwa = 0.5, ﬁ,,,, = 0.2, B, = 1.2 for non-relativistic and relativistic
solutions.

(a) Beam alpha vs. limiting current for a beam of rp/r,q = 0.1 and a beam
compression of (A)B,=1.0 B)YB,=1.2 (C)B,=14 (D)B.=1.6
(E) B, = 1.8. The values printed along the curves are the percentage of
initial total beam energy remaining at the current limit, the remainder being



Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

lost to the potential depression (b), (c), (d), (e) as in Fig. 5(a) for
ry/rw = 0.3, rp/rw = 0.5, rp/ry, = 0.7, ry/ry, = 0.9, respectively.

(a) Potential contours in beam tunnel resulting in ﬁ,,,. = 0.15 (b) potential
profiles for (A) fom = 0.05, (rp = 0.32cm, rgiciec = .06cm)
(B) fom = 0.15, (ry = 0.40cm, rgictec = .06cm) (C) fon = 0.25,
(rp = 0.43cm, rgictec = .08cm). Other parameters as in figure. Beam
parameters: Ep, = 80keV, ap = 1.5,1p = 50A.

Limiting current curves for ﬁ,,,, = 0.0 (solid) and fo, = 0.20 (dotted)
after Egs. (15) and (16) showing the decrease in limiting current for an
absorbing beam tunnel.

Expanded view of the modeled (solid using Eq. (7)) and actual (dot/dash
using Poisson's equation) potential profiles in a beam tunnel at the current
limit for (a) Ao/r,,= 10 (b) Afrye= 4 (€) Adfrpg = 2
(d) Ad/r,q=1. Upper (lower) dotted lines show the potential profile for a
smooth beam tunnel with 7y, = rgicteciric ("'wa = "conductor). FOT
Ao/rwa >> 1, the actual and modeled profiles are identical. At intermediate
values, Eq. (7) slightly overestimates the oscillations in the potential
profiles and for A/r,,, << 1 the oscillations in n, and f, become small and
Eq. (7) is again a good approximation. At currents below the limiting
current, the solid and dot/dash lines of all figures are identical.

Instability growth rate, ¥/, as a function of normalized wavenumber,
k,/ko, shown for large and small k, asymptotes. For the values plotted
here, fom = 0.15, Ao = Icm, Ep = 80keV, oy = 1.5, 1, = 504,
B, =1IT.

Contours of 107 ¥, /(S ﬁ,'c) vs. Iy and o, for Ep = 80keV.

(a) Equilibrium profiles of ny/ny(0-) and B, using Eq. (20) with a beam of
fom = 0.15, E, = 80keV, o= 1.0,1, = 40A, B. = 1.25,
ry/rwe = 0.5 (the 0 indicates conditions where the beam depression is
defined to be zero) (b) average growth rate, ¥, for equilibrium profiles of

(a) after Eq (27b). ¥ is normalized to €2, for By = IT.
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