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Abstract

. The minimal model structure detection (MMSD) problem in nonlinear dynamic
system identification is formulated as a search for the optimal orthogonalization
path. While an exhaustive search for a mode] with 20 candidate terms would in-
volve 2.43 x 10'® possible paths, it is shown that this can typically be reduced to
2 x 10® by augmenting the orthogonal estimation algorithm with genetic search
procedures. The MMSD algorithm provides the first practical solution for opti-
mal structure detject;i'bn in NARMAX modeling, training neural networks and fuzzy
systems modeling. -Based on the MMSD algorithm, a refined forward regression
orthogonal (RFRO) algorithm is developed. The RFRO algorithm initially detects
a parsimonious model structure using the forward regression orthogonal algorithm
and then refines the model structure by applying the MMSD algorithm to the re-
duced model term set. The RFRO algorithm cannot guarantee to find the minimal
model structure, but it is computationally more efficient than the MMSD algorithm
and can find'a smaller model than the forward regression orthogonal algorithm.

1 Introduction

Detecting the model structure or determining which terms to include in a model is vitally
important in nonlinear system identification. Various approaches have been proposed to
address this problem (Haber and Unbehauen 1990). One of the most efficient and most
frequently used model structure detection techniques is the orthogonal algorithm (Koren-
berg et al 1988). The advantage of using the orthogonal algorithm is that the contributions
of candidate terms are decoupled and consequently the significance of model terms can
be measured based on the corresponding error reduction ratios. It is found, however,
that the size of the error reduction ratios depends on the order in which candidate terms
are orthogonalized into the regression equation. As a consequence simply orthogonalizing
candidate model terms in an arbitrary order into the regression equation may produce
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incorrect information regarding the significance of terms. This problem can however be
avoided by using the forward regression orthogonal algorithm which has been widely used
in dynamic nonlinear systems identification (Billings et al 1988a, 1988b, Chen et al 1989,
Billings and Zhu 1994a), radial basis function (RBF) neural networks training (Chen et
al 1991, Chen and Billings 1992, Brouwn et al 1994, Zhang 1994, Arciniegus et al 1994)
and fuzzy systems modeling (Wang and Mendel 1992, Jang and Sun 1993, Hohensohn
and Mendel 1994, Wang and Langari 1995). However, this algorithm cannot guarantee
that the model has minimal structure for a given accuracy because terms are selected on
the basis of a local optimisation. This suboptimal property was discussed in Billings et
al (1988b), and was recently re-analysed in Sherstinsky and Picard (1996). But neither
of these studies suggested a solution to this problem.

When using the orthogonal algorithm to detect model structure previously selected terms
can influence the selection of later terms. Therefore the selection of every term should be
based on a global consideration. The minimal model structure detection problem can be
considered as a search for the optimal orthogonalization path which is defined as the order
in which candidate terms are orthogonalized into the regression equation. An intuitive
method to address this optimal sequential decision problem is to detect the model struc-
ture using all the possible orthogonalization paths. This exhaustive search approach would
guarantee finding the model with the minimal structure for a given accuracy. However,
directly testing all possible paths one by one is totally impractical because the number
of all possible orthogonalization paths for a model with n candidate terms is equal to n!
which becomes astronomical if n is large. Even for a model with only 20 candidate terms
there are 2.4329 x 10'® possible paths. But detecting which terms to include in a model
1s important in many areas including NARMAX modeling, training neurdl networks and

fuzzy systems model building and it is therefore important to investigate solutions to this
problem.

In the present study a new minimal model structure detection (MMSD) algorithm is in-
troduced by augmenting the orthogonal estimation procedure with a genetic algorithm.
This maintains the simplicity of structure detection and parameter estimation based on
the orthogonal estimator but uses the power of genetic algorithm to search for the optimal
orthogonalization path without exhaustively testing every permutational posibility. For
example a model with 20 candidate terms requires an total evaluation of 2 x 103 orthogo-
nalization paths compared to the full set of 2.4329 x 10'® possible orthogonalization paths.
Despite this massive reduction the amount of necessary computations is still large, but
searching for the minimal model structure becomes practical for the first time.

Based on the MMSD algorithm, a refined forward regression orthogonal (RFRO) algo-
rithm 1s developed. The RFRO algorithm consists of two steps. A parsimonious model
structure is initially detected using the forward regression orthogonal algorithm and this




parsimonious model structure is then refined by applying the MMSD algorithm to the
reduced model term set. The RFRO algorithm cannot guarantee to find the minimal
model structure, but it is computationally more efficient than the MMSD algorithm and
should find a smaller model than the forward regression orthogonal algorithm.

~ The paper is organized as follows. The forward regression orthogonal algorithm is briefly
reviewed and the suboptimal property is further analysed in §2. In §3 the minimal model
structure detection (MMSD) algorithm, which incorporates an optimal orthogonalization
path search routine and an orthogonal parameter estimation and structure determination
procedure, is developed for a wide class of nonlinear systems including polynomial NAR-
MAX models, rational NARMAX models, radial basis function (RBF) neural networks
and fuzzy inference systems. A refined forward regression orthogonal (RFRO) algorithm is
developed in §4. Simulation examples are presented in §5 to demonstrate the performance
of the new algorithms.

2 Forward regression orthogonal algorithm and the

nonminimal model structure problem

2.1 A brief review of the forward regression orthogonal algo-
rithm

Consider a dynamic nonlinear polynomial NARMAX (nonlinear autorgressive moving
average model with exogenous input) model i

y(k) = Fly(k=1),...,y(k—ny),ulb—1),...,u(k — ny),e(k —1),...,e(k — n.)] + e(k)
= ;‘Pi(’c)‘?ﬁfi(k) (1)

where F!(e) denotes a nonlinear polynomial of degree [, pi(k) and 6; denote nonlinear
regressors and unknown parameters respectively, {e(k)} is a white noise sequence with
zero mean and finite variance. Notice that equation (1) can be used to represent a wide
class of model types including radial basis function (RBF) neural network architectures
(Chen and Billings 1992, and others) and fuzzy systems (Wang and Mendel 1992, Jang
and Sun 1993, Wang and Langari 1995). Because the number of possible model terms
in a NARMAX model is very large (typica.liy hundreds), model structure detection is a
vitally important problem in nonlinear systems identification. The orthogonal algorithm
is one of the most efficient techniques which address this problem.

The first step in the orthogonal algorithm is to orthogonalize the terms in eqn (1) into an




auxilary orthogonal model
y(k) = Zw-;(k)gi - e(.k) (2)

where w;(k) and g; denote orthogonal regressors and unknown parameters respectively.
Several methods are available for the orthogonal transformation. Details of these methods

can be found in Chen et al (1989).

Once the auxilary orthogonal model is obtained, parameter estimation and error reduction
ratios can be computed using

G = Ek—l wi(k)y(k)

CT RN wi(R) (3)
err; = _—91 b=1 W (k) (4)

zk=1 Y (k)

The error reduction ratio values are used as a measure of the significance of each candidate
model term. However, the size of error reduction ratios depends on the order in which
candidate terms are orthogonalized into equation (2). Therefore simply orthogonalizing
candidate terms into the orthogonal equation (2) in the order in which they happen
to be written down in equation (1) may produce an incorrect evaluation of the terms
significance. The forward regression orthogonal estimation algorithm was developed to
solve this problem (Billings et al 1988a and 1988b). At the first step, all the terms ¢;(k),
¢t =1,2,...,n in eqn (1) are considered as the possible candidates for the first term in
the orthogonal model eqn (2)

the parameters are estimated

Leber ST

1

g(i) — f—lwl (k )y(k)
]

and the corresponding error reduction ratios are computed

errld) — k[0 ()]
Ek_.l Y (k)

The term corresponding to the maximum error reduction ratio, assume @;(k), is selected
as the first term w, (k) in the auxilary orthogonal model eqn (2).

I1€4<n

At the second step in the forward regression procedure, all other terms, except w;(k), are
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considered as candidates to be orthogonalized into eqn (2). Compute
wp (k) = @i(k) ~affun(k)  1<i<n, i#;
where

o) = Zic wn(k)i(k)
' Efc\{_-l wf(r’c)

estimate the parameters

| N Wl (k)y(k
-SRI cien i
Pk=1(W3 (k)]z

and compute the corresponding error reduction ratios

orrl®) _ Tt 6500 (R)?
? Eszl y2(k)

1<i<n, i#j

The term with the maximum error reduction ratio is then selected to produce the second
term wy(k). The above procedure is continued until the accuracy requirement is met.

Because the most significant term is selected at every step, the forward regression orthog-
onal algorithm provides a parsimonous model structure.

2.2 Analysis of the forward regression-orthogonal algorithm

Definition 1: Orthogonalization Path

An orthogonalization path is defined as a vector O = [01,02,...,0,] which represents the
order in which candidate terms are orthogonalized into the regression equation (2), where
0 € {1,2,...,n},1=1,2,... ,n. The physical interpretation of the orthogonalization
path O is that the :** term that is orthogonalized into the orthogonal regression equation
(2) is pur(R).

Exchanging values between o; yields different orthogonalization paths. For a model which
has n candidate terms, the number of all possible orthogonalization paths amounts to
nx(n—1)x...x2x1.

Definition 2: Minimal Model

The minimal model is defined as a model that meets the accuracy requirement and has
the least necessary terms.
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The error reduction ratios vary with the order in which the associated candidate terms
are orthogonalized into the orthogonal equation. This suggests that different orthogo-
nalization paths may give different results when applying the orthogonal algorithm to
detect the model structure. Assume that the model size or the number of necessary
terms corresponding to path O; is n;, the minimal model is the one that satisfies the two
conditions

TeF
Z err; > h (5)

a1

B = mnfres] F= L2 (6)

where h is the required approximation accuracy, m is the number of all possible orthogo-
nalization paths.

Eqn (5) shows that the number of necessary model terms depends on the size of error
reduction ratios of selected terms. The forward regression orthogonal algorithm therefore
solves the minimisation problem eqn (6) by selecting the term with maximum error reduc-
tion ratio at each step. This appears to be equivalent to minimising the objective function
equation (6), and consequently the model obtained has the least terms. But this is not
quite true because former selected terms influence the selection of later terms so that a
local optimal selection may not be optimal from a global sense. In fact the minimisation
of eqn (6) is a very complex nonlinear dynamic programming problem where the selection
of every term should be based on a global consideration.

The model of a dynamic system is not necessarily unique and this is another factor that
affects minimal model structure detection in dynamic system identification. Consider the
following NARX model (nonlinear autoregressive model with exogenous input)

y(k) = Fly(k—1),...,y(k = ny),u(k — 1),...,u(k — n,)] (7)
From model (7), the multi-step ahead predictions are given by

y(k+1) = Fl[y(k),...,y(k—ny—l—l),u(k),...,u(k—nu—f—l)]
= FYF'y(k-1),... Yk —ny),u(k — 1), ..., u(k —n)l, ...,
- ylk—ny +1),u(k),...,u(k —n, +1)] (8)

y(k+2) = Fly(k+1),y(k),..,9(k—ny +2),u(k + 1), u(k), .., ulk — ne +2)]
= FFFyk—1),. .y —ny),ulk —1),...,ulk — n)), ..., y(k —ny + 1),
u(k),-n,u(k—nu+1)],Fl{y(k—1),...,y(k—ny),u(k—1),...,
w(k —ny)], . y(k —ny + 2),u(k 4+ 1);u(k),. .., u(k — ny + 2)] (9)




By repeated application of F'[e], a series of multistep ahead prediction equations can be
obtained. These prediction equations can be written as

y(k) = F[Fly(k—=2),...,y(k—n, —1),u(k —2),...,u(k—n, —1)],. ...
y(k —ny),u(k —1),...,u(k — n,)] (10)

y(k) = F[F[Fly(k—3),...,y(k—n, —2),u(k — 3}y oaptille=my = BY; s
y(k—ny —1),u(kb—2),...,u(k >n, — 1)],F1[y(k—3),...,y(k—ny -2),
u(k—3),...,u(k—nu—2)],...,y(k—ny),u(k—1),...,u(k—nu)] (11)

Eqn (10)-(11) show that many other terms which are not included in model (7) are also
relevant to the output. Thus, when applying the forward regression orthogonal algorithm
to detect the model structure, the original model (7) will be obtained only if the error
reduction ratios of the terms in model (7) are larger than that of other relevant terms.
This condition is, however, system dependent and is genarally not true. To illustrate this,
consider a manufactured example based on the second order linear system

y(k) = ary(k — 1) + agy(k — 2) + byu(k — 1) + byu(k — 2) + e(k) (12)

where y(k), u(k) and e(k) denote the output, input and noise respectively. The input
is a uniformly distributed random sequence with amplitute £1, the noise is a normally
distributed white random sequence with zero mean and 0.01 variance. Three pairs of
parameters are considered

(I) a; = —17, an = —08, bl = 1, bz == 03
(II) a; = —'17, aq = —'09, bI = 1, b2 = 1.5
(III) a; = —17, Ay = —08, bl = 1, bg = 08

Assume that the maximum lags of the input and output are both 5 so that the algorithm
searches over the set

S. = fulk —1),u(k — 2),u(k — 3),u(k — 4), u(k — 5)}
U {y(k = 1):y(k - 2):y(k - 3):y(k - 4):y(k - 5)}

Applying the forward regression orthogonal algorithm to these systems, gives the model
structures shown in Tables 1, 2 and 3 respectively. The minimal model structure is
obtained in case (I). In case (II) and (III), besides the terms in the original model eqn (12)
some others terms which are not in eqn (12) are also selected. Although the spurious terms
tend to have much smaller coefficients, this condition is worthy of further investigation




and can briefly be explained as follows. Eq]:; (12) can be written as (noise term is omitted

Term | True Value | Estimate | Error Reduction Ratio (%)
yk—1)| —17 ~1.70 86.75
u(k —1) i 0.99 1.99
y(k—2)| —08 | —0.804 5.40
w(k—2)| 03 0.3079 0.32

Table 1: Model structure selection for Case (I) (maximum lags=5)

Term | True value | Estimate | Error Reduction Ratio (%)
y(k — 1) —1.7 —1.701 69.30
y(k — 3) 0 —0.003 10.86
u(k —1) 1 1.002 7.82
u(k —2) 1.0 1.51 6.65
y(k—2)| -0 | —0.903 5.10

Table 2: Model structure selection for Case (II) (maximum lags=5)

Term | True value | Estimate | Error Reduction Ratio (%)
y(k—1) —1.7 —1.69 67.35
w(k—1) I 0.995 26.85
y(k—14) 0 —0.0014 5.64
u(k — ) 0 0.017 0.65
u(k —3) 0 —0.0012 0.58
w(k—2)| 08 0.785 0.62
y(k—2) | —08 | —0.785 0.43

Table 3: Model structure for Case (III) (maximum lags=5)

for simplicity of exposition)

= aifary(k —2) + azy(k—3) + biu(k — 2) + byu(k — 3)] + ay(k — 2)
+biu(k — 1) + bau(k — 2)

= (af +a)y(k—2) + a1a2y(k — 3) + bru(k — 1)
+(a1by + by)u(k — 2) + arbyu(k — 3)

= (o +a2)aay(k — 3) + asy(k — 4) + bu(k — 3) + byu(k — 4]

y(k)

(13)




taiaz[a1y(k —4) + azy(k — 5) + byu(k — 4) + byu(k — 5))
+biu(k — 1) + (a1by + ba)Ju(k — 2) + asbyu(k — 3)

= (af + ara)y(k — 3) + (a3 + 2aZa,)y(k — 4) + aza2y(k — 5)
+biu(k — 1) + (a1by + bo)u(k — 2) + (a3b + azbs + arby)u(k — 3)

+(a§bz + azbz —+ alagbl)u(k — 4) + alagbgu(k = 5) (14)

Obviously many other terms y(k —3), y(k —4), y(k — 5), u(k —3), u(k — 4) and u(k — 5)

which are not included in model (9) may also be relevant to the output. Which terms are
selected will depend on the system parameters, ay, ap, b; and b, in the above example.

The size of the allowed maximum lags in the input and output terms (and degree of non-
linearity for nonlinear systems) can also affect term selection. If the maximum allowed
lags in the input and output are assumed to be 3, applying the forward regression or-
thogonal algorithm to Case (III) yields the model structure shown in Table 4. Tables 3

Term | True value | Estimate | Error Reduction Ratio (%)
y(k—1) —-1.7 —1.67 67.35
w(k—1) 1 1.00 26.85
y(k —3) 0 0.044 241
u(k — 3) 0 —0.04 0.78
u(k — 2) 0.8 0.77 1.52
y(k—2)| —038 ~n.73 0.2

Table 4: Model structure for case (III) (maximum la,gs-—*3);

and 4 show that different model structures are obtained for the same system because of
the different lags employed when forming the set of candidate terms. For any given sys-
tem, the possibility of producing the nonminimal model is proportional to the number of
candidate terms which is determined by the maximum allowed lags in the input, output,
noise and the degree of nonlinearity. Equations (10) and (11) show that other relevent
terms are usually associated with higher order nonlinear degree and larger lags. These
relevant terms can be excluded from the candidate term set if a relatively low nonlinear
degree and small number of maximum lags are used and as a consequence a smaller model
can be obtained. Smaller maximum lags and a lower nonlinear degree should therefore be
tried first from the point of view of building a smaller model.




3 The Minimal Model Structure Detection (MMSD) '
algorithm _

3.1 Outline of the MMSD algorithm

The minimal model detection problem can be considered as a constrained nonlinear pro-

gramming problem

Nomin = min(n;) g o= B B o (15)
subject to
T'I.J .
Z err; > h (16)
=1

It was shown above that sorting regression terms according to the size of the error reduc-
tion ratios cannot minimise objective function (15). One way to solve the above problem
is to detect the model structure using all the possible orthogonalization paths. Assume
that a model has 3 candidate terms, ¢1(k), p2(k) and ws(k)

3
y(k) = > pi(k); (17)
i=1
Changing the order in which these 3 terms enter the regression equation (17) yields 6
orthogonalization paths

[123,[132,[213,1231,[312],[321]

Applying the standard orthogonal estimation algorithm (Korenberg et al 1988) to eqn
(17) using these 6 orthogonalization paths yields 6 model structures, some of which may
be the same. The minimal model is the one that has the least number of terms and
meets the accuracy requirement. This exhaustive search approach guarantees finding the
minimal model structure. However, this approach is difficult to implement in practice
because the search space quickly becomes astronomically large. Even for a model with
only 20 candidate terms, the all possible orthogonalization paths amount to 2.4329 x 10,
Directly searching for the optimal path from all the possible paths is therefore impractical

and this is why the forward regression orthogonal algorithm was introduced as a subop-
timal solution to this problem.

An algorithm which addresses the optimal path search problem for minimal model struc-
ture detection (MMSD) is formulated by combining ideas of exhaustive search with the
orthogonal estimation algorithm and genetic algorithms (GAs) (Goldberg 1989, Fonseca
and Fleming 1995, and others). Parameter estimation and structure determination are
done by the orthogonal estimation algorithm. The advantage of employing GAs to seach

10




for the optimal path is that GAs preserve the good paths in the search process. Conse-
quently, the optimal path can be found before all possible paths have been tested. For
example, for a model with 20 candidate terms, the GA routine typically evaluates 2 x 103
orthogonalization paths which is much less than the full set of 2.4329 x 10'® paths. Despite
this massive reduction the amount of necessary computations is still large, but searching

for the minimal model structure becomes practical for the first time.

The MMSD is a totally different algorithm from the forward regression orthogonal al-
gorithm. In this new algorithm, the optimal orthogonalization path is determined by
directly minimising the final objective (the model size) and the selection of every term is
based on a global consideration. As a consequence, the MMSD algorithm should find the
minimal model structure. |

3.2 Details of the MMSD algorithm

The minimal model structure detection algorithm is an improvement of the exhaustive
search idea which uses both the orthogonal estimation algorithm and genetic algorithms.
Details of the minimal model structure detection algorithm are developed below.

3.2.1 Encoding

The individuals represent the orthogonalization paths, therefore each bit of an individual
should represent the order of a corresponding term entering the regression equation ( 1).
For example the code of an individual of a model with 8 candidate terms is‘of the following
form

where P; denotes the ¢** element in eqn (1). The physical interpretation of the above
string is that the 1°-8* term that are orthogonalized into the regression equation (2) are
respectively the 1%, 6%, 37, 7t 274, 4 8th and 5% term in eqn (1).

3.2.2 Fitness function
The purpose of-employing genetic algorithms is to find the minimal model. Under the

condition of satisfying the required accuracy, the less the number of model terms, the
better the model is. Therefore the fitness value should be inversely proportional to the

11




number of necessary model terms n;

fi o = -
Ty
The windowing mapping scheme (Davis 1989) was employed in the present study to map
the inverse relation. A zero or constant minimum fitness value is initially assigned to
the worst individual, then each individual of the population is assigned a fitness value
proportional to the number of selected terms.

fmaz - fmi‘n

ﬂ'mcst Neast

fj = fma.a: - [n] - n!east] (18)
where Niease; Momosts and Frnin, fmm denote the least number and most number of selected
terms, and the minimum and maximum fitness values respectively.

The number of necessary terms is determined by using the standard orthogonal algorithm
and the orthogonalization path represented by the corresponding individual. Consider an
individual as follows

Py P, P P, P
AN AN A A /-‘2"\ L I i -t

w

fay
»
o

The corresponding regression equation would be given by

y(k) = lel(k)wzsos(k)+93<,o3(k)+94s07(k)+95aoz(k)+96<.o4(k)+97¢s(k)+ﬁasOs(k) (19)

At the first step, let the first term in equation (19) be the first term ‘of the auxilary
orthogonal model

wi(k) = @1(k) (20)

estimate the orthogonal parameter and compute the error reduction ratio using

N FECTE
k | wl(k)

erry = —k—lw—li@ (22)

Ek:l Y ( )

(21)

At the second step, orthogonalize the second term ws(k) into the orthogonal equation

() = () — 3 (k) (23)

12




h
T _ S wi(R)ps(R)
Ei\rzl T.U?(k) -

C‘E_.,:g

estimate the parameter

5, = S k(R

(24)
{;V:I w%(k)
and compute the error reduction ratio
~2 N 2(k
erry = 92 Lok=1 W2 (%) Z;f:l I:Z( ) (25)
Ek:l Y (k)
The above procedure is continued until
Z err; > h (26)
i=1

Remark

Notice that if the system is disturbed by colored noise, a procedure for noise modeling
should be included in the orthognal algorithm to detect the model size corresponding to
one specific individual. This can be done by the following iterative routine

(i) Initially set e(k) = 0.

(ii) Apply the standard orthogonal algorithm to eqn (1) using the orthogonalization
path represented by the corresponding individual, estimate the parameters, compute
the error reduction ratios, select the significant terms and calculate the number of
necessary terms.

(iii) Compute one-step ahead preditions of the output using the selected terms at step
(if)
. §(k) = Zd’-;(k)f?i (27)

estimate the noise sequence and compute the variance of noise

é(k) = y(k) — (k) (28)
e ﬁ%%) (29)

(iv) Set e(k) = é(k) in eqn (1), repeat steps (i1)-(iii) until the variance of the noise

13




converges to a constant.

(v) The number of selected model terms at the last iteration is considered as the model
size corresponding to the considered individual.

3.2.3 Reproduction

The roulette wheel approach is employed to implement the reproduction procedure in
this study. Each string is allocated a slot of the roulette wheel subtending an angle
proportional to its fitness at the center of the wheel. A random number in the range of 0
to 27 is generated. A copy of a string goes to the mating pool if the random number falls
in the slot corresponding to the string. For a population with size [, the reproduction
process is repeated [ times and [ strings go into the mating pool.

3.2.4 Crossover

Crossover is the most important genetic operator. This operator first randomly selects
two strings from the mating pool, then exchanges the right parts of the two strings from
a randomly selected crossover point. However, this crossover style can not be applied to
path selection. Consider for example, two randomly selected parent strings

Py P, £y P, Py Py Pr Py
e T e v N A T

1 76 3 T 2 T 8 s ()
Py Py P Py By Py Ps

~—~ = _
2 6 (II) -
The parent strings

Exchanging the right parts of the two parent strings from a randomly selected crossover
point, for example Ps, produces two off-springs

Py P, P Py By Ps Py Py
B N e . P AN ~~
- 6 3 T T T 6 ()
P By L5 P, 23 Pe Py F
A~ A~ - e AP
1S 38 5 2 a8 5 (B)

The off-springs

Obviously the fifth and the eighth term are missing in offspring (A), and the sixth and
the seventh term are missing in offspring (B) due to the crossover operation. To deal
with this problem, a new crossover operation was developed. Assume that_two randomly

14
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selected parent strings are given by (I) and (II) above. First randomly select the term to
change the order in the regression equation, for example the seventh term. Then detect
the position of this in the -parent strings, i.e. P, and Ps. Respectively exchanging the
terms at position P, and Fs in each string, yields

Py £ Py Py Py Fs Py Py
i T e e T T

P P, Py Py Py Ps Pr P
AT e o T s T
1 3 8 7 4 5 2 6 (I1)

The off-springs

3.2.5 Mutation

Mutation is a local operator so that if the string is binary encoded, a 1 is replaced by a
0, and a 0 is replaced by a 1. Obviously, this approach cannot be applied to the opti-
mal path search problem. In this study mutation is achieved by exchanging the selected
bit with one of the other bits of the same string. Consider for example, the following string

P P; P Py
P e W ? T e T

u
B
™
B
L

If bit P is supposed to mutate, exchanging this bit with a randomly selected bit from
P, — P, for example F, yields the mutated string

Py P, P
/\A?/\Aﬂ\\f—'\f"-\

m
R
o
N
)
o

The mutated string

3.2.6 Summary of the minimal model structure detection (MMSD) algorithm

The MMSD algorithm can be summarized as follows

(I) Generate an initial population set P consisting of I individuals, each individual
represents an orthogonalization path. Set the current generation number i = 1.

(II) Apply the standard orthogonal algorithm to eqn (1) using the orthogonalization path
represented by each individual, compute the error reduction ratios and calculate
the corresponding model size and fitness value. Form a mating pool M using all
individuals in the population set P at the probabilties assigned to each individual
according to the corresponding fitness value.

-
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(IIT) Randomly select a pair of parent strings from the mating pool M. Choose a random
crossover point and exchange the parent string bits to produce two offsprings and
put the offsprings in the offspring set O. Repeat this procedure 1/2 times.

(IV) Mutate each bit of each offspring in the set O with a pre-specified mutation rate and
calculate the fitness value of each mutated offspring using the procedure summarised
in step (II).

(V) Select the [ fitest individuals from sets P and O by comparing fitness values.

(VI) Reset the set P with the newly selected [ individuals, reset the number of generations
2 =2+ 1, and nullify the offspring set O.

(VII) Steps (II)-(VI) are repeated until a pre-specified number of generations arrives.

3.3 MMSD algorithm for fuzzy system modelling

A fuzzy inference system is composed of a set of fuzzy if-then rules and a database
containing membership functions with linguistic labels. Suppose that the fuzzy if-then
rules are as follows

Rulel Ifzyis Af, z3is A7, ...z, is X, then y = Az, 22, ..., 20)

Rule 2 Ifz; is A2, 22 is A2, ... 20 is A2, then y = fo(z1,22,...,,)

Rulem  If z;is AT", 25 is AT", ..., Zn is A™, then y = fu(z1,22,...,T,)

The overall output is the weighted average of all the rules

Yo W i 21 B ynie 5 2 T
y = 1 1(m1: 2, ) n) — Zfi($11$21 . .’mn)ai (30)
i=1 Wi =1
where
Ww:
.
' i Wi

and w; denotes the membership value.

Eqn (30) can be viewed as a special case of a polynomial NARMAX model eqn (1), and

the MMSD algorithm developed in §3.2 is therefore equally applicable to fuzzy systems
modeling.

16




3.4 MMSD algorithm for rad,i:al basis function (RBF) network
training

The input-ouput mapping of a radial basis function neural network can be described by

y=_0ip(|lz —cil, p) (31)
=1
where 6;, 1 = 1,2,...,n are the weights, ¢;, 2 = 1,2,...,n, are the center vectors, ©(e)

is a radial basis function and p is its width, and ||z — ¢]| is the Euclidean distance from
T to ¢;. ¢(||z — all, p) is in fact the output of i** node.

Aagin this can be interpreted as a form of model eqn (1), the MMSD algorithm can
therefore be applied directly to RBF neural network traning.

3.5 MDMSD algorithm for rational models

The nonlinear rational model formulation, defined as the ratio of two nonlinear polynomial

expansions, was recently introduced as an alternative to the polynomial model (Billings
and Chen 1988)

Foly(k—1)...y(k — npy),u(k—1)... u(k — nny),e(k—1)...e(k — Tha )|

O = Rt uE e s 1)l e =D eh )] o
nmm Pns U")am
anm wgi(k)04; e | o

where F,(e) and Fy(e) are nonlinear polynomials functions, n, denotes the order, p.(k)
and 6, denote the regressor and the parameters respectively. The definitions of y(k), u(k)
and e(k) are same to that in the polynomial model eqn (1).

Genetic algorithms can be applied to a wide range of problems. But the MMSD algorithm
cannot directly be applied to search for the minimal rational model because a linear-in-
the-parameters regression equation is required when using the orthogonal algorithm to
detect the model size in step (II). Eqn (32) can be multipled out to form a linear-in-the-
parameters form (Billings and Zhu 1991, 1994a)

Tlnum Nden Tden
= 2 ni(k)0n; — D 0a(R)y(k)6ss + > wai(k)0aie(k) (33)
F=1 1=2 7=1

where
Y(k)= y(k)sodl(k)adﬂsﬂm
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But notice that now the residue 3747 ¢y (k)@dje(k) becomes highly correlated with the
regressor g (k)y(k)fs. This occurs even when the noise in eqn (32) is purely additive
and white. As a consequence estimates based on eqn (33) will be biased if ordinary least
squares algorithms are applied directly. Eqn (33) can be written as

Y(k) = ”i”gow(k 6 Z P (FIFE) + (k)b + - pa()bse(k)
= nim‘:on:r(k Op; — f‘f’dz(k 9dj+‘Pd1(k)e(k)
= B0+ () (34)

where
Psree(R) = [Pr1(R) ... Ornpum(k), —@aa(R)F(R). .. — un,,.(k)F(E)]

(k) = par(k)e(k)

) = (k) = () = 703

and y(k) is the current noise free part of the noisy output y(k), which is uncorrelated
with the residue {;(k). Billings and Mao (1996) showed that if a NARMAX smoothing
algorithm is initially used to preprocess the raw data to yield the signal 7(k) and the
estimation is then performed based on eqn (34), unbiased parameter estimates can be
obtained for the nonlinear stochastic rational model.

The current noise free output (k) can also be obtained using filtering. The advantage of
using filtering is that the estimation of (k) and the model identification can be carried
out using the same iterative routine, with no need for an additional signal preprocessor.

For a specific individual, the model size determination routine for the rational model can
be summarized as follows

(II-1) Initially set e(k) = 0, F(k) = y(k).

(II-2) Apply the standard orthogonal algorithm to eqn (34) using the orthogonalization
path represented by the individual, estimate the parameters, compute the error
reduction ratios, select the significant terms and calculate the number of selected
model terms.

(II-3) Construct a rational model using the selected terms at step (II-2)

. (35)
2 Gai(k)bai

y(k) =
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estimate the current noise free part of y(k) and the unknown noise

L 5 i (k)b
kE)==—""-2+" 3
MO =T bulhis (36)
é(k) = y(k) — (k) (37)
and compute the noise variance
N 5
of = ;.’m}\;& (38)

(I1-4) Set e(k) = é(k) in eqn (34), repeat steps (II-2)-(11-3) until the variance of the noise
. converges to a constant.

(II—S) The number of selected model terms at the last iteration is considered as the model
size of the corresponding individual.

If step (II) of the MMSD algorithm in §3.2.6 is replaced with steps (II-1)-(II-5), the MMSD
algorithm is applicable for rational model identification.

4 A Refined Forward Regression Orthogonal (RFRO)
algorithm

In theory the MMSD algorithm in section §3.2 should find the minimal model structure no
matter how large the full model size is. However, the search space of the MMSD algorithm
. increases dramatically with the number of candidate model terms. For example, a model
with 50 candidate terms has 3.04 x 105¢ possible orthogonalization paths, and a model
with 100 candidate terms has 9.33 x 1057 possible orthogonalization paths. Searching for
the optimal solution in such a large space involves at least two difficulties. First, a large
search space means a large amount of computation. Second, the larger the search space
1s, the more local minima there are, and hence a greater possibility that the solution will

converge to a local minimum although in theory the GA algorithm should find the global
near-optimal solution.

The forward regression orthogonal algorithm cannot guarantee that the model has the
minimal structure, but all the terms of the minimal model should be contained in this
non-minimal model if a conservative cut-off value is used. This is possibly because when a
bad basis is selected by the forward regression orthogonal algorithm, the energy reduction
of the latter terms in this basis will be small, and as a consequence the approximation
accuracy will not be met until all the important terms are selected. This suggests that
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if the forward regression orthogonal algorithm is initially used as a presearch to build a
parsimonious model, the MMSD algorithm can then be applied to this reduced model
term set to refine the final model structure so that the minimal model structure can
be readily obtained. The above consideration motivates the following two-step Refined
Forward Regression Orthogonal (RFRO) algorithm

(A) Detect the model structure using the forward regressmn orthogonal algorithm with
a conservative cut off value.

(B) Refine the model structure by applying the MMSD algorithm to the reduced model
term set selected in step (A).

Even if some terms of the minimal model are not selected in step (A), the above procedure
can still be used to refine the model structure. Provided model validity tests (Billings
and Zhu 1994b) are used to check for missing model terms, it should be possible to detect
when more terms need to be added in step (A). It is therefore possible to apply the
MMSD algorithm to a reduced model term set and to refine the model and to produce a
computationally efficient algorithm for model structure detection.

5 Simulation Examples

Example 1

Consider the following nonlinear dynamic system

y(k) = 0.2y°(k — 1)+ 0.7u(k — 1)y(k — 1) + 0.6u*(k — 2)
—0.5y(k — 2) — 0.7y(k — 2)u®(k — 2) + (k) (39)

with a uniformly distributed random input with zero mean and amplititute £1, and a
normally distributed white noise sequence with zero mean and variance 0.0004.

Initially a parsimonious model structure was determined using the forward regression
orthogonal algorithm. The maximum lags of both input and output were assumed to be
4 and the maximum degree of nonlinearity to be 3. The model structure and parameter
estimates are shown in Table 5. A comparison with eqn (39) shows that an incorrect term
y(k — 4)u®(k — 2) has been selected.

Applying the MMSD algorithm summarized in §3.2.6 to refine the model structure in
Table 5 with a population size of 50, mutation rate 0.06, two cross-over points, and where
each string consisted of 6 decimal numbers which represented the order in which the 6
candidate terms were orthogonalized into the regression equation. At the 15*" generation,
the refined model structure and parameter estimation were as shown in Table 6.
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Term Estimate | Error Reduction Ratio (%)
Wk — 02k —2) | —0.023 46,05
y(h— Lu(k —1) | 0.6742 10.31
y(k — 2) —0.4906 11.15
2k =2) 0.6134 54.77
(k= 1) 0.1042 2.60
ok —2)a?(k —2) | —=0.7536 2.64

Table 5: Model structure for Example 1 using the forward regression or-
thogonal algorithm (maximum lags 4, maximum degree of nonlinearity 3)

Term True Value | Estimate | Error Reduction Ratio (%)
vk — Du(k—1) 0.7 0.6741 28.44
yh—2)2(k—2)| =07 | —0.7371 0.57
y(k — 2) —0.5 —0.4910 5.82
uz(k -2) 0.6 0.6091 44 89
Pk —1) 02 0.1939 9.69

Table 6: Model structure for Example 1 using the RFRO algorithm (maxi-
mum lags 4, maximum degree of nonlinearity 3)

If the maximum lags in the input and output are set to 2, and the nonlinearity degree to
3. Applying the forward regression orthogonal algorithm yields the final model structure
shown in Table 7. '

In this case the forward regression orthogonal algorithm provides the minimal model
structure because the restriction on the maximum lags has excluded the spurious term
which appeared in Table 5.

Example 2

Consider the following dynamic nonlinear rational model

v¥(k—1)+u(k—1u(k—2) +e(k—1)
14+ 9%k —1)+y*(k—2)

(k) = + (k) (40)

where the input u(k) is as in Example 1, {e(k)} is a normally distributed white noise
sequence with zero mean and variance 0.01. Multiplying out the rational model, yields

y(k) = ¢* (k= 1) +u(k—1)u(k—2) +e(k— 1) —F(k)y(k — 1) = 7(k)y*(k — 2) + e(k) (41)
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Term True Value | Estimate | Error Reduction Ratio (%)
Wk —2) —05 | —0.4910 | - 31.23
2k —2) 0.6 0.6001 15.93
y(k— l)u(k —1) 0.7 0.6741 14.33
Yk —2)2(k—2) | 07 | —0.7371 113
ys(k‘ -1) 0.2 0.1939 2.79

Table 7: Model structure for Example 1 using the forward regression orthog-
onal algorithm (maximum lags 2, maximum degree of nonlinearity 3)

o where

@ y(k) = y(k) —e(k)

The maximum lag was set to 4, and the maximum degree of nonlinearity to 3. Applying
il the MMSD algorithm summarized in §3.2.6 and the procedure summarized in §3.5 with

a population size, mutation rate, number of crossover point and string structure as in
example 1, gave the model structure and parameters shown in Table 8.

Numerator polynomial | True Value | Estimate | Error Reduction Ratio(%)
| u(k — 1)u(k — 2) 1 1.07 78.51
d e(k—1) 1 0.96 8.22
A Pk—1) 0.5 0.48 0.70
T Denominator polynomial | True Value | Estimate | Error Reduction Ratio (%)
Yk —1) 1 1.03 1.62
yi(k—2) 1 0.92 0.98

Table 8: Model structure for Example 2 using the MMSD algorithm (max-
imum lags 4, maximum degree of nonlinearity 3)

Applying the forward regression orthogonal algorithm and the refined forward regression
orthogonal (RFRO) algorithm to this problem, produced the same result as in Table 8.
Obviously all three algorithms provided the minimal model structure in this example.

6 Conclusions

A new algorithm for Minimal Model Structure Detection (MMSD) has been derived based
on the standard orthogonal algorithm and genetic search procedures. This allows, for the
first time, the practical search for the optimal orthogonalization path in, nonlinear dy-
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namic system identification and pro*ndes a solutlon to the combined problem of model
structure detection and parameter estimation. Although the new approach results in a
massive reduction in computations compared to an optimal exhaustive search, the nec-
essary computation is still quite large. To overcome this problem, a Refined Forward
Regression Orthogonal (RFRO) algorithm has been developed. Simulated results were
used to demonstrate the performance of the two new algorithms which can be used in
NARMAX modeling, the configuration and training of radial basis function (RBF) neural
networks and fuzzy model building.
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