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CURVATURE COMPUTATIONS FOR A TWO-COMPONENT

CAMASSA-HOLM EQUATION WITH VORTICITY

MARTIN KOHLMANN

Abstract. In the present paper, a two-component Camassa-Holm (2CH) sys-

tem with vorticity is studied as a geodesic flow on a suitable Lie group. The

paper aims at presenting various details of the geometric formalism and a ma-

jor result is the computation of the sectional curvature K of the underlying

configuration manifold. As a further result, we show that there are directions

for which K is strictly positive and bounded away from zero.
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1. Introduction

As a mathematical model for two-dimensional shallow water waves with constant

vorticity, the following generalized two-component Camassa-Holm (2CH) system

has attracted a considerable amount of interest recently:

(1)







mt = αux − auxm− umx − κρρx,

ρt = −uρx − (a− 1)uxρ,

αt = 0.

Here a ∈ R\{1}, α is a constant, κ > 0 and m = Au with A denoting the Fourier

multiplication operator A = (1 − ∂2
x)s for s ≥ 1. The functions u and ρ depend

on time t and a spatial variable x ∈ S ≃ R/Z. A derivation of the system (1)
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with s = 1 by means of formal asymptotic methods applied to the full-governing

equations for two-dimensional water waves with constant vorticity is the subject

of the paper [11]. A special case of the system (1) is a one-parameter family of

evolution equations obtained for α = 0, s = 1 and ρ ≡ 0 and it is also called the

b-equation [9, 7, 19] (here with the parameter a 6= 1). To further special cases of

this family are the Camassa-Holm (CH) equation (a = 2)

(2) ut − utxx = 2uxuxx − 3uux + uuxxx,

cf. [3], and the Degasperis-Procesi (DP) equation (a = 3)

ut − utxx = 3uxuxx − 4uux + uuxxx,

cf. [8]. Apart from the fact that both the CH equation and the DP equation are

of hydrodynamical relevance, see e.g. [9, 22], they share some interesting mathe-

matical properties: the b-equation is integrable only if b ∈ {2, 3} in the sense that

for b ∈ {2, 3} there exists a bi-Hamiltonian formulation and a Lax pair represen-

tation [3, 7]. Moreover, both the CH and the DP equation allow for finite-time

solutions that can be interpreted as breaking waves [4] or shock waves [15] as well

as for global solutions [18] and peculiar traveling wave solutions [27, 28]. The 2CH

equation without vorticity (α = 0, a = 2 and s = 1 in (1)) has been the subject

of [5, 14] where the authors proved local-in-time well-posedness by applying Kato’s

semigroup approach, discussed blow-up and established its integrable structure. In

addition, the hydrodynamical relevance of the 2CH system without vorticity as a

two-component extension of the CH equation is presented.

A remarkable property of the b-family equations is that they allow for a geo-

metric reformulation on the diffeomorphism group of the circle. The group of all

smooth and orientation-preserving diffeomorphisms S → S, denoted as Diff∞(S),

is a Fréchet Lie group that can be equipped with an affine connection ∇ so that

the b-equation is the geodesic equation on Diff∞(S) with respect to the connection

∇, see, e.g. [13, 24]. Furthermore, the geodesic flow is the minimizer of a length

functional if and only if b = 2; in this case the resulting equation, precisely the

CH equation, is a metric Euler equation with respect to the H1 metric. The DP

equation belongs to the class of non-metric Euler equations [17, 24]. An analogous

geometric framework has been established for the 2CH equation without vorticity

in [12, 20] where the authors showed that it can be recast as a geodesic flow on

the semidirect product Diff∞(S)sC∞(S) equipped with the H1 metric for the first

component plus the L2 metric for the second component.

The geometric theory for evolution equations arising in hydrodynamics is not

only a technical game: There are various applications of the geometric picture

concerning the features of solutions to report on. In [13], the authors make use of the

geometric reformulation to establish the well-posedness of the periodic b-equation

on a scale of Sobolev spaces that are used as a Banach space approximation for

C∞(S). In [6], finite time solutions to the CH equation are related to a breakdown

of the geodesic flow. In particular, computations of the sectional curvature have

been performed as the sign of the sectional curvature of the underlying configuration

manifold has implications for the stability of its geodesics. The curvature tensor
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for the CH equation on the diffeomorphism group of S has been computed in [30]

where the author also shows that the non-normalized sectional curvature SCH is

positive on an infinite-dimensional subspace containing the vector cos kx and that

the normalized sectional curvature is bounded away from zero on this subspace.

Moreover,

SCH(u, v) = 〈ΓCH(u, v),ΓCH(u, v)〉H1 − 〈ΓCH(u, u),ΓCH(v, v)〉H1

with ΓCH denoting the Christoffel operator for the CH equation. Similarly, it could

be shown in [12] that the non-normalized sectional curvature S2CH for the 2CH

equation without vorticity is strictly positive in directions spanned by vectors of

the type (cos kx, cos lx), that the normalized sectional curvature is bounded away

from zero in directions spanned by vectors of the type (0, cos kx) and that

S2CH(u, v) = 〈Γ2CH(u, v),Γ2CH(u, v)〉H1⊕L2
− 〈Γ2CH(u, u),Γ2CH(v, v)〉H1⊕L2

,

with Γ2CH denoting the Christoffel operator for the 2CH equation. We refer the

reader to [2, 23] for further curvature computations for related equations of hydro-

dynamical relevance.

In the present paper, we first focus in detail on the geometric picture for Eq. (1)

with the fixed parameters a = 2 and κ, s = 1. The fact that (1) represents geodesic

motion on the Lie group (Diff∞(S)sC∞(S)) × R with a suitable right-invariant

metric 〈·, ·〉
A

induced by an operator A has been established in [11] where the

authors compute the adjoint of the adjoint action on the Lie algebra with respect

to 〈·, ·〉
A

in order to identify Eq. (1) with the geodesic equation Ut = −ad∗
UU ,

where U = (u, ρ, α). However, the various analogies and their consequences when

comparing the geometric picture for Eq. (1) with the geometric picture for the rigid

body motion pioneered by Arnold [1] in 1966 have not been work out to the best of

the author’s knowledge. Section 2 of the present work has the goal to provide some

further aspects of the geometric theory for the 2CH equation (1). In Section 3,

we present the following main theorem on the sectional curvature associated with

Eq. (1). It clearly gets in line with the above mentioned results on the sectional

curvature for the CH equation and the 2CH equation with α = 0.

Theorem 1. Let R denote the curvature tensor associated with the 2CH equation

(1) on (Diff∞(S)sC∞(S)) × R and denote by S(u, v) = 〈R(u, v)v, v〉
A

the non-

normalized sectional curvature at the identity. Then

(3) S(u, v) = 〈Γ(u, v),Γ(u, v)〉
A
− 〈Γ(u, u),Γ(v, v)〉

A
.

Moreover, S(u, v) > 0 for all vectors of the form

u =





cos k1x

cos k2x

α



 , v =





cos l1x

cos l2x

1



 , k1, k2, l1, l2 ∈ 2πN, α ≥ 6 max{k21 , l
2
1},

and the normalized sectional curvature

K(u, v) =
S(u, v)

〈u, u〉
A
〈v, v〉

A
− 〈u, v〉

2
A

is bounded away from zero for fixed values k1 6= k2, l1 6= l2 and as α → ∞.
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2. The geometric formalism

In 1966, Arnold [1] showed that the motion of a rigid body rotating around its

center of mass is in fact geodesic motion on the group G = SO(3). The configuration

of the body at time t is given by a rotation matrix R(t) which maps the position of

a particle in body coordinates to its spatial position. The quantities ω = ṘR−1 and

Ω = R−1Ṙ are elements of so(3), the Lie algebra g of SO(3), and correspond to the

angular velocity in spatial or body coordinates respectively. A moment of inertia

tensor I maps the body velocity to its momentum Π = IΩ; the spatial momentum

is denoted by π = RΩ. As so(3) and so(3)∗ are canonically identified with R3, the

Adjoint and Co-Adjoint actions AdR, Ad∗
R are maps R3 → R3 and they link the

velocity and the momentum in the spatial and the body frame of reference. Euler’s

equations for the rigid body motion particularly imply that the spatial momentum

is a conserved quantity.

Ebin and Marsden [10] proved in 1970 that Arnold’s formalism can also be

applied to the motion of an ideal fluid for which the configuration space is the group

of all volume-preserving diffeomorphisms of the fluid domain. A major difference to

the rigid body motion is that the Riemannian metric on the diffeomorphism group is

right-invariant whereas the geodesic equation for the rigid body is induced by a left-

invariant metric. Details of this geometric approach have been elaborated in detail

for the Camassa-Holm equation (2) in [25, 29] where the authors show that Eq. (2)

with periodic boundary conditions is equivalent to a geodesic equation on the group

Diff∞(S) of all smooth and orientation-preserving diffeomorphisms on S. In [12, 20]

the authors showed that the 2CH equation without vorticity (α = 0) allows for a

geometric reformulation on the semidirect product group Diff∞(S)sC∞(S). We

refer the reader to Appendix A of the paper [12] where the analogy of Arnold’s

approach to the geometric picture for CH and 2CH without vorticity is explained.

In this section, we present in detail the geometric picture for Eq. (1) with the

fixed parameters a = 2 and κ, s = 1.

2.1. The Lie group. Consider the Fréchet Lie group

C∞G := (Diff∞(S)sC∞(S)) × R

where Diff∞(S) denotes the group of smooth and orientation-preserving diffeomor-

phisms of S := S1 ≃ R/Z and s denotes a semidirect product. Writing ◦ for the

composition of functions, the group product on C∞G is given by

(ϕ1, f1, s1) ∗ (ϕ2, f2, s2) = (ϕ1 ◦ ϕ2, f2 + f1 ◦ ϕ2, s1 + s2),

for (ϕ1, f1, s1), (ϕ2, f2, s2) ∈ Diff∞(S) ×C∞(S) ×R. The neutral element on C∞G

is (id, 0, 0) and one easily checks that (ϕ, f, s) ∈ C∞G has the inverse

(ϕ, f, s)−1 = (ϕ−1,−f ◦ ϕ−1,−s).

Let Rg and Lg denote right and left translation on C∞G and write Igh = LgRg−1h

for the inner automorphism. We observe that

I(ϕ1,f1,s1)(ϕ2, f2, s2) = (ϕ1 ◦ ϕ2 ◦ ϕ
−1
1 , (f2 − f1) ◦ ϕ−1

1 + f1 ◦ (ϕ2 ◦ ϕ
−1
1 ), s2).
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Writing Tg for the tangent map at g ∈ C∞G, we have that

Ad(ϕ1,f1,s1)(u2, ρ2, α2) =
[

T(id,0,0)I(ϕ1,f1,s1)

]

(u2, ρ2, α2)

= ((u2ϕ1x) ◦ ϕ−1
1 , (ρ2 + f1xu2) ◦ ϕ

−1
1 , α2)

and

ad(u1,ρ1,α1)(u2, ρ2, α2) = T(id,0,0)

[

Ad(·)(u2, ρ2, α2)
]

(u1, ρ1, α1)

= (u1xu2 − u2xu1, ρ1xu2 − ρ2xu1, 0)

= [(u1, ρ1, α1), (u2, ρ2, α2)];

here, [·, ·] denotes the Lie bracket on the Lie algebra

C∞
g := T(id,0,0)C

∞G ≃ C∞(S) × C∞(S) × R.

For the following considerations, it will be also important to note the trivialization

TC∞G ≃ (Diff∞(S) × C∞(S) × R) × (C∞(S) × C∞(S) × R).

For a smooth path g(t) = (ϕ, f, s)(t) in C∞G, the associated Eulerian velocity

(u, ρ, α)(t) = Tg(t)Rg−1(t)g
′(t) ∈ C∞

g is given by

(4) (u, ρ, α)(t) = (ϕ′ ◦ ϕ−1, f ′ ◦ ϕ−1, s′)(t)

and

U0(t) := Tg(t)Lg−1(t)g
′(t) =

(

ϕt

ϕx

, ft − fx
ϕt

ϕx

, s′
)

so that, for U = (u1, u2, u3) ∈ C∞
g,

Ad(ϕ,f,s)U =
(

Adϕu1, (u2 + fxu1) ◦ ϕ−1, u3

)

,

where Adϕu1 = (u1ϕx) ◦ ϕ−1 is the Adjoint action with respect to Diff∞(S).

2.2. The right-invariant metric. We define an inner product on C∞
g by setting

(5)

〈U, V 〉(id,0,0) :=

∫

S

u1v1 dx+

∫

S

u1xv1x dx+

∫

S

u2v2 dx−
1

2

∫

S

(u1v3+u3v1) dx+
1

2
u3v3,

where U = (u1, u2, u3), V = (v1, v2, v3) ∈ C∞
g. It is shown in [16] that 〈·, ·〉(id,0,0)

is indeed positive definite. With the inertia operator A : C∞
g → (C∞

g)∗ given by

AU :=

(

Au1 −
1

2
u3, u2,

1

2

(

u3 −

∫

S

u1 dx

))

,

where A = 1 − ∂2
x, we observe that

〈U, V 〉
A

:=

∫

S

(AU) · V dx = 〈U, V 〉(id,0,0)

and that the associated quadratic form is equivalent to the Hilbert norm ||u1||
2
H1 +

||u2||
2
L2

+ |u3|
2. We define a right-invariant metric on C∞G by setting

〈U, V 〉(ϕ,f,s) =
〈

TR(ϕ,f,s)−1U, TR(ϕ,f,s)−1V
〉

A

for all U, V ∈ T(ϕ,f,s)C
∞G ≃ C∞(S) × C∞(S) × R. It is well-known that the

right-invariant metric for the 2CH equation without vorticity depends smoothly on

(ϕ, f), cf. [12], and by the definition of 〈·, ·〉(ϕ,f,s) and the fact that C∞G is a Lie



Curvature computations for a two-component Camassa-Holm equation with vorticity 6

group, it is immediately clear that 〈·, ·〉(ϕ,f,s) depends smoothly on (ϕ, f, s) so that

(C∞G, 〈·, ·〉
A

) is indeed a (weak) Riemannian manifold.

The operator A maps the Eulerian velocity (u, ρ, α) to the momentum

µ := A(u, ρ, α) =

(

Au−
1

2
α, ρ,

1

2

(

α−

∫

S

u dx

))

.

Using the L2-pairing to identify the regular part of (C∞
g)∗ with C∞(S)×C∞(S)×R

and that Ad∗
ϕm = (m ◦ ϕ)ϕ2

x, m = Au, we observe that

〈

µ,Ad(ϕ,f,s)V
〉

=

∫

S

(

Au−
α

2

)

Adϕv1 dx +

∫

S

ρ
[

(fxv1 + v2) ◦ ϕ−1
]

dx+

+

∫

S

(

α

2
−

1

2

∫

S

u dx

)

v3 dx

=

∫

S

{[

(m ◦ ϕ) −
α

2

]

ϕ2
x + (ρ ◦ ϕ)fxϕx

}

v1 dx +

∫

S

(ρ ◦ ϕ)ϕxv2 dx

+

∫

S

(

α

2
−

1

2

∫

S

u dx

)

v3 dx

so that µ0 := Ad∗
(ϕ,f,s)µ is given by

µ0 =

(

[

(m ◦ ϕ) −
α

2

]

ϕ2
x + (ρ ◦ ϕ)fxϕx, (ρ ◦ ϕ)ϕx,

1

2

(

α−

∫

S

u dx

))

.

We also show that, in analogy to the rigid body motion, we now obtain a conser-

vation law for the 2CH equation (1).

Proposition 2. The quantity µ0 corresponding to the body momentum of the rigid

body motion is a conserved quantity for the 2CH equation (1), i.e.

d

dt
µ0 = 0.

Proof. A simple calculation shows that

d

dt

[(

m ◦ ϕ−
α

2

)

ϕ2
x + (ρ ◦ ϕ)fxϕx

]

= [(mt + 2uxm + umx − αux + ρρx) ◦ ϕ]ϕ2
x + [(ρt + uρx + uxρ) ◦ ϕ]fxϕx

= 0.

That the second component of µ0 is conserved follows from Lemma 6.1 in [11] and

the time derivative of the third component of µ0 is zero as

ut = −∂x
[

A−1(u2 + 1
2u

2
x + 1

2ρ
2 − αu) + 1

2u
2
]

,

cf. Eq. (6). �

The adjoint of the operator ad: C∞
g × C∞

g → C∞
g has been computed in

[11, 16] and writing ad∗
(u1,ρ1,α1)(u2, ρ2, α2) = (ũ, ρ̃, α̃), one has

ũ = A−1(2u1xAu2 + u1Au2x − α2u1x + ρ1xρ2) +

∫

S

(u1xAu2 + ρ1xρ2) dx,

ρ̃ = (u1ρ2)x,
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α̃ = 2

∫

S

(u1xAu2 + ρ1xρ2) dx.

2.3. The geodesic spray. To obtain the weak formulation of (1), we apply the

operator A−1 to the first equation and add the term uux so that

ut + uux = A−1(αux − 2uxm− umx − ρρx + A(uux))

= −A−1∂x
(

u2 + 1
2u

2
x + 1

2ρ
2 − αu

)

;

observe that the terms including third order derivatives of u cancel out on the right

hand side. We may thus rewrite (1) as

(6)







ut + uux = −A−1∂x
(

u2 + 1
2u

2
x + 1

2ρ
2 − αu

)

,

ρt + uρx = −ρux,

αt = 0.

Writing U = (u1, u2, u3), V = (v1, v2, v3) ∈ C∞
g and Ũ = (u1, u2) and Ṽ = (v1, v2),

we introduce the bilinear operator

Γ(U, V ) :=





−A−1∂x
(

u1v1 + 1
2u1xv1x + 1

2u2v2 −
1
2u3v1 −

1
2u1v3

)

− 1
2u2v1x − 1

2u1xv2
0





=

(

Γ0(Ũ , Ṽ )

0

)

+





1
2A

−1∂x(u3v1 + u1v3)

0

0



(7)

where

(8) Γ0(Ũ , Ṽ ) :=

(

−A−1∂x
(

u1v1 + 1
2u1xv1x + 1

2u2v2
)

− 1
2u2v1x − 1

2u1xv2

)

denotes the Christoffel operator for the 2CH equation without vorticity [12]. Again,

the map Γ: C∞
g × C∞

g → C∞
g can be extended to a right-invariant bilinear

operator Γ(ϕ,f,s) : T(ϕ,f,s)C
∞G× T(ϕ,f,s)C

∞G → T(ϕ,f,s)C
∞G by setting

Γ(ϕ,f,s) = TTR(ϕ,f,s) ◦ Γ(id,0,0) ◦ TR(ϕ,f,s)−1.

The second order vector field TC∞G → TTC∞G, (g, U) 7→ (g, U, U,Γg(U,U)) is

called the geodesic spray for the 2CH equation (1).

2.4. The geodesic equation. Introducing Lagrangian variables (ϕ, f, s)(t) for

Eq. (1) by setting

ϕ′ = u ◦ ϕ, f ′ = ρ ◦ ϕ, s′ = α

it follows that (6) is equivalent to the geodesic equation

(9) (ϕ, f, s)′′(t) = Γ(ϕ,f,s)(t)((ϕ, f, s)
′(t), (ϕ, f, s)′(t)).

We finally give a rigorous proof of the fact that the geodesics (ϕ, f, s)(t) are in fact

length-minimizing with respect to the metric 〈·, ·〉
A

.
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Proposition 3. Let γ(t) : [0, T ] → C∞G denote the shortest path on C∞G between

fixed endpoints with respect to the metric 〈·, ·〉
A
. Then (u, ρ, α)(t) = Tγ(t)Rγ−1(t)γ

′(t)

is a solution to the 2CH equation (1), i.e. (1) is the Euler-Lagrange equation for

the action functional

a(γ) =
1

2

∫ T

0

〈γ′(t), γ′(t)〉γ(t) dt.

Proof. Assume that γ is a critical point in the space of paths for the functional a.

Then
d

dε

∣

∣

∣

∣

ε=0

a(γ + εη) = 0

for every path η : [0, T ] → C∞G with endpoints at zero and such that γ + εη is a

small variation of γ on C∞G. As

d

dε

∣

∣

∣

∣

ε=0

a(γ + εη) =

∫ T

0

∫

S

(γ′
1 ◦ γ

−1
1 )

d

dε

∣

∣

∣

∣

ε=0

[

(γ′
1 + εη′1) ◦ (γ1 + εη1)−1

]

dt dx

+

∫ T

0

∫

S

(γ′
1 ◦ γ

−1
1 )x

d

dε

∣

∣

∣

∣

ε=0

[

(γ′
1 + εη′1)x ◦ (γ1 + εη1)−1

]

x
dt dx

+

∫ T

0

∫

S

(γ′
2 ◦ γ

−1
1 )

d

dε

∣

∣

∣

∣

ε=0

[

(γ′
2 + εη′2) ◦ (γ1 + εη1)−1

]

dt dx

−
1

2

∫ T

0

∫

S

d

dε

∣

∣

∣

∣

ε=0

{

(γ′
3 + εη′3) ·

[

(γ′
1 + εη′1) ◦ (γ1 + εη1)−1

]}

dt dx

+
1

4

∫ T

0

∫

S

d

dε

∣

∣

∣

∣

ε=0

(γ′
3 + εη′3)2 dt dx

= I1 + I2 + I3 + I4 + I5,

where the prime indicates differentiation with respect to time, we can invoke a

result presented in [21] to conclude that

I1 + I2 = −

∫ T

0

∫

S

(η1 ◦ γ
−1
1 )[ut + 3uux − utxx − 2uxuxx − uuxxx] dt dx

with u = γ′
1 ◦ γ

−1
1 . Differentiating the equation γ1 ◦ γ

−1
1 = id with respect to t and

x yields expressions for the derivatives of γ−1
1 that help us to conclude that

d

dε

∣

∣

∣

∣

ε=0

[

(γ′
2 + εη′2) ◦ (γ1 + εη1)−1

]

= η′2 ◦ γ
−1
1 − [(∂xγ

′
2) ◦ γ−1

1 ]
η1 ◦ γ

−1
1

(∂xγ1) ◦ γ−1
1

= ∂t(η2 ◦ γ
−1
1 ) + (γ′

1 ◦ γ
−1
1 )∂x(η2 ◦ γ

−1
1 ) − (η1 ◦ γ

−1
1 )∂x(γ′

2 ◦ γ
−1
1 ).

Writing ρ = γ′
2 ◦ γ

−1
1 , integration by parts and the boundary conditions for η now

show that

I3 = −

∫ T

0

∫

S

(η2 ◦ γ
−1
1 )[ρt + (ρu)x] dt dx−

∫ T

0

∫

S

(η1 ◦ γ
−1
1 )ρρx dt dx.

Similar calculations yield that

I4 = −
1

2

∫ T

0

∫

S

{

η′3u + γ′
3

[

∂t(η1 ◦ γ
−1
1 ) + (γ′

1 ◦ γ
−1
1 )∂x(η1 ◦ γ

−1
1 )
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− (η1 ◦ γ
−1
1 )∂x(γ′

1 ◦ γ
−1
1 )

]}

dt dx.

As η3(t) ∈ R for any t ∈ [0, T ], the first term in I4 vanishes due to the fact that

∫ T

0

∫

S

η′3u dt dx = −

∫ T

0

∫

S

η3ut dt dx

= −

∫ T

0

η3

(∫

S

ut dx

)

dt

=

∫ T

0

η3

(∫

S

∂x
[

A−1(u2 + 1
2u

2
x + 1

2ρ
2 − αu) + 1

2u
2
]

dx

)

dt

= 0.

With γ′
3 = α, the remaining term can be rewritten as

I4 =

∫ T

0

∫

S

(η1 ◦ γ
−1
1 )(12αt + αux) dt dx.

We finally observe that

I5 =
1

2

∫ T

0

∫

S

γ′
3η

′
3 dt dx = −

1

2

∫ T

0

∫

S

αtη3 dt dx.

Hence the critical point of the length functional a is obtained from the equation
∫ T

0

∫

S

(η1 ◦ γ
−1
1 )[ut + 3uux − utxx − 2uxuxx − uuxxx − αux + ρρx − 1

2αt] dt dx

+

∫ T

0

∫

S

(η2 ◦ γ
−1
1 )[ρt + (ρu)x] dt dx +

1

2

∫ T

0

∫

S

αtη3 dt dx = 0.

Since we can choose η arbitrarily, we immediately obtain the system (1) from the

above identity. �

2.5. The affine connection. The geodesic flow (ϕ, f, s)(t) is not only the mini-

mizer of the length functional on (C∞G, 〈·, ·〉
A

), it is also the geodesic flow corre-

sponding to the affine connection

(10) (∇XY )(ϕ, f, s) := DY (ϕ, f, s) ·X(ϕ, f, s) − Γ(ϕ,f,s)(X,Y )

where X and Y are smooth vector fields on C∞G. It follows immediately from the

definition (10) that ∇ is a Riemannian covariant derivative as defined in [29], i.e.,

(i) ∇ is R-bilinear,

(ii) X(ϕ, f, s) = 0 implies that (∇XY )(ϕ, f, s) = 0,

(iii) ∇X(fY ) = f∇XY + X(f)Y for f ∈ C∞(C∞G) and

(iv) ∇XY −∇Y X = [X,Y ]

with the Lie bracket given locally by

[X,Y ](g) = DY (g) ·X(g) −DX(g) · Y (g), g ∈ C∞G.

Proposition 4. The Riemannian covariant derivative (X,Y )
∇
→ ∇XY defined in

(10) is compatible with the metric (5).
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Proof. Let X(ϕ, f, s), Y (ϕ, f, s) and Z(ϕ, f, s) be smooth vector fields on C∞G and

let u = X(ϕ, f, s) ◦ ϕ−1, v = Y (ϕ, f, s) ◦ ϕ−1 and w = Z(ϕ, f, s). Let γ(ε) ⊂ C∞G

be a smooth path such that γ(0) = (ϕ, f, s) and γ′(0) = X(ϕ, f, s). Then

(X 〈Y, Z〉
A

)(ϕ, f, s) =
d

dε

∣

∣

∣

∣

ε=0

〈





Y1(γ(ε)) ◦ γ1(ε)−1

Y2(γ(ε)) ◦ γ1(ε)−1

Y3(γ(ε))



 ,





Z1(γ(ε)) ◦ γ1(ε)−1

Z2(γ(ε)) ◦ γ1(ε)−1

Z3(γ(ε))





〉

A

=
d

dε

∣

∣

∣

∣

ε=0

{

〈

Ỹ (γ(ε)) ◦ γ1(ε)−1, Z̃(γ(ε)) ◦ γ1(ε)−1
〉

H1⊕L2

−
1

2

∫

S

[Y1(γ(ε)) ◦ γ1(ε)−1Z3(γ(ε)) + Z1(γ(ε)) ◦ γ1(ε)−1Y3(γ(ε))] dx

+
1

2
Y3(γ(ε))Z3(γ(ε))

}

=
d

dε

∣

∣

∣

∣

ε=0

〈

Ỹ (γ(ε)) ◦ γ1(ε)−1, Z̃(γ(ε)) ◦ γ1(ε)−1
〉

H1⊕L2

−
1

2

∫

S

[w3(DY1 ·X) ◦ ϕ−1 + v1DZ3 ·X − u1v1xw3] dx

−
1

2

∫

S

[v3(DZ1 ·X) ◦ ϕ−1 + w1DY3 ·X − u1v3w1x] dx

+
1

2
(w3DY3 ·X + v3DZ3 ·X).

On the other hand, we have

〈∇XY, Z〉(ϕ,f,s) =

〈

(

(DỸ ·X) ◦ ϕ−1 − Γ0(ũ, ṽ)

DY3 ·X

)

−
1

2





A−1∂x(u3v1 + u1v3)

0

0



 , w

〉

A

=
〈

(DỸ ·X) ◦ ϕ−1 − Γ0(ũ, ṽ), w̃
〉

H1⊕L2

−
1

2

∫

S

[w1DY3 ·X + w3(DY1 ·X) ◦ ϕ−1 − w1x(u3v1 + u1v3)] dx +
1

2
w3DY3 ·X

where we have used that integrals of the type
∫

S

Γ0(ũ, ṽ)w3 dx =

∫

S

A−1(u1v1 + 1
2u1xv1x + 1

2u2v2)w3x dx = 0

vanish. Clearly,

〈∇XZ, Y 〉(ϕ,f,s) =
〈

(DZ̃ ·X) ◦ ϕ−1 − Γ0(ũ, w̃), ṽ
〉

H1⊕L2

−
1

2

∫

S

[v1DZ3 ·X + v3(DZ1 ·X) ◦ ϕ−1 − v1x(u3w1 + u1w3)] dx +
1

2
v3DZ3 ·X.

Applying [12, Prop. 3.1] completes the proof of the proposition. �

2.6. Summary and conclusions. In the following tabular, we summarize some

unifying features of the approach pioneered by V.I. Arnold by comparing the geo-

metric quantities for the rigid body motion with the corresponding quantities that

have been presented in this section for the 2CH equation with vorticity.
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Rigid body 2CH with vorticity

configuration space SO(3) C∞G = (Diff∞(S)sC∞(S)) × R

Lie algebra so(3) C∞(S) × C∞(S) × R

material velocity Ṙ(t) (ϕ, f, s)′(t)

spatial velocity ω = ṘR−1 (u, ρ, α) = (ϕ′
◦ ϕ−1, f ′

◦ ϕ−1, s′)

body velocity Ω = R−1Ṙ U0 = (
ϕt
ϕx

, ft − fx
ϕt
ϕx

, s′)

inertia operator I A

spatial momentum π = RΠ µ = (Au − α
2 , ρ, α

2 − 1
2

∫

S
u dx)

body momentum Π = IΩ µ0 =





[(m ◦ ϕ)− α
2 ]ϕ2

x + (ρ ◦ ϕ)fxϕx

(ρ ◦ ϕ)ϕx
α
2 − 1

2

∫

S
udx





spatial velocity (Ad) ω = AdRΩ (u, ρ, α) = Ad(ϕ,f,s)U0

body momentum (Ad*) Π = Ad∗

Rπ µ0 = Ad∗

(ϕ,f,s)µ

momentum conservation π = const. µ0 = const.

Lie bracket (ad) [A,B] = AB − BA [(u1, ρ1, α1), (u2, ρ2, α2)] =





u1xu2 − u2xu1

ρ1xu2 − ρ2xu1

0





ad∗ ad∗

AB = [B,A] ad∗

(u1,ρ1,α1)(u2, ρ2, α2)

=









A−1(2u1xAu2 + u1Au2x − α2u1x + ρ1xρ2)

+
∫

S
(u1xAu2 + ρ1xρ2) dx

(u1ρ2)x
2
∫

S
(u1xAu2 + ρ1xρ2) dx









The geometric theory is not only aesthetically appealing but also helps to under-

stand some important features of the solutions to the 2CH equation:

The authors of [11] showed that the geodesic spray ((ϕ, f, s), U, U,Γ(ϕ,f,s)(U,U))

is smooth as a map THsG → TTHsG, for s > 5/2, where HsG denotes the group

(Diffs(S)sHs−1(S)) × R and Diffs(S) is the group of all orientation-preserving Hs

diffeomorphisms S → S. The groups HsG are only topological groups (but not Lie

groups), instead they are Banach manifolds (and not Fréchet manifolds) so that

the Picard-Lindelöf Theorem can be applied to conclude the existence of a local-in-

time solution (ϕ, f, s)(t) to the geodesic equation (9) for any pair of initial values

(u0, ρ0) ∈ Hs(S) ×Hs−1(S) and α ∈ R. A Hilbert approximation of C∞G by the

groups HsG then shows that Eq. (9) also possesses a unique non-extendable solution

with smooth dependence on the initial data in the smooth category. As C∞G is

a Lie group, composition and inversion are smooth maps so that the relation (4)

immediately implies that Eq. (1) possesses a unique maximal solution (u, ρ)(t) ∈

C∞(S) × C∞(S), t ∈ J , for any initial datum (u0, ρ0) ∈ C∞(S) × C∞(S) and any

α ∈ R.

By Theorem 6.5 of [11], the solution (u, ρ)(t) exists for all t ≥ 0 provided ||ux(t)||
∞

is bounded on any bounded subinterval of J .

3. The sectional curvature

In this section, we present some curvature computations providing a proof of

Theorem 1.

We begin with the term 〈Γ(u, v),Γ(u, v)〉
A

on the right hand side of (3) which we

intend to rewrite as
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã
plus additional terms; again Γ0 denotes the

spray for the 2CH equation without vorticity, cf. Eq. (8), ũ = (u1, u2), ṽ = (v1, v2)

and Ã = diag(A, 1). By (7) and the definition of the metric (5), we have that

〈Γ(u, v),Γ(u, v)〉
A

=
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã
+

〈

Γ0(ũ, ṽ),

(

A−1∂x(u3v1 + u1v3)

0

)〉

Ã
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+
1

4

〈

A−1∂x(u3v1 + u1v3), A−1∂x(u3v1 + u1v3)
〉

A

=
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã

−

∫

S

∂x(u1v1 + 1
2u1xv1x + 1

2u2v2)A−1∂x(u3v1 + u1v3) dx

+
1

4

∫

S

∂x(u3v1 + u1v3)A−1∂x(u3v1 + u1v3) dx.(11)

The second term on the right hand side of (3) is computed similarly and we find

that

〈Γ(u, u),Γ(v, v)〉
A

=
〈

Γ0(ũ, ũ),Γ0(ṽ, ṽ)
〉

Ã

−

∫

S

∂x(u2
1 + 1

2u
2
1x + 1

2u
2
2)A−1∂x(v1v3) dx

−

∫

S

∂x(v21 + 1
2v

2
1x + 1

2v
2
2)A−1∂x(u1u3) dx

+

∫

S

∂x(u1u3)A−1∂x(v1v3) dx.(12)

Let u, v, w ∈ TpC
∞G be three tangent vectors at a point p ∈ C∞G. The curvature

tensor R for (C∞G, 〈·, ·〉
A

) is given locally by

(13) Rp(u, v)w = D1Γp(w, u)v −D1Γp(w, v)u + Γp(Γp(w, v), u) − Γp(Γp(w, u), v),

cf. [26], where D1 denotes differentiation with respect to p:

D1Γp(w, u)v =
d

dǫ

∣

∣

∣

∣

ǫ=0

Γp+ǫv(w, u).

We apply Eq. (13) at p = id and with w = v in order to rewrite S(u, v) =

〈R(u, v)v, u〉
A

as a sum of terms involving Γ0 and first and second components

of u and v plus additional terms involving the third components. Therefore, we

make use of the identities

d

dε

∣

∣

∣

∣

ε=0

u1 ◦ (id + εv1)−1 = −u1xv1

and

D1Γ0(w̃, ũ)ṽ = −Γ0(w̃xv1, ũ) − Γ0(ũxv1, w̃) + Γ0(w̃, ũ)xv1,

see the proof of [12, Prop. 5.1], to infer that

D1Γ(v, u)v =

(

−Γ0(ṽxv1, ũ) − Γ0(ũxv1, ṽ) + Γ0(ṽ, ũ)xv1
0

)

+





− 1
2A

−1∂x(u1xv1v3 + u3v1v1x)

0

0





+





1
2v1A

−1∂2
x(u1v3 + u3v1)

0

0




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and similarly that

D1Γ(v, v)u =

(

−2Γ0(ṽxu1, ṽ) + Γ0(ṽ, ṽ)xu1

0

)

+





−A−1∂x(u1v1xv3) + u1A
−1∂2

x(v1v3)

0

0



 .

Using once more the definition (7), we also find that

Γ(Γ(v, v), u) =

(

Γ0(Γ0(ṽ, ṽ), ũ)

0

)

+





1
2A

−1∂x(u3Γ0(ṽ, ṽ)1)

0

0





+





−A−1∂x(u1A
−1∂x(v1v3) + 1

2u1xA
−1∂2

x(v1v3) − 1
2u3A

−1∂x(v1v3))

− 1
2u2A

−1∂2
x(v1v3)

0





and similarly that

Γ(Γ(v, u), v) =

(

Γ0(Γ0(ṽ, ũ), ṽ)

0

)

+





1
2A

−1∂x(v3Γ0(ṽ, ũ)1)

0

0





+











− 1
2A

−1∂x(v1A
−1∂x(u1v3 + u3v1) + 1

2v1xA
−1∂2

x(u1v3 + u3v1)

− 1
2v3A

−1∂x(u1v3 + u3v1))

− 1
4v2A

−1∂2
x(u1v3 + u3v1)

0











.

As shown in the proof of [12, Prop. 5.1]
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã
−
〈

Γ0(ũ, ũ),Γ0(ṽ, ṽ)
〉

Ã
=

〈

Γ0(ṽ, ũ)xv1, ũ
〉

Ã
−
〈

Γ0(ṽ, ṽ)xu1, ũ
〉

Ã

−
〈

Γ0(ṽxv1, ũ), ũ
〉

Ã
−
〈

Γ0(ṽ, ũxv1), ũ
〉

Ã
+ 2

〈

Γ0(ṽxu1, ṽ), ũ
〉

Ã

+
〈

Γ0(Γ0(ṽ, ṽ), ũ), ũ
〉

Ã
−
〈

Γ0(Γ0(ṽ, ũ), ṽ), ũ
〉

Ã

so that, using once more the definition (5), we obtain that

(14) S(u, v) =
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã
−
〈

Γ0(ũ, ũ),Γ0(ṽ, ṽ)
〉

Ã
+ J1 + J2 + J3

where

J1 = −
1

2

∫

S

(u1v3 + u3v1)Γ0(ṽ, ũ)1x dx +
1

2

∫

S

(Au1)v1A
−1∂2

x(u1v3 + u3v1) dx

−
1

4

∫

S

u3v1A
−1∂2

x(u1v3 + u3v1) dx +
1

4

∫

S

u2v2A
−1∂2

x(u1v3 + u3v1) dx

−
1

2

∫

S

u1x

[

v1A
−1∂x(u1v3 + u3v1) + 1

2v1xA
−1∂2

x(u1v3 + u3v1)

− 1
2v3A

−1∂x(u1v3 + u3v1)
]

dx

+
1

2

∫

S

u1x(u1xv1v3 + v1v1xu3) dx,
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J2 =

∫

S

u1u3Γ0(ṽ, ṽ)1x dx +
1

2

∫

S

u1u3A
−1∂2

x(v1v3) dx −
1

2

∫

S

u1xu3A
−1∂x(v1v3) dx,

J3 =

∫

S

u1x

[

u1A
−1∂x(v1v3) + 1

2u1xA
−1∂2

x(v1v3)
]

dx−
1

2

∫

S

u2
2A

−1∂2
x(v1v3) dx

−

∫

S

(Au1)u1A
−1∂2

x(v1v3) dx−

∫

S

u1u1xv1xv3 dx.

Now the proof of formula (3) is completed by verifying that all the terms including

third components on the right hand sides of (11) and (12) are equal to the third

component terms J1 + J2 + J3 on the right hand side of (14). Using that u3x =

v3x = 0, that ∂2
xA

−1 = A−1∂2
x = −1 + A−1 and integration by parts, some tedious

computations which are omitted for the convenience of the reader show that indeed

J1 + J2 + J3 = −

∫

S

∂x(u1v1 + 1
2u1xv1x + 1

2u2v2)A−1∂x(u3v1 + u1v3) dx

+
1

4

∫

S

∂x(u3v1 + u1v3)A−1∂x(u3v1 + u1v3) dx

+

∫

S

∂x(u2
1 + 1

2u
2
1x + 1

2u
2
2)A−1∂x(v1v3) dx

+

∫

S

∂x(v21 + 1
2v

2
1x + 1

2v
2
2)A−1∂x(u1u3) dx

−

∫

S

∂x(u1u3)A−1∂x(v1v3) dx.

We now let

u =





cos k1x

cos k2x

α



 , v =





cos l1x

cos l2x

β



 ,

for k1, k2, l1, l2 ∈ 2πN, and apply the identities

cos ξ1 cos ξ2 =
1

2
(cos(ξ1 − ξ2) + cos(ξ1 + ξ2)),

sin ξ1 sin ξ2 =
1

2
(cos(ξ1 − ξ2) − cos(ξ1 + ξ2)),

sin ξ1 cos ξ2 =
1

2
(sin(ξ1 − ξ2) + sin(ξ1 + ξ2)),

and

A−1 cos ξx =
1

1 + ξ2
cos ξx, ξ ∈ R,

∫ 1

0

cos(ξ1x) cos(ξ2x)dx =
1

2
(δξ1,ξ2 + δξ1,−ξ2) , ξ1, ξ2 ∈ 2πZ,

∫ 1

0

sin(ξ1x) sin(ξ2x)dx =
1

2
(δξ1,ξ2 − δξ1,−ξ2) , ξ1, ξ2 ∈ 2πZ,

∫ 1

0

cos(ξ1x) sin(ξ2x)dx = 0, ξ1, ξ2 ∈ 2πZ,

to observe that, by the definition of Γ and 〈·, ·〉
A

,

S(u, v) =
〈

Γ0(ũ, ṽ),Γ0(ũ, ṽ)
〉

Ã
−
〈

Γ0(ũ, ũ),Γ0(ṽ, ṽ)
〉

Ã
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+
1

4

∫

S

∂x(α cos l1x + β cos k1x)A−1∂x(α cos l1x + β cos k1x) dx

−

∫

S

∂x(α cos k1x)A−1∂x(β cos l1x) dx

−

∫

S

∂x(cos k1x cos l1x + 1
2k1l1 sin k1x sin l1x + 1

2 cos k2x cos l2x)×

×A−1∂x(α cos l1x + β cos k1x) dx

+

∫

S

∂x(cos2 k1x + 1
2k

2
1 sin2 k1x + 1

2 cos2 k2x)A−1∂x(β cos l1x) dx

+

∫

S

∂x(cos2 l1x + 1
2 l

2
1 sin2 l1x + 1

2 cos2 l2x)A−1∂x(α cos k1x) dx.

By [12, Prop. 5.1] the sum of the first two terms equals the (non-normalized) sec-

tional curvature S2CH(ũ, ṽ) for the 2CH equation without vorticity and

S2CH

((

cosk1x

cosk2x

)

,

(

cos l1x

cos l2x

))

≥
k21l

2
1

16

[

1

k21l
2
1

−
1

k1l1
+

1

4
−

1

2k21l
2
1

−
2

k1l1

]

> 0.

We may thus write

S(u, v) = S2CH(ũ, ṽ) + K1 + K2 + K3 + K4 + K5

and conclude that

K1 =
1

4

(

1

2
α2 +

1

2
β2 + αβ(δk1,l1 + δk1,−l1)

)

−
1

4

(

α2

2(1 + l21)
+

β2

2(1 + k21)
+

1

2

(

αβ

1 + l21
+

αβ

1 + k21

)

(δk1,l1 + δk1,−l1)

)

,

K2 =
1

2
αβ

(

−δk1,l1 − δk1,−l1 +
1

1 + l21
(δk1,l1 + δk1,−l1)

)

,

K3 = −
α

2

l21
1 + l21

[

1

2
(δk1+l1,l1 + δk1+l1,−l1 + δk1−l1,l1 + δk1−l1,−l1)

+
1

4
k1l1(δk1−l1,l1 + δk1−l1,−l1 − δk1+l1,l1 − δk1+l1,−l1)

+
1

4
(δk2+l2,l1 + δk2+l2,−l1 + δk2−l2,l1 + δk2−l2,−l1)

]

−
β

2

k21
1 + k21

[

1

2
(δk1+l1,k1 + δk1+l1,−k1 + δk1−l1,k1 + δk1−l1,−k1)

+
1

4
k1l1(δk1−l1,k1 + δk1−l1,−k1 − δk1+l1,k1 − δk1+l1,−k1)

+
1

4
(δk2+l2,k1 + δk2+l2,−k1 + δk2−l2,k1 + δk2−l2,−k1)

]

,

K4 =
β

4

l21
1 + l21

(

(1 − k21)(δ2k1,l1 + δ2k1,−l1) + δ2k2,l1 + δ2k2,−l1

)

,

K5 =
α

4

k21
1 + k21

(

(1 − l21)(δ2l1,k1 + δ2l1,−k1) + δ2l2,k1 + δ2l2,−k1

)

.
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We let α > 0 and β = 1 and recall that k1, l1, k2, l2 ∈ {2π, 4π, ...} so that at most

one Kronecker delta within each pair δξ1,ξ2 + δξ1,−ξ2 gives a nonzero contribution.

Then a lower estimate for the sectional curvature is given by

S(u, v) ≥
1

8
(α2 + 1) −

α2 + 1

8(1 + 4π2)
−

α

4(1 + 4π2)
−

α

2
−

α + 1

2

(

3

2
+

1

4
k1l1

)

−
1

4

k21l
2
1

1 + l21
−

α

4

k21 l
2
1

1 + k21

≥
1

10
(α2 − 5αM2 − 5M2),

where M = max{k1, l1}. The right hand side of the above inequality is positive for

α ≥ 6M2 >
5

2
M2 +

√

25

4
M4 + 5M2.

As

〈u, u〉
A

= 1 + 1
2 (k21 + α2),

〈v, v〉
A

= 1 + 1
2 (l21 + 1) and

〈u, v〉
A

= α
2 ,

it is clear that

K(u, v) ≥
1
10 (α2 − 5αM2 − 5M2)

(1 + 1
2 (k21 + α2))(1 + 1

2 (l21 + 1)) − α2

4

→
1
10

1
2 (1 + 1

2 (l21 + 1)) − 1
4

> 0

as α → ∞. Thus the proof of Theorem 1 is completed. �
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