Skip to main content
Log in

The story of transgenic cereals: The challenge, the debate, and the solution—A historical perspective

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abdullah, R.; Cocking, E. C.; Thompson, J. A. Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4:1087–1090; 1986.

    Article  Google Scholar 

  • Ahloowalia, B. S.; Maluszynski, M.; Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 135:187–204; 2004.

    Article  Google Scholar 

  • Baillie, A. M. R.; Rossnagel, B. G.; Kartha, K. K. Field evaluation of barley (Hordeum vulgare L.) genotypes derived from tissue culture. Can. J. Plant Sci. 72:725–733; 1992.

    Google Scholar 

  • Bayliss, M. W. Chromosome variatrion in plant tissue culture. In: Vasil, I. K., ed. Perspectives in plant cell and tissue culture. Int. Rev. Cytol. Suppl. 11A. New York: Academic Press; 1980;113–144.

    Google Scholar 

  • Beaulieu, G. C.; Rogers, S. O.; Bendich, A. J. DNA extracted from wheat leaves is highly degraded: a possible basis for the difficulty in establishing leaf cell cultures in the Gramineae. 1st Int. Cong. Plant Mol. Biol., Savannah, GA; 1985:11.

  • Braun, A. C. A physiological basis for autonomous growth of the crown gall tumor cell. Proc. Natl Acad. Sci. USA 44:344–349; 1958.

    Article  PubMed  CAS  Google Scholar 

  • Burnet, F. M. Genes, dreams, and realities. London: Penguin; 1971.

    Google Scholar 

  • Carnes, M. G.; Wright, M. S. Endogenous hormone levels of immature corn kernels of A188, Missouri-17, and DeKalb XL-12. Plant Sci. 57:195–203; 1988.

    Article  CAS  Google Scholar 

  • Chen, S.; Xia, G.; Quan, T.; Xiang, F.; Jin, Y.; Chen, H. Introgression of from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci. 167:773–779; 2004.

    Article  CAS  Google Scholar 

  • Chilton, M-D. Agrobacterium A. memoir. Plant Physiol. 125:9–14: 2001.

    Article  PubMed  CAS  Google Scholar 

  • Cocking, E. C. All sorts of protoplasts. Nature 281:180–181; 1979.

    Article  Google Scholar 

  • Cocking, E. C. Plant protoplasts. In Vitro Cell. Dev. Biol.—Plant 36:77–82; 2000.

    Article  Google Scholar 

  • D’Amato, F. Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit. Rev. Plant Sci. 3:73–112; 1985.

    Google Scholar 

  • Datta, S. K.; Peterhaus, S.; Datta, K.; Potrykus, I. Genetically engineered fertile Indica rice recovered from protoplasts. Bio/Technology 8:736–740; 1990.

    Article  CAS  Google Scholar 

  • Davey, M. R.; Cocking, E. C.; Freeman, J.; Pearce, N.; Tudor, I. Transformation of Petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18:307–313; 1980.

    Article  CAS  Google Scholar 

  • De La Pena, A.; Lorz, H.; Schell, J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 235:274–276; 1987.

    Article  Google Scholar 

  • De Wet, J. M. J.; De Wet, A. E.; Brink, D. E.; Hepburn, A. G.; Woods, J. H. Ganetophyte transformation in maize (Zea mays, Graminea). In: Mulcahy, D. L.; Mulcahy, G. B.; Ottayiano, E., eds. Biotechnology and ecology of pollen. New York: Springer-Verlag; 1985:59–64.

    Google Scholar 

  • Downcy, K.; Voellmy, R. W.; Ahmad, F.; Schultz, J. Advances in gene technology: molecular genetics of plants and animals. New York: Academic Press; 1973.

    Google Scholar 

  • Draper, J.; Davey, M. R.; Freeman, J. P.; Cocking, E. C.; Cox, B. G. Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts. Plant Cell Physiol. 23:451–458; 1982.

    CAS  Google Scholar 

  • Dunstan, D. I.; Short, K. C.; Dhaliwal, H.; Thomas, E. Further studies on plantlet production from cultured tissues of Sorghum bicolor. Protoplasma 101:355–361; 1979.

    Article  CAS  Google Scholar 

  • Flores, H. E.; Kaur-Sawhney, R.; Galston, A. W. Protoplasts as vehicles for plant propagation and improvement. Adv. Cell Cult. 1:241–279; 1981.

    CAS  Google Scholar 

  • Galston, A. W. The use of protoplasts in plant propagation and improvement. In: Hughes, K. W.; Henke, R.; Constantin, M., eds. Propagation of higher plants through tissue culture. Knoxville, TN: US Dept. Energy; 1978:200–212.

    Google Scholar 

  • Graves, A.; Goldman, S. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7:43–50; 1986.

    Article  CAS  Google Scholar 

  • Green, C. E.; Phillips, R. L. Plant regeneration from tissue cultures of maize. Crop. Sci. 15:417–421; 1975.

    Article  Google Scholar 

  • Harms, C. T. Maize and cereal protoplasts. In: Sheridan, W. F., ed. Maize for biological research. Charlottesville, VA: Plant Mol. Biol. Assoc.; 1982:373–384.

    Google Scholar 

  • Hasemann, C. U.; Schroder, G. Loss of nuclear DNA in leaves of rye. Theoret. Appl. Genet. 62:128–131; 1982.

    Google Scholar 

  • Hess, D.; Dressler, K.; Nimmrichter, R. Transformation experiments by pipetting Agrobacterium into spikelets of wheat (Triticum aestivum L.). Plant Sci. 72:233–244; 1990.

    Article  CAS  Google Scholar 

  • Horn, M. E.; Conger, B. V.; Harms, C. T. Plant regeneration from protoplasts of embryogenic suspension cultures of Orchardgrass (Dactylis glomerata L.). Plant Cell Rep. 7:371–374; 1988a.

    Article  Google Scholar 

  • Horn, M. E.; Shillito, R. D.; Conger, B. V.; Harms, C. T. Transgenic plants of orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7:469–472; 1988b.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney, R.; Flores, H. E.; Galston, A. W. Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol. 65:368–371; 1980.

    PubMed  CAS  Google Scholar 

  • King, P. J.; Potrykus, I.; Thomas, E. In vitro genetics of cereals: problems and perspectives. Physiol. Veg. 16:381–399; 1978.

    Google Scholar 

  • Komari, T.; Kubo, T. Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil, I. K., ed. Molecular improvement of cereal crops. Dordrecht: Kluwer Academic Publishers; 1999:43–82.

    Google Scholar 

  • Krens, F. A.; Molendijk, L.; Wullems, G. J.; Schilperoort, R. A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74; 1982.

    Article  CAS  Google Scholar 

  • Kyozuka, J.; Hayashi, Y.; Shimamoto, K. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol. Gen. Genet. 206:409–413; 1987.

    Article  Google Scholar 

  • Larkin, P. J.; Scowcroft, W. R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.

    Article  Google Scholar 

  • Ledoux, L.; Huart, R. Fate of exgenous bacterial deoxyribonucleic acids in barley seedlings J. Mol. Biol. 43:243–248; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Lorz, H.; Brettell, R. I. S.; Potrykus, I. Protoplast culture of Pennisetum americanum. Poster Section 12, XIII Intern. Bot. Cong., Sydney, Australia; 1981.

  • Lu, C.; Vasil, I. K. Isolation and culture of protoplasts of Panicum maximum Jacq. (Guinea grass): somatic embryogenesis and plantlet formation. Z. Pflanzenphysiol. 104:311–318; 1988.

    Google Scholar 

  • Luo, Z.; Wu, R. A simple method for the transformation of rice via the pollen tube pathway. Plant Mol. Biol. Rep. 6:165–174; 1988.

    CAS  Google Scholar 

  • Maretzki, A. Sugarcane improvement through breeding. In: Heinz, D. J., ed. Tissue culture: its prospects and problems. Amsterdam: Elsevier; 1987:343–384.

    Google Scholar 

  • Nakano, H.; Maeda, E. Shoot differentiation in callus of Oryza sativa L. Z. Pflanzenphysiol. 93:449–458; 1979.

    Google Scholar 

  • Nickell, L. G.; Torrey, J. G. Crop improvement through plant cell and tissue culture. Science 166:1068–1069; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, Y. High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83:715–719; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, K. K. Novel techniques of gene transfer and plant improvement: An appraisal of transformation in eukaryotes. New Phytol. 81:685–704; 1978.

    Article  CAS  Google Scholar 

  • Petit, A.; Delhaye, S.; Tempé, J.; Morel, G. Recherches sur les guanidines des tissues de crown gall. Mise en evidence d’une relation biochimique spécifique entre les souches d’Agrobacterium et les tumeurs qu’elles induisent. Physiol. Vég. 8:205–213; 1970.

    CAS  Google Scholar 

  • Potrykus, I. Gene transfer to cereals: an assessment. Bio/Technology 8:535–542; 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I. The ‘Golden Rice’ tale. In Vitro Cell. Dev. Biol.—Plant 37:93–100; 2001.

    Article  Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lorz, H. Problems in culturing cereal protoplasts. In: Dudits, D.; Farkas, G. L.; Maliga, P. eds. Cell genetics in higher plants. Budapest: Akademiai Kiado; 1976:129–140.

    Google Scholar 

  • Power, J. B.; Cummins, S. E.; Cocking, E. C. Fusion of isolated protoplasts. Nature 223:1016–1018; 1970.

    Article  Google Scholar 

  • Qureshi, J. A.; Hucl, P.; Kartha, K. K. Is somaclonal variation a reliable tool for wheat improvement?. Euphytica 60:221–228; 1992

    Google Scholar 

  • Rajasekaran, K.; Hein, M. B.; Davis, G. C.; Carnes, M. G.; Vasil, I. K. Endogenous plant growth regulators in leaves and tissue cultures of Napiergrass (Pennisetum purpureum Schum.). J. Plant Physiol. 130:13–25; 1987a.

    CAS  Google Scholar 

  • Rajasekaran, K.; Hein, M. B.; Vasil, I. K. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum. Plant Physiol. 84:47–51; 1987b.

    PubMed  CAS  Google Scholar 

  • Repellin, A.; Baga, M.; Jauhar, P. P.; Chibbar R. N. Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tiss. Organ Cult. 64:159–183; 2001.

    Article  CAS  Google Scholar 

  • Rhodes, C. A.; Lowe, K. S.; Ruby, K. L. Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6:56–60; 1988a.

    Article  Google Scholar 

  • Rhodes, C. A.; Pierce, D. A.; Mettler, I. J.; Mascarenhas, D.; Detmer J. J. Genetically transformed maize plants from protoplasts. Science 240:204–207; 1988b.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R. V.; Seetharama, N.; Devi, P. S.; Verma, A.; Murthy, U. R.; Potrykus, I. Culture and regeneration of mesophyll-derived protoplasts of sorghum (Sorghum bicolor (L.) Moench.). Plant Cell Rep. 18:972–977; 1999.

    Article  CAS  Google Scholar 

  • Sanford, J. C. The development of the biolistic process. In Vitro Cell. Dev. Biol.—Plant 36:303–308; 2000.

    Article  Google Scholar 

  • Sanford, J. C.; Klein, T. M.; Wolf, E. D.; Allen, N. Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Tech. 5:27–37; 1987.

    CAS  Google Scholar 

  • Shimada, T.; Yamada, Y. Wheat plants regenerated from embryo cell cultures. Jap. J. Genet. 54:379–385; 1979.

    Google Scholar 

  • Shimamoto, K.; Terada, R.; Izawa, T.; Fujimoto, H. Transgenic rice plants regenerated from transformed protoplasts. Nature 338;274–276; 1989.

    Article  CAS  Google Scholar 

  • Springer, W. D.; Green, C. E.; Kohn, K. A. A histological examination of tissue culture initiation from immature embryos of maize. Protoplasma 101:269–281; 1979.

    Article  Google Scholar 

  • Srinivasan, C.; Vasil, I. K. Plant regeneration from protoplasts of sugarcane (Saccharum officinarum L.) J. Plant Physiol. 126:41–48; 1986.

    CAS  Google Scholar 

  • Swedlund, B.; Vasil, I. K. Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor. Appl. Genet. 69:575–581; 1985.

    Article  Google Scholar 

  • Tabaizadeh, Z.; Ferl, R.; Vasil, I. K. Somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane)+ Pennisetum americanum (L.) K. Schum. (pearl millet). Proc. Natl Acad. Sci. USA 83:5616–5619; 1986.

    Article  Google Scholar 

  • Takebe, I.; Labib, G.; Melchers, G. Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320; 1971.

    Article  Google Scholar 

  • Taylor, M. G.; Vasil, I. K. Analysis of DNA size, content and cell cycle in leaves of Napiergrass (Pennisetum purpureum Schum). Theor. Appl. Genet. 74:681–686; 1987.

    Article  CAS  Google Scholar 

  • Thorpe, T. A. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995.

    Google Scholar 

  • Vasil, I. K. Developing cell and tissue culture systems for the improvement of ceral and grass crops. J. Plant Physiol. 128:193–218; 1987.

    Google Scholar 

  • Vasil, I. K. Molecular improvement of cereal crops. Dordrecht: Kluwer Academic Publishers; 1999.

    Google Scholar 

  • Vasil, I. K. The wanderings of a botanist In Vitro Cell. Dev. Biol. Plant 38:383–395; 2002.

    Article  Google Scholar 

  • Vasil, I. K.; Vasil, V. Regeneration in cereal and other grass species. In: Vasil, I. K. ed. Cell culture and somatic cell genetics of plants, vol. 3, Plant regeneration and genetic variability, 3. New York: Academic Press; 1986:121–150.

    Google Scholar 

  • Vasil, I. K.; Vasil, V. Advances in protoplast research. Physiol. Plant. 85:279–283; 1992.

    Article  CAS  Google Scholar 

  • Vasil, I. K.; Vasil, I. K. Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor. Appl. Genet. 56:97–99; 1980.

    Article  Google Scholar 

  • Vasil, I. K.; Vasil, K. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum× P. purpureum hybrid. Am. J. Bot. 68:864–872; 1981a.

    Article  Google Scholar 

  • Vasil, I. K.; Vasil, I. K. Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann. Bot. 47:669–678; 1981b.

    Google Scholar 

  • Vasil, I. K.; Wang, D.; Vasil, I. K. Plant regeneration from protoplasts of Pennisetum purpureum Schum. (Napier grass). Z. Pflanzenphysiol. 111:233–239; 1983.

    CAS  Google Scholar 

  • Wenck, A. R.; Conger, B. V.; Trigiano, R. N.; Sams, C. E. Inhibition of somatic embryogenesis in orchard grass by endogenous cytokinins. Plant Physiol. 88:990–992; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, Y.; Yang, Z. O.; Tang, D. T. Plant regeneration from protoplast derived callus of rice (Oryza sativa L.). Plant Cell Rep. 4:85–88; 1986.

    Article  Google Scholar 

  • Zilberstein, A.; Schuster, S.; Flaishman, M.; Pnini-Cohen, S.; Koncz, C.; Mass, C.; Schell, J.; Eyal, J. Stable transformation of spring wheat cultivars. 4th Intern. Cong. Plant Mol. Biol., Amsterdam; 1994; Abstract 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra K. Vasil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, I.K. The story of transgenic cereals: The challenge, the debate, and the solution—A historical perspective. In Vitro Cell.Dev.Biol.-Plant 41, 577–583 (2005). https://doi.org/10.1079/IVP2005654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005654

Keywords

Navigation