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Summary.—With the exception of the Teffé strain which will be dis-
cussed in another publication, no trace of sexual isolation is observed
between strains of D. willistoni from different parts of Brazil and from
Guatemala. When Brazilian males are offered a choice of females of their
own and of other Brazilian strains, inseminations occur at random. If a
mixture of Brazilian and Guatemalan females are confined either with
Brazilian or with Guatemalan males, a greater proportion of Brazilian than
of Guatemalan females are inseminated. The mating of Brazilian and
Guatemalan flies is, therefore, selective rather than random; however, the
particular type of -selectivity here observed does not constitute a barrier to
gene exchange. "
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THE COMPRESSIBILITY OF MEDIA UNDER EXTREME
PRESSURES

By F. D. MURNAGHAN
DEPARTMENT OF MATHEMATICS, THE JoHNS HOPKINS UNIVERSITY
Communicated July 11, 1944

It is well known that Hooke’s Law, which postulates a linear relation be-
tween stress and strain, has a very limited range of applicability even when
the applied stress is a uniform pressure. We have in previous papers’?
furnished a formula which is valid over a much greater range than Hooke’s
Law; this formula agreed well with experimental results up to pressures as
high as 50,000 atmospheres (the highest for which measurements were
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then available). Since then Bridgman?® has published measurements up to
100,000 atmospheres and this, combined with theoretical considerations of
a fundamental character, has caused us to reconsider the whole question.
Hooke’s Law and our formula may both be derived from the principle of
energy conservation; the difference in the results is due to the fact that
for infinitesimal deformations (to which the validity of Hooke’s Law is
limited) it is correct to say that stress is the gradient, with respect to strain,
of the energy per unit volume. For non-infinitesimal deformations this
simple relation must be replaced by a more complicated one. The feature
common to both theories is the assumption that the energy density is a
function of the strain; it being agreed that the strain is measured from the
position of zero stress. This assumption, which has apparently never been
seriously questioned, has the quality of an ‘‘action at a distance” theory;
we assume that the energy of deformation is furnished by a knowledge of
the relationship of the actual position of the medium to a remote position
in which the medium was unstressed. We propose here to discard this
action at a distance theory and to replace it by a differential theory in which
we are concerned merely with the variation of the energy as we pass from
any position of the medium to an infinitesimally near position. Thus we
must be prepared to confront the situation where the initial position of the
medium: is one in which the medium is under stress.

This being understood, a fundamental question arises: are the elastic
constants of the medium really constant? The elastic constants are simply
coefficients which occur in the statement of Hooke’s Law and we mean by
the word constant that they do not depend on the increment of the stress.
But do they depend on the initial value of the stress? All experimental
evidence points to the fact that they do, and many determinations have
been made of the variation of such things as compressibility with pressure.
It is fair to say that the reason that Hooke’s Law is so limited in its range
of applicability is that it neglects the dependence of the elastic constants on
the initial stress. This dependence of the elastic constants on the initial
stress cannot be overemphasized. For example, when we say that an
elastic medium is isotropic, we mean that certain relations hold amongst
the elastic constants (so that fwo are sufficient to furnish the statement of
Hooke’sLaw); itis clear, then, that a medium which is elastically isotropic
under zero stress may fail to be elastically isotropic when stress is applied.
We should certainly expect this lack of isotropy to appear when the applied
stress is (as in the case of the Young’s modulus experiment) not merely a
uniform pressure or traction. We feel certain thatitis the reliance of the
classical theory of elasticity upon the hope that a stretched wire is elastically
isotropic, if the unstretched wire is, that is responsible for jts complete fail-
ure to predict the yield point phenomenon.

The case of uniform pressure is particularly simple since the stress tensor
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is scalar. The principle of conservation of mass, combined with Hooke’s
law for infinitesimal variations of stress, suffices provided we are willing
to face the situation that the compressibility depends on the pressure. The
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principle of mass conservation yields . v =3 o dx and Hooke’s Law yields
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ldv 1
M Y

vip
Let us assume, as a first approximation, that N 4+ 2/3u is a linear function
of p: : '
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We find :—0 = (1 4 kp)V* or, on writing Av = (v, — v),

so that

Av =1-(01+ kp)—.-l/ck.
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This simple formula accounts reasonably well for the experimental results
even for such a range of pressure as from 0 to 100,000 atmospheres. The
data for Li given by Bridgman (loc. cit.) are approximated by setting & =
0.153 X 104, ck = 2 so that the relation connecting p and v has the simple
form :
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Bridgman tabulates ;_2 at intervals of 10,000 atmospheres. The following
0

table furnishes the comparison between the values obtained empirically
and those calculated from the formula just given

p = 104 2.10% 3.10% 4.104 5.104 6.10% 7.10%; 8.10% 9.10% 108
Lo (obs.) 0.074; 0.125; 0.164; 0.201; 0.237; 0.272; 0.305; 0.336; 0.366; 0.394
v

ﬂ(calc.) 0.069; 0.125; 0.172; 0.212; 0.247; 0.278; 0.305; 0.330; 0.353; 0.371
Yo ' .
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A
The formula predicts that when p = 2.10% —v—'-’ will be approximately 0.514;
0 - !

' A
when p = 108 e will be approximately 0.752. To compress Li to a densi
Yo t}’

ten times its original density, a pressure of around 6.5 X 10° atmospheres
is necessary.

In conclusion we add the remark that when the pressure is small enough
so that its influence upon the elastic constants is negligible the appropriate
formula is
; éﬂ =1— ¢ 7°

v o

ADDED IN PROOF. It is worthy of attention that the formula given here
is, when the dimensionless constant ck is assigned the value 2, precisely
that which leads to Laplace’s well known law of density distribution
throughout the interior of the earth. This law fits the observed facts re-
markably well but it has been regarded by many authorities as merely
empirical largely because its connection with the law of compressibility
has not been clearly presented.
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NOTE ON THE DISCOVERY OF RED STARS
By GUILLERMO HARO
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Communicated July 26, 1944

During an investigation of colors, magnitudes, and spectral types in the
Hercules-Vulpecula region, it was noted that a star at the approximate
position 19*10™6, +21° 37’ (1855), A = 23°, 8 = +3° had a very large
color index. A preliminary examination of blue and red plates indicated
that the blue-red color index was between 6.5 and 7.0 magnitudes.

The blue-red and blue-yellow (international) color indices of this star
were determined from polar comparison plates, the blue magnitude from
Cramer Hi-Speed plates, the red magnitude from Eastman 103a-E plates
with a ciné-red filter (effective wave-length near 6300 A), the yellow mag-
nitude from 103a-G plates with a yellow filter. The 8-inch Ross-Lundin
(IR) refractor was used for the red and the yellow, the 16-inch Metcalf
(MC) refractor for the blue magnitudes. All plates were taken between
May 26 and June 5, 1944. The results were as follows:



