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Prognostic and predictive factors are indispensable tools in the treat-
ment of patients with neoplastic disease. For the most part, such
factors rely on a few specific cell surface, histological, or gross
pathologic features. Gene expression assays have the potential to
supplement what were previously a few distinct features with many
thousands of features. We have developed Bayesian regression
models that provide predictive capability based on gene expression
data derived from DNA microarray analysis of a series of primary
breast cancer samples. These patterns have the capacity to discrimi-
nate breast tumors on the basis of estrogen receptor status and also
on the categorized lymph node status. Importantly, we assess the
utility and validity of such models in predicting the status of tumors
in crossvalidation determinations. The practical value of such ap-
proaches relies on the ability not only to assess relative probabilities
of clinical outcomes for future samples but also to provide an honest
assessment of the uncertainties associated with such predictive clas-
sifications on the basis of the selection of gene subsets for each
validation analysis. This latter point is of critical importance in the
ability to apply these methodologies to clinical assessment of tumor
phenotype.

Recent studies demonstrate that gene expression information
generated by DNA microarray analysis of human tumors can

provide molecular phenotyping that identifies distinct tumor clas-
sifications not evident by traditional histopathological methods
(1–7). The promise of such information lies in the potential to
inform and so improve clinical decisions and strategies used to treat
patients with neoplastic disease. Traditional methods of phenotypic
characterization are often limited and do not have the ability to
discern subtle differences that may be of importance for developing
a better understanding of the tumor and advancing therapeutic
strategies for the treatment of disease. We have taken a two-
pronged approach in creating a statistical method that provides
robust probabilistic prediction and classification of tumors based on
gene expression data and also permits formal assessment of the
uncertainties inherent in any predictive model. Such an approach is
critical in an arena where clinicians must gauge their certainty of a
tumor’s phenotypic properties against the potential morbidities of
specific interventions.

We have applied this approach to breast cancer, a disease
where further molecular characterization is needed to improve
diagnostic and therapeutic strategies. Numerous studies have
correlated genetic alterations with clinical outcome including a
strong correlation between the amplification of the erbB-2
receptor gene (Her-2) and poor clinical outcome (8, 9). In
addition, overexpression of erbB-2 is a strong predictor of
response to adriamycin-based therapy (10). Nevertheless, such
correlations are few and often do not adequately define tumor
subtypes. The inability to define a subclass of tumor type that
may be refractory to standard therapies restricts the develop-
ment of new, more efficacious therapeutic strategies.

The analysis of gene expression represents an indirect measure of
the genetic alterations in tumors because, in most instances, these
alterations affect gene regulatory pathways. Given the tremendous
complexity that can be scored by measuring gene expression with

DNA microarrays, together with the absence of bias in assumptions
as to what type of pathway might be affected in a particular tumor,
the analysis of gene expression profiles offers the potential to
impact clinical decision-making based on more precise determina-
tions of tumor cell phenotypes. It is critical that such analyses
characterize the inherent variability and the resulting uncertainty
about the predicted clinical status of tumors with out-of-sample
predictions to properly assess the potential utility of such informa-
tion in therapeutic decision making.

Experimental Procedures
Breast Tumor Samples. Primary breast tumors from the Duke Breast
Cancer SPORE frozen tissue bank were selected for this study on
the basis of several criteria. Tumors were either positive for both the
estrogen and progesterone receptors or negative for both receptors.
Each tumor was diagnosed as invasive ductal carcinoma and was
between 1.5 and 5 cm in maximal dimension. In each case, a
diagnostic axillary lymph node dissection was performed. Each
potential tumor was examined by hematoxylinyeosin staining and
only those that were .60% tumor (on a per-cell basis), with few
infiltrating lymphocytes or necrotic tissue, were carried on for RNA
extraction. The final collection of tumors consisted of 13 estrogen
receptor (ER)1 lymph node (LN)1 tumors, 12 ER2 LN1 tumors,
12 ER1 LN2 tumors, and 12 ER2 LN2 tumors (details can be
found in Table 2, which is published as supporting information on
the PNAS web site, www.pnas.org).

RNA Preparation. Approximately 30 mg of frozen breast tumor
tissue was added to a chilled BioPulverizer H tube (Bio101)
(Q-Biogene, La Jolla, CA). Lysis buffer from the Qiagen (Chats-
worth, CA) RNeasy Mini kit was added, and the tissue was
homogenized for 20 sec in a MiniBeadbeater (Biospec Products,
Bartlesville, OK). Tubes were spun briefly to pellet the garnet
mixture and reduce foam. The lysate was transferred to a new 1.5-ml
tube by using a syringe and 21-gauge needle, followed by passage
through the needle 10 times to shear genomic DNA. Total RNA
was extracted by using the Qiagen RNeasy Mini kit. Two extractions
were performed for each tumor, and total RNA was pooled at the
end of the RNeasy protocol, followed by a precipitation step to
reduce volume. Quality of the RNA was checked by visualization of
the 28S:18S ribosomal RNA ratio on a 1% agarose gel.

Affymetrix GENECHIP Analysis. The targets for Affymetrix DNA mi-
croarray analysis were prepared according to the manufacturer’s
instructions. All assays used the human HuGeneFL GENECHIP
microarray. Arrays were hybridized with the targets at 45°C for 16 h
and then washed and stained by using the GENECHIP Fluidics. DNA
chips were scanned with the GENECHIP scanner, and signals ob-
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tained by the scanning were processed by GENECHIP Expression
Analysis algorithm (version 3.2) (Affymetrix, Santa Clara, CA).

Statistical Methods. Analysis uses binary regression models com-
bined with singular value decompositions (SVDs) and with
stochastic regularization by using Bayesian analysis (M.W.,
unpublished work), as discussed and referenced in Experimental
Procedures, which are published as supporting information on
the PNAS web site. The classification probability for each of the
two possible outcomes for each sample is structured as a probit
regression model in which the expression levels of genes are
scored by regression parameters in a regression vector b. Anal-
ysis estimates this regression vector and the resulting classifica-
tion probabilities for both training and validation samples. The
estimated regression vector itself is important not only in defin-
ing the predictive classification but also in scoring genes as to
their contribution to the classification.

Results
Tumor samples are derived from the Duke Breast Cancer SPORE
tissue resource of frozen tumors together with all pertinent clinical
and pathologic information. The collection of samples includes
mostly Stage II cancers and above (see Table 2). All cancer samples
have the same histology (invasive ductal carcinoma), and each is
between 1.5 and 5 cm in their largest dimension. The tumor samples
were chosen to include roughly an equal representation of hormone
receptor-positive versus hormone receptor-negative cancers. All
tissues were screened for tumor content, and cases that contained
less than 60% tumor cells were excluded. We analyzed bulk tumor
samples without attempt to separate tumor cells from other con-
tributing cell types. We have made use of Affymetrix Human Gene
FL GENECHIP DNA arrays. RNA from each of the samples was
converted to target following established procedures (described in
Experimental Procedures) and then used to hybridize to the GENE-
CHIP arrays. The hybridized chips were then processed and analyzed
as described in Experimental Procedures.

Classification of Tumor Samples on the Basis of ER Status. The initial
49 tumors were classified as ER1 or ER2 via immunohistochem-
istry (IHC) at time of diagnosis and then later via protein immu-
noblotting assay for ER to check the IHC results. In five cases, the
IHC and blot test conflicted. These five cases and an additional four
of the tumors selected randomly were separated from the rest to be
treated as validation samples to be predicted on the basis of analysis
of the remaining training cases. Of the latter, two were rejected due
to failed array hybridization, leaving 18 ER1 and 20 ER2, as
determined by both IHC and immunoblotting. The five cases of
conflicting biological test results raise concerns about sample
heterogeneity and the status of these tumors, hence it makes sense
to treat them as of uncertain status and explore the expression-
based predictions of status by using the statistical model.

By using the ER outcomes of only the 38 training arrays, we first
implemented a simple screen to identify the 100 genes maximally
correlated with outcome. This screening strategy aims to reduce
noise contributed by irrelevant or unexpressed genes by an initial
selection process, and the choice of the number 100 was determined
by repeat experimentation. This screen computed sample correla-
tion coefficients between genes and ER1yER2 binary outcomes
and selected those genes giving the 100 largest absolute values of
this correlation. Alternative methods, such as selecting genes
according to maximum differences between mean ranks in the two
outcome groups, give similar results. Some form of gene selection
for reducing noise is required. Analysis of the full set of genes
implies that all aspects of variation are incorporated in the SVD
analysis, and the computed singular factors are influenced by the
noise affecting each and every gene. Use of the full gene set
generally means that the discriminatory ability of resulting factors
is clouded by such noise. In the ER analysis using all genes, results
are broadly similar to those reported here but for the fact that all

predictive probabilities have much higher associated uncertainties,
and one or two tumors are much less well classified. More ambig-
uous classification is a result of the much higher level of noise
influencing the analysis. Screening to a smaller, relevant, discrim-
inatory subset of genes is guaranteed to reduce such unwanted
noise, with cleaner and more accurate results. We note that, in some
applied contexts, the levels of extraneous noise may be lower than
in the complex and challenging case of breast cancer; we have
experienced this, for example, in our analysis (not reported here) of
the Massachusetts Institute of Technology leukemia data set (4),
which is in this respect a less challenging problem of predictive
discrimination than is breast cancer. Further, current statistical
research involves development of refined models that aim to
address this question by automatically selecting the most discrim-
inatory genes within the analysis of all genes, rather than via an
initial screening process; such a formal modeling approach offers
the potential for more incisive noise reduction and hence improved
prediction, but, until such approaches are available, some form of
prescreen is needed to address noise reduction.

The binary regression model was then fitted to the set of 100
selected genes by using the resulting SVD factors on the basis of
these 100 genes. Fig. 1A shows that the first of the resulting
‘‘supergene’’ factors provides a good discrimination between the
ER1 and ER2 cases. That this discrimination is related to many
genes among the 100 is clear from inferences on the gene regression
vector b indicating many significant values (not illustrated here).
Fig. 1B depicts the estimates of classification probabilities for the
training cases together with 90% probability intervals illustrating
the degree of uncertainty. This figure must be interpreted carefully;
it shows fitted classification probabilities for each of the 38 training
cases, thereby illustrating the in-sample discrimination rather than
prediction, and provides a useful visual assessment of how clearly
the samples are discriminated.

Genes can be ordered by the absolute values of the estimated
regression vector b vector to provide an assessment of their
relevance in the discrimination. The 100 genes, along with estimated
regression parameters, are published as Table 3 in the supporting
information on the PNAS web site. Fig. 2 depicts expression levels
of the genes, with each row representing an individual gene, ordered
from top to bottom according to the absolute values of the
estimated regression coefficients. The group of genes includes some
that function in the ER pathway, including the ER gene itself as well
as a number of known targets for ER (Table 1). Several others
contribute to the discrimination inversely with ER1 status (nega-
tive coefficients); some of these encode proteins known to have
inverse relationships with ER function, such as maspin and gluta-
thione S-transferase-Pi. Also included are genes that are not
regulated by ER but that are known to function in concert with ER,
such as those encoding HNF3a and androgen receptor; although
the model is not designed to discover regulatory mechanisms, these
factor models may generate clues about relationships among genes
that do indeed relate to underlying functional pathways.

Fig. 1C illustrates the formal and ‘‘honest’’ predictions for the
nine validation tumors. Some are quite surely predicted as of
either ER1 or ER2 status, but those in the central region are
of uncertain status, and the probability intervals reflect this
uncertainty. Tumor samples 45 and 46 were determined as ER2
by IHC at time of diagnosis but as ER1 by the later immuno-
blotting. This change in ER status could reflect an initial
borderline reading at the time of diagnosis that was more clearly
positive by immunoblot assay, or it could reflect tumor hetero-
geneity that influenced the assay based on sampling differences.
On the basis of the statistical analysis, the expression profiles are
strongly consistent with the immunoblotting results. Tumor
samples 14, 31, and 33 were initially determined to be ER1 by
IHC but ER2 by the later immunoblotting. Again, this differ-
ence could reflect tumor heterogeneity. In these cases, the
statistical analysis indicates an expression profile consistent with
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the initial determination of a positive ER status for tumor 31 and
the subsequent immunoblotting result of negative ER status for
tumor 33; for tumor 14, the expression profile yields an uncertain
prediction. This analysis highlights the use of model predictions
as a third test to compare with the IHC and immunoblotting
results. For the cases when the two biological tests conflict, the
analysis sometimes agrees with IHC and sometimes with immu-
noblotting, and in some it indicates a high degree of uncertainty
about ER status. This kind of information is then available for
review by oncologists; in some cases, ER status is simply difficult
to determine, because of either within-tumor heterogeneity or
changes over time in protein levels. The model analysis is
appropriately reflecting the ambiguities in such borderline cases.

Crossvalidation Analysis of ER Status and Honest Prediction. A major
practical interest and potential clinical value of such statistical
analyses lies in the ability to predict the status of new cases on the
basis of a gene expression profile, that is, to provide a rational
theoretically well-founded estimate of the probability of ER status
for any new case, accompanied by a realistic assessment of uncer-

tainty. Such uncertainties may be high due to limited information
and population heterogeneity, and it is critical that this uncertainty
be reported and communicated to clinical researchers and clini-
cians along with point estimates of outcome probabilities.

By using the set of 100 genes selected from the full training
sample study, the regression model was repeatedly refitted to the
training data, each time removing the ER status of one of the
tumors and then estimating the classification probability for that
tumor. This is a standard ‘‘one-at-a-time’’ crossvalidation analysis;
the status of each tumor in the training sample is predicted on the
basis of the remaining cases. Fig. 3A displays the predictions in a
format similar to Fig. 1B, with similar results. There is more
uncertainty about tumors in the mid-range, because these are now
predictions rather than fitted values. However, it is important to
note that the results in Fig. 3A do not provide a reliable guide to the
true predictive value, because they are based on the prescreened
subset of 100 genes that utilize the known ER status of all cases and
so bias toward a potentially over-optimistic discrimination.

For a true predictive assessment, gene screening and selection
may be performed separately in each ‘‘hold-one-out’’ analysis, so
mirroring the real-life circumstances that will be faced in using such
models and methods to predict future outcomes. In each of the 38
analyses, the “hold-one-out” analysis leads to a different subset of
100 screened genes. These subsets are highly overlapping but also
show up additional genes case by case, reflecting sample variability
and inherent heterogeneity in expression profiles. Fig. 3B illustrates
the results; uncertainty intervals tend to be fairly wide for tumors
whose predicted probabilities are in the central region, nearer 0.5
than 0 or 1, reflecting the ambiguity discovered in the expression
profiles of these cases relative to the 100 genes found to be most
discriminatory among the other 37 cases. These ‘‘uncertain’’ cases
are of obvious special interest for further study. Case 16 clearly has
an expression profile more in accord with those of the ER1 cases
than with those sharing its designated ER2 status. This case has a
low level of expression of the ER gene, consistent with its ER2
determination, but with relatively elevated levels of other genes in
the top group, such as a marginally elevated level of pS2. Cases 40
and 43 share similar expression characteristics with tumor 16,
exhibiting elevated levels of several known estrogen-regulated
genes. In some cases, the discrepancy in clinical classification versus
molecular classification is evident from the expression data. The
ER2 cases 16, 40, and 43, which are most borderline, exhibit
patterns that lie somewhere between the ER1 and ER2, as does
the ER1 case of tumor 11. Tumor 31, whose laboratory ER status

Fig. 1. Factor analysis for ER1yER2 comparison. (A) Pairwise factor analysis. Breast tumors depicted in a scatter plot on two dominant factors underlying 100 genes
selected in pure discrimination of the training cases. Each tumor is indicated by a simple index number (see Table 2) and is color coded, with red indicating ER1 cases
and blue indicating ER2 cases. Only the tumors in the training set are plotted. Factor 1 is clearly discriminatory (Factor 4 is chosen purely for display purposes). (B) Fitted
classification probabilities for training cases from the factor regression analysis. The values on the horizontal axis are estimates of the overall factor score in the
regression. The corresponding values on the vertical axis are fittedyestimated classification probabilities, with corresponding 90% probability intervals marked as
dashed lines to indicate uncertainty about these estimated values. Color coding is as described in A. (C) Predictive probabilities for ER status of each tumor in the
validation sample. The analysis was based on the selected subset of 100 genes in the full training sample analysis. Color coding is as described in A.

Fig. 2. Expression levels of top 100 genes providing pure discrimination of ER
status. Expression levels are depicted by color coding, with black representing the
lowest level, followed by red, orange, yellow, and then white as the highest level
of expression. Each column in the figure represents all 100 genes from an
individual tumor sample, which are grouped according to determined ER status.
Each row represents an individual gene, ordered from top to bottom according
to regression coefficients (see Table 3).
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determinations were conflicting, strongly exhibits a pattern consis-
tent with an ER1 state.

With these exceptions, the predictive accuracy of the analysis
is very high. In particular, 34 of 38 are predicted accurately with
a high degree of confidence. Thus, not only do these expression
patterns, derived from regression analysis, have the capacity to
classify on the basis of ER status, but they also have an ability
to honestly predict the ER status of unknown samples, demon-
strating the validity of the link between expression and clinical
phenotype. Note again the clear differences between this display
and that of Fig. 1B and the extent to which the clean classification
in Fig. 3A is shown to be less reliable than is suggested when
compared with the more relevant and appropriate results in Fig.
3B. In particular, the latter highlights the increased uncertainties
about cases 16, 40, and 43 in the middle ground.

Classification of Breast Cancer Based on Lymph Node Status. The
analysis of ER status demonstrates the power to predict the
status of samples with associated assessments of predictive
uncertainties. A second analysis concerns the clinically impor-
tant issue of metastatic spread of the tumor. The determination

of the extent of lymph node involvement in primary breast cancer
is the single most important risk factor in disease outcome (11),
and here the analysis compares primary cancers that have not
spread beyond the breast to ones that have metastasized to the
axillary lymph nodes at the time of diagnosis. The potential
power in making this determination from the primary cancer is
significant in those instances where a positive lymph node might
be missed or where a tumor is poised to metastasize to the lymph
node but has not yet done so.

We identified tumors as ‘‘reported negative’’ when no positive
lymph nodes were discovered and ‘‘reported positive’’ for tumors
with at least three identifiably positive nodes, resulting in 12
reported positives (1) and 22 reported negatives (0). After
screening to select the ‘‘top 100’’ most correlated genes, the first
factor of the SVD provides discrimination according to nodal
status (Fig. 4A). The crossvalidation probabilities from the
binary regression model analysis, together with estimated un-
certainties, are shown in Fig. 4B. As in the ER study, this first
analysis uses the overall screened subset of 100 genes; it is of
interest to demonstrate the very clear discriminatory ability of
this subset of genes and hence underscore the potential for

Table 1. Genes that contribute to discrimination of ER status

Rank Weight Unigene cluster Estrogen relation Ref.

1 0.08 Trefoil factor 1 (pS2) Estrogen induced 15, 16

2 0.079 ER ER

3 0.067 Cytochrome P450, subfamily IIB

4 0.064 Trefoil factor 3 Estrogen induced 17

5 0.061 (Insulin-like growth factor) Estrogen induced 18, 19

6 0.057 Human clone 23948 mRNA sequence

7 0.056 Microtubule-associated protein t Estrogen induced 20

8 0.055 Hepsin

9 0.048 GATA-binding protein 3 Co-expressed with ER 21–23

10 0.047 v-myb avian myeloblastosis viral oncogene homolog Estrogen induced 24, 25

11 20.043 Serine proteinase inhibitor, clade B, member 5 (Maspin) Induced by tamoxifen; inverse with ER 26, 27

12 0.041 N-acetyltransferase 1

13 20.041 S100 calcium-binding protein A9

14 20.041 Retinoic acid receptor responder 1

15 20.039 Small inducible cytokine subfamily D, member 1

16 0.039 Hepatocyte nuclear factor 3 a Synergistic with ER 28

17 0.038 37-kDa leucine-rich repeat protein

18 0.038 (Androgen receptor) Physical interaction with ER 29

19 20.038 Cathepsin C

20 0.037 Inositol polyphosphate-4-phosphatase, type II, 105 kD

21 0.036 Purinergic receptor P2X, ligand-gated ion channel, 4 Estrogen biosynthesis 30, 31

22 20.036 KIAA0125 gene product

23 0.036 (Neuropeptide Y receptor Y1)

24 0.035 Meis (mouse) homolog 3

25 0.035 LIV-1 protein Estrogen induced 32

26 0.034 (CCAAT displacement protein)

27 0.032 Postmeiotic segregation increased 2-like 3

28 20.031 Secretory leukocyte protease inhibitor

29 0.029 Carboxypeptidase B1

30 0.027 KIAA0430 gene product

31 20.027 Glutathione S-transferase p Inverse relation with ER 33

32 0.025 GATA-binding protein 3 Estrogen induced 21–23

33 0.023 X-Box-binding protein 1

34 20.023 Lactate dehydrogenase B

35 0.022 5T4 oncofetal trophoblast glycoprotein

36 0.022 (Fructose-1,6-biphosphatase)

37 0.021 Androgen receptor Physical interaction with ER 29

38 0.021 Cysteine-rich protein 1

39 0.021 Cytochrome C oxidase subunit vic

40 20.02 Singed (Drosophila)-like

Genes are listed according to the discriminatory ranking, with gene 1 having the greatest weight in the discrimination. Negative values indicate an inverse
correlation with ER1 status (and thus a positive correlation with ER2 status).
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underlying biological interpretation. This analysis again provides
a good classification based on lymph node status, quite compa-
rable to that for the ER discrimination.

Fig. 4C illustrates the practically relevant crossvalidation
analysis that adopts a screen to select potentially different genes
for each hold-out case. The differences relative to the situation
in Fig. 4B are clear—several tumors whose predictions are now
moved into the mid-range of '0.5 probability and increased
uncertainties about predicted probabilities. The screened subsets
of 100 most discriminatory genes vary more widely than that seen
in the ER analysis as we move across tumors, reflecting higher
levels of natural variation in gene expression patterns with
respect to nodal status. All of the reportedly positive cases have
estimated probabilities appropriately above 0.5, although some
are close to that boundary with moderate uncertainty. Perhaps
most interesting are the few reportedly negative cases whose
predicted probabilities slightly exceed 0.5. Cases like this are of
paramount interest, because identifying genomic predictors of
the progression from node negative to positive is a major goal

from the viewpoint of potential therapeutic implications. These
cases could, in principle, represent tumors that have metasta-
sized but were missed in the nodal determination; or, these could
be cases that have not yet metastasized but are poised to do so.
This analysis of nodal status provides a clear illustration of the
importance of honest crossvalidatory studies of predictions in
gauging the validity of the classification. Whereas Fig. 4 A and
B show clean separation on the basis of nodal status, honest
crossvalidation predictions reveal realistic levels of uncertainty,
likely due to heterogeneity in the profiles and the clinical
phenotypes, and stress the importance of the validation studies
to verify the significance of the classification. Nevertheless, it
remains true that the analysis does identify gene expression
patterns that have predictive capability. Clearly, it is the analysis
of those tumors in the uncertain region that must be the focus
of further studies.

Discussion
Recent studies of breast cancer (7, 12), leukemia (4), and
lymphoma (5) have shown that the analysis of patterns of gene

Fig. 3. Out-of-sample crossvalidation predictions of ER status. (A) One-at-a-time crossvalidation predictions of classification probabilities for training cases from
the factor regression analysis. The values on the horizontal axis are estimates of the overall factor score in the regression. The corresponding values on the vertical
axis are estimated classification probabilities with corresponding 90% probability intervals marked as dashed lines to indicate uncertainty about these estimated
values. The analysis and predictions for each tumor are based on the screened subset of 100 most discriminatory genes to parallel current practice in expression
studies by other groups. (B) One-at-a-time crossvalidation predictions of classification probabilities for training cases in the ER study, in a format similar to that
of A. In this instance, each case is predicted only on the basis of the ER status of the remaining training tumors, with the subset of 100 genes reselected in each
case. The figure presents the resulting honest uncertainties about the extent of true predictive accuracy in a practical setting, reflecting inherent variability due
to heterogeneity of expression profiles.

Fig. 4. Analysis for nodal comparisons. (A) Pairwise factor analysis. Breast tumors depicted in a scatter plot on two dominant factors underlying 100 genes
selected in pure discrimination according to nodal status. Each tumor is indicated by a simple index number (see Table 2) and is color coded, with red indicating
node positive cases with at least three identified positive nodes and blue indicating lymph node negative cases. Factor 1 is clearly discriminatory (Factor 3 is chosen
purely for display purposes). (B) One-at-a-time crossvalidation predictions of classification probabilities in nodal analysis. The values on the horizontal axis are
estimates of the overall factor score in the regression. The corresponding values on the vertical axis are estimated classification probabilities, with corresponding
90% probability intervals marked as dashed lines to indicate uncertainty about these estimated values. The analysis and predictions for each tumor are based
on the screened subset of 100 most discriminatory genes. (C) One-at-a-time crossvalidation predictions in the nodal study, in a format similar to that of A. Each
case is predicted only on the basis of the nodal status of the remaining training tumors, with the subset of 100 genes reselected in each case. As such, the analysis
exhibits the resulting uncertainties about the extent of true predictive accuracy in a practical setting, reflecting inherent variability due to heterogeneity of
expression profiles.
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expression has the capacity to classify tumors as well as to define
tumor subtypes. The analyses presented here further demon-
strate that clinically relevant phenotypes can be determined for
primary breast tumor samples through the analysis of gene
expression. We take gene expression phenotyping further in
developing predictive analyses that brings gene expression anal-
ysis to real-world clinical applicability, facilitating the use of
complex gene expression patterns as discrete prognostic or
predictive factors. Similar studies have used gene expression
profiles in out-of-sample crossvalidation studies, and most ap-
proaches use some form of initial gene screening to select
discriminatory subsets; we have stressed and illustrated the
practical importance of repeating such gene screening exercises
within each crossvalidation to adequately assess realistic uncer-
tainties about predictions and avoid misleading confidence in
predictive accuracy and validity.

Classifications of leukemias and lymphomas that have been
achieved in recent analyses of gene expression patterns represent
a significant step in the development of methodologies to
phenotype tumors (4, 5). The analysis of breast cancer pheno-
types likely represents a context of considerably more biological
heterogeneity, reflecting subtle aspects of tumor phenotype. As
such, that the crossvalidation predictions reveal tumors with an
uncertain classification, particularly for the lymph node analysis,
is not unexpected. Indeed, it would be surprising to find that such
an analysis would yield two cleanly separated groups. In this
context, it is critical to develop methods, as we report here, that
not only validate classifications with out-of-sample crossvalida-
tion methods, but that also provide appropriate and adequate
assessments of the inherent uncertainties found with such pre-
dictions. The predictive or prognostic capacity demonstrated
here is particularly relevant because clinical decision making
depends on a rational, theoretically well-founded model for
assessing clinical data from new patients. Because such prog-
nostic and predictive factors are couched in probabilistic lan-
guage, clinicians can make judgments on the basis of unbiased
assessments of the uncertainties in a classification.

The assay of ER status by immunohistochemistry is far from
perfect and can produce erroneous results, as highlighted by our
study. In addition, such assays would not score alterations that
disable the ER pathway, as opposed to the receptor itself. Thus,
if the clinically significant determination is the status of the
pathway, not just the status of ER itself, then measurements of
gene expression profiles that reflect the activity of the pathway

could provide an important advance in understanding the be-
havior of breast cancers. The finding that the group of genes that
contribute most weight to the discrimination includes not only
ER and ER pathway genes but also genes that encode proteins
that synergize with ER, such as HNF3a and androgen receptor,
points to the potential power of the analysis in identifying
functionally significant relationships.

An additional important benefit of these analyses is the
potential for identifying gene pathways underlying an observed
phenotype. A key point is the capacity to identify not just highly
expressed genes but genes whose expression highly correlates
with the phenotype, regardless of level of expression. Perhaps
most important is the fact that these analyses identify not only
genes expected to be involved in the phenotype (ER-regulated
genes), thus validating the process, but also genes for which a
connection is not immediately clear. It is the identification of this
latter group of genes that represents a major focus of these
studies—the use of expression analysis to identify genes that
highly correlate with the observed phenotype, thus providing
additional insight into the underlying biological pathways.

Finally, we note that the presence of metastatic breast cancer
in axillary lymph nodes is the most significant factor in overall
survival (11). Although the determination of lymph node status
is relatively routine, the surgical procedure is highly invasive, and
selectivity in the process of identifying nodes for examination
induces biases that suggest some reported negatives may indeed
be truly positive (13, 14). Further, the ability to accurately
predict axillary lymph node status on the basis of an expression
profile of the primary tumor may obviate the need for axillary
lymph node dissection and the significant morbidity associated
with this procedure. Perhaps of more significance is the patient
with truly negative lymph nodes but with a primary tumor that
is poised to metastasize. Much more data are needed to deter-
mine the precision of the predictive capability for lymph node
status, but it is clearly possible that a gene expression profile
could predict metastatic potential even in the absence of re-
portedly positive nodes.

We are grateful to the editor and two reviewers for their comments on
an earlier version of the paper. This work was supported by the Duke
SPORE in Breast Cancer (CA 68438), the Early Detection Research
Network (CA 84955), and pilot project funds from the Duke Compre-
hensive Cancer Center. J.R.N. is an Investigator of the Howard Hughes
Medical Institute. R.S. and H.Z. were partially supported as postdoctoral
fellows of the National Institute of Statistical Sciences.

1. Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. & Levine, A. J. (1999)
Proc. Natl. Acad. Sci. USA 96, 6745–6750.

2. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon,
R., Yakhini, Z., Ben-Dor, A., et al. (2000) Nature (London) 406, 536–540.

3. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su,
Y. A. & Trent, J. M. (1996) Nat. Genet. 14, 457–460.

4. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller,
H., Loh, M. L., Downing, J. R., Caligiuri, M. A., et al. (1999) Science 286, 531–537.

5. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick,
J. C., Sabet, H., Tran, T., Yu, X., et al. (2000) Nature (London) 403, 503–511.

6. Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S. B., Pohida, T., Smith, P. D., Jiang,
Y., Gooden, G. C., Trent, J. M., et al. (1998) Cancer Res. 58, 5009–5013.

7. Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T.,
Pergamenschikov, A., Williams, C. F., Zhu, S. X., Lee, J. C. F., et al. (1999) Proc. Natl. Acad.
Sci. USA 96, 9212–9217.

8. Ciocca, D. R., Fujimura, F. K., Tandon, A. K., Clark, G. M., Mark, C., Lee Chen, G. J.,
Pounds, G. J., Vendely, P., Owens, M. A. & Pandian, M. R. (1992) J. Natl. Cancer Inst. 84,
1279–1282.

9. Tandon, A. K., Clark, G. M., Chamness, G. C., Ullrich, A. & McGuire, W. L. (1989) J. Clin.
Oncol. 7, 1120–1128.

10. Muss, H. B., Thor, A. D., Berry, D. A., Kute, T., Liu, E. T., Lerner, F., Cirrincione, C. T.,
Budman, D. R., Wood, W. C. & Barcos, M. (1994) N. Engl. J. Med. 331, 211.

11. Shek, L. L. & Godolphin, W. (1988) Cancer Res. 48, 5565–5569.
12. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P.,

Gusterson, B., Esteller, M., Kallioniemi, O.-P., et al. (2001) N. Engl. J. Med. 344, 539–548.
13. Kjaergaard, J., Blichert-Toft, M., Andersen, J. A., Rank, F. & Pedersen, B. V. (1985) Br. J.

Surg. 72, 365–367.
14. Hill, A. D., Tran, K. N., Akhurst, T., Yeung, H., Yeh, S. D., Rosen, P. P., Borgen, P. I. &

Cody, H. S. (1999) Ann. Surg. 231, 148–149.
15. Jeltsch, J. M., Roberts, M., Schatz, C., Garnier, J. M., Brown, A. M. & Chambon, P. (1987)

Nucleic Acids Res. 15, 1401–1414.

16. Berry, M., Nunez, A. M. & Chambon, P. (1989) Proc. Natl. Acad. Sci. USA 86, 1218–1222.
17. May, F. E. & Westley, B. R. (1997) J. Pathol. 182, 404–413.
18. Richmond, R. S., Carlson, C. S., Register, T. C., Shanker, G. & Loeser, R. F. (2000) Arthritis

Rheum. 43, 2081–2090.
19. Cardona-Gomez, G. P., Chowen, J. A. & Garcia-Segura, L. M. (2000) J. Neurobiol. 43,

269–281.
20. Matsuno, A., Takekoshi, S., Sanno, N., Utsunomiya, H., Ohsugi, Y., Saito, N., Kanemitsu,

H., Tamura, A., Nagashima, T., Osamura, R. Y., et al. (1997) J. Histochem. Cytochem. 45,
805–813.

21. Hoch, R. V., Thompson, D. A., Baker, R. J. & Weigel, R. J. (1999) Int. J. Cancer 84,
122–128.

22. Yang, G. P., Ross, D. T., Kuang, W. W., Brown, P. O. & Weigel, R. J. (1999) Nucleic Acids
Res. 27, 1517–1523.

23. Bertucci, F., Houlgatte, R., Benziane, A., Granjeaud, S., Adelaide, J., Tagett, R., Loriod, B.,
Jacquemier, J., Viens, P., Jordan, B., et al. (2000) Hum. Mol. Genet. 9, 2981–2991.

24. Jeng, M. H., Shupnik, M. A., Bender, T. P., Westin, E. H., Bandyopadhyay, D., Kumar, R.,
Masamura, S. & Santen, R. J. (1998) Endocrinology 139, 4164–4174.

25. Gudas, J. M., Klein, R. C., Oka, M. & Cowan, K. H. (1995) Clin. Cancer Res. 1, 235–243.
26. Shao, Z. M., Radziszewski, W. J. & Barsky, S. H. (2000) Cancer Lett. 157, 133–144.
27. Martin, K. J., Kritzman, B. M., Price, L. M., Koh, B., Kwan, C. P., Zhang, X., Mackay, A.,

O’Hare, M. J., Kaelin, C. M., Mutter, G. L., et al. (2000) Cancer Res. 60, 2232–2238.
28. Robyr, D., Gegonne, A., Wolffe, A. P. & Wahli, W. (2000) J. Biol. Chem. 275, 28291–28300.
29. Panet-Raymond, V., Gottlieb, B., Beitel, L. K., Pinsky, L. & Trifiro, M. A. (2000) Mol. Cell

Endocrinol. 167, 139–150.
30. Gillman, T. A. & Pennefather, J. N. (1998) Clin. Exp. Pharmacol. Physiol. 25, 592–599.
31. Schmidt, M. & Loffler, G. (1998) Eur. J. Immunol. 252, 147–154.
32. el-Tanani, M. K. & Green, C. D. (1996) Mol. Cell Endocrinol. 121, 29–35.
33. Gilbert, L., Elwood, L. J., Merino, M., Masood, S., Barnes, R., Steinberg, S. M., Lazarous,

D. F., Pierce, L., d’Angelo, T., Moscow, J. A., et al. (1993) J. Clin. Oncol. 11, 49–58.

West et al. PNAS u September 25, 2001 u vol. 98 u no. 20 u 11467

G
EN

ET
IC

S


