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A key idea in Lashley’s formulation of the problem of serial order
in behavior is the postulated neural representation of all serial
elements before the action begins. We studied this question by
recording the activity of individual neurons simultaneously in small
ensembles in prefrontal cortex while monkeys copied geometrical
shapes shown on a screen. Monkeys drew the shapes as sequences
of movement segments, and these segments were associated with
distinct patterns of neuronal ensemble activity. Here we show that
these patterns were present during the time preceding the actual
drawing. The rank of the strength of representation of a segment
in the neuronal population during this time, as assessed by dis-
criminant analysis, predicted the serial position of the segment in
the motor sequence. An analysis of errors in copying and their
neural correlates supplied additional evidence for this code and
provided a neural basis for Lashley’s hypothesis that errors in
motor sequences would be most likely to occur when executing
elements that had prior representations of nearly equal strength.

The problem of serial order in behavior is pervasive. As
pointed out by Lashley (1), serial order is fundamental to all

forms of skilled action, from speech to typing to reaching and
grasping. He further believed that ‘‘analysis of the nervous
mechanisms underlying order in the more primitive acts may
contribute ultimately to the solution of the physiology of logic’’
(1). Speech is a prime example of elements organized serially at
different levels: phonemes are uttered serially to make a syllable,
syllables are strung serially to complete a word, words are
emitted serially to make a sentence, etc. In other motor actions,
simple movements are emitted serially to execute an integrated
sequence (e.g., to reach for, grasp, and bring a cup to the mouth),
a series of such sequences is performed to complete a task (e.g.,
get dressed), etc. In addition, arbitrary sequences can be learned
and executed at ease (2). One common element in all these
examples is the serially ordered nesting of lower-order units of
action (e.g., phonemes, simple movements) within higher-order
units (e.g., syllables, integrated motor sequences such as drawing
a shape).

Lashley’s major theoretical stance was the rejection of asso-
ciative chaining theories, and the suggestion of an alternative
model based on parallel response activation (1). A wealth of
psychophysical evidence for this latter model has been gathered
in speech and typing (3, 4), and theoretical models based on the
idea of parallel response activation have also been developed
(5–7). Lashley postulated the cotemporal activation of serially
ordered action units: ‘‘There are indications that, before the
internal or overt enunciation of the sentence, an aggregate of
word units is partially activated or readied’’ (1). He also postu-
lated a scanning mechanism by which these cotemporal repre-
sentations could be translated into serial actions: ‘‘indications . . .
that elements of the [sequence] are . . . partially activated before
the order is imposed on them in expression suggest that some
scanning mechanism must be at play in regulating their temporal
sequence. The real problem, however, is the nature of the
selective mechanism by which the particular acts are picked out
in this scanning process and to this problem I have no answer’’ (1).

In these experiments we sought to (i) test Lashley’s hypothesis
above on cotemporal activation of action representations, (ii)
seek a neural code for the serial order of these cotemporal
representations, and (iii) use this code to investigate several
aspects of serial order behavior. For that purpose, we trained two
monkeys to copy simple geometrical shapes, which they drew as
a series of movement segments. We then investigated the neural
representation of the serial order of these segments in the
prefrontal cortex, an area with an established role in serial
ordering of motor actions and working memory (8, 9). Frontal
lobe damage in human subjects disrupts serial integration of
motor acts (10–12), and lesions of the prefrontal cortex in
monkeys severely impair memory for the serial order of visual
stimuli (13). Moreover, single cell recordings have identified
prefrontal�premotor (A. F. Carpenter, G. Pellizzer, and A.P.G.,
unpublished observations) and motor (14) cortical cells coding
for serial position in a context–recall task. Finally, with respect
to the execution of motor sequences, neurophysiological studies
(14–24) have demonstrated various kinds of sequence-specific
engagement of single cells in several frontal areas (e.g., prefron-
tal, supplementary motor, dorsolateral premotor, primary motor
cortex). However, these studies have not dealt explicitly with the
cotemporal neural representation of serial order, which was the
focus of this study. Here we provide evidence that all serial
elements of a movement sequence are represented in an orderly
fashion in the prefrontal cortex before the action begins.

Materials and Methods
Subjects and Task. Two male rhesus macaques (M157 and M555,
8–10 kg body weight) were trained to draw geometric figures
shown on a liquid crystal display projection screen, using a freely
moving X–Y joystick with the left hand (model 541 FP, Mea-
surement Systems, Norwalk, CT). The screen was located at a
distance of 47 cm from the monkey. The task proceeded as
follows. At the end of the intertrial period, a solid white start
circle was presented on the left half of the screen. The monkey
moved a cursor controlled by the joystick into the start circle to
initiate a trial. The trial began with a waiting time (1 s for M157,
2 s for M555), during which there was nothing on the screen
except the start circle and the cursor. If the monkey moved the
cursor outside of the start circle during the hold period the trial
was aborted. At the end of the hold period a shape was presented
on the right half of the screen (M157 was trained to draw upright
triangles, squares, trapezoids and an inverted triangle; M555 was
trained to draw upright triangles and squares), and the cursor
began leaving a trace on the left half of the screen. The monkey
then had to use the joystick-controlled cursor to draw the shape
presented. A trial was terminated if the monkey’s trajectory
strayed beyond a tolerance window. A correct trial was regis-
tered if the monkey completed the trajectory and returned to the
start circle without straying outside the tolerance window. After
a correct trial the monkey was given a juice reward. Trials were

Abbreviations: WT, wait time; RT, reaction time.
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presented in blocks of shapes. M157 drew shapes in five blocks;
the order of the shapes within a block was pseudorandomized.
Each shape had to be drawn correctly 6 times before the next
shape in the block was presented. Thus, 30 drawings were
produced for each of four shapes in a complete set. M555 drew
shapes in one block of 30 trials of each shape. The order of the
shapes was pseudorandomized across sets. The x–y position of
the joystick was sampled at 200 Hz. Care and treatment of the
animals during all stages of the experiments conformed to the
principles outlined in Principles of Laboratory Animal Care
(NIH publication no. 86-23, revised in 1995). All experimental
protocols were approved by the appropriate Institutional Review
Boards.

Neural and Behavioral Data Acquisition. The electrical activity of
single neurons was recorded extracellularly by using 16 inde-
pendently driven microelectrodes (Uwe Thomas Recording,
Marburg, Germany) (25, 26). We recorded all cells encountered
and analyzed all active cells recorded without any preselection.
For each monkey, the recording chamber was made of titanium,
and the inside diameter was 7 mm. The recording chamber was
placed on the skull overlying the peri-principalis area in the right
hemisphere, using stereotaxic coordinates and information ob-
tained from MRI using a GE 1.5T magnet before their implan-
tation; coronal images were taken every 1.5 mm. All surgical
procedures were done aseptically under general gas anesthesia.
Eye position was monitored by using a scleral search coil
technique (CNC Engineering, Seattle) (27, 28). The horizontal
and vertical components of the eye position were recorded at a
sampling rate of 200 Hz simultaneously with neural recordings.

Analyses. Motor trajectories were filtered (29) and differentiated
with respect to time. The trajectories were then segmented by
finding positive going zero acceleration crossings. If multiple
submovements near a vertex were present, the zero crossing
closest to the vertex was used. For M555, the triangle and the
square were divided into 3 segments, because the square drawn
usually had only 2 zero crossings. For M157, the triangle was
divided into 3 segments, the square into 5, the trapezoid into 3,
and the inverted triangle into 4.

We used standard linear discriminant analysis (30) to analyze
the segment data. The function DDSCRM of IMSL (Visual
Numerics, Houston) was used to carry out all discriminant
analyses. First, each trial was divided into a sequence of epochs,
with each epoch spanning the drawing of a single segment of a
shape. Then, the average firing rate during the drawing of each
segment was calculated for all of the cells in an ensemble; these
patterns of ensemble activity can be considered neural repre-
sentations of the segments. Next, the ensemble pattern for each
segment was averaged across correct trials and used to derive
discriminant classification functions for that ensemble, namely
one classification function per segment. These functions were
then used to classify particular ensemble activity patterns as
belonging to a specific segment. For that purpose, we calculated
the posterior probability that the pattern belonged to different
segments, and the pattern was classified as belonging to the
segment category with the highest posterior probability, i.e., the
‘‘most probable’’ segment. The constraint was imposed that
ensemble activity patterns in a given trial were classified only to
those segments belonging to the shape drawn on that trial.

Two separate analyses were conducted. In the first, ensemble
activity patterns were calculated in successive 25 ms bins
throughout the waiting time (WT), the reaction time (RT), and
throughout the drawing period. In the second analysis, the
ensemble activity was averaged across the time in which the
monkey drew each segment, rather than in 25 ms bins. In both
bin- and segment-based analyses, firing rates were first converted
to fractional interspike intervals (31) and then log-transformed,

because neuronal responses are commonly proportional to the
baseline activity level (32–34); the log-transformation normal-
izes distributions of the measurements and stabilizes their vari-
ance. Transformed activity patterns were then classified to the
segments as above. The percent correct classification perfor-
mance for the segments was assessed by using leave-one-out
cross validation. Thus, new activity patterns were classified by
using discriminant functions that were derived from all correct
trials except the trial in which the pattern was recorded. In the
segment-based analysis, ensemble activity patterns on both
correct and error trials were classified. In the case of the
classification of error trials, classification functions were derived
by using correct trials truncated to the mean length of the error
trials (error trials were shorter).

It is important to assess how clear-cut is the outcome of a
classification. Obviously, this reduces to assessing the prepon-
derance of the segment with the highest posterior probability
(S1) over the segment with next lower probability (S2): the

Fig. 1. Shapes drawn, behavioral task and ensemble raster for one trial. (a)
The four shapes drawn by the monkeys. The circle at the center of the top
indicates the starting point for each shape. The arrow indicates the direction
in which the shapes were copied. (b) The screens indicate the display during
each of the phases of a single trial. The monkey had to maintain the cursor in
the start hold circle for the WT. At the end of the WT, a template appeared and
the monkey drew the shape. Shapes were drawn in blocks of trials such that
several trials of the same shape had to be completed before a new shape was
presented. This gave the monkey knowledge of the shape during the WT,
before the template appeared. The raster at the bottom shows a single trial for
16 simultaneously recorded cells.
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greater the distance between these two probabilities, the more
secure the outcome of the classification. We evaluated this
question by calculating the ratio S1�S2 and assessing its statistical
significance across the whole population; for the latter objective,
the S1�S2 ratios were log-transformed to normalize their distri-
butions. Then, a paired t test was performed on the difference
of these logratios and the antilog of the mean logratio difference
computed (i.e., the geometric mean) to express the results in the
original ratio scale.

Finally, we developed a metric built on the bin-based analysis
to quantify the strength with which each ensemble represented
the various segments in a shape across time, as follows. Each trial
was converted to a sequence of represented segments by clas-
sifying the ensemble activity pattern in successive bins to seg-
ments, as described above. Then, across trials, we counted the
number of trials that the ensemble activity was classified to each
segment in a given bin. In that bin, the representation strength
of each segment was then defined simply as the percentage of the
total trials that the activity in that bin was classified to each of
the segments. The representation strength is therefore the
probability of representation of each segment in a bin. Aggre-
gating these bin-wise data across all ensembles produced the
representation strength functions of Fig. 2, which characterize
the strength with which each segment is represented within
prefrontal cortex across time.

Results and Discussion
Monkeys drew a total of four geometrical shapes shown as
templates on a screen (Fig. 1). Individual copying trajectories
consisted of consecutive submovements characterized by bell-
shaped velocity profiles. These submovements were serially
ordered segments of the whole trajectory, qualitatively analo-

gous, e.g., to phonemes in syllables. In both cases, the serially
ordered segments, succeeding each other in time without inter-
ruption, give rise to a continuous motor output, namely drawing
a shape or uttering a syllable. We recorded the activity of 511
cells in the prefrontal cortex during the copying task. These cells
were located within Walker’s area 46 in the dorsal and ventral
banks of the posterior principal sulcus, and immediately adjacent
gyral cortex. Fig. 1b illustrates the impulse activity from 16 cells
recorded simultaneously. Small ensembles of 3–22 cells (mean �
9 cells, n � 58 ensembles) were recorded simultaneously. In
�97% of cases, the ensemble activity patterns differed signifi-
cantly among segments of a shape (multivariate ANOVA, Wilks’
Lambda, P � 0.05) and, therefore, could be used for classifica-
tion purposes. We found that, across the whole population, the
posterior probability of the winner segment was, on the average,
14.5 times higher than that of first runner up segment (geometric
mean, see Materials and Methods), a significant value (P � 10�20,
paired t test). These findings document the validity of the
classification outcomes from which the following results were
obtained.

Strength of Segment Representation. Shapes were copied in blocks
of trials (see Materials and Methods). This provided advance
knowledge to the monkeys during the WT (Fig. 1) concerning
the shape they would copy; this was true for all but the first trial
of the block which was not included in the analysis. Because a
shape was drawn as a sequence of distinct segments, this
advanced knowledge could be manifested as a proactive repre-
sentation of the segments to be drawn during the WT and RT.
Fig. 2 shows the time courses of the strength of representation
of each segment during the WT, RT, and the drawing of each
segment for several shapes copied. It can be seen that during the

Fig. 2. Plots for all four shapes of strength of representation vs. time. Each plot shows the strength of the representation of each segment for each time bin
of the task. Time 0 indicates the onset of the template. Time bins during hold period and RT are 25 ms. Length of segments were normalized to permit averaging
across trials. Plots show parallel representation of segments before initiation of copying. Further, rank order of strength of representation before coping
corresponds to the serial position of the segment in the series. The rank order evolves during the drawing to maintain the serial position code. Line color
corresponds to segments as follows: yellow, segment 1; green, segment 2; red, segment 3; cyan, segment 4; magenta, segment 5. Not all lines are defined for
all shapes.
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WT and the RT, the rank order of the strength of representation
corresponds to the serial order of the segments. For example, a
triangle was drawn in three segments [T1, T2, T3]. The rank
order of the strength of representation S during the WT and RT
of [T1, T2, T3] was ST1 � ST2 � ST3, which corresponded to their
serial position in the drawing: T1 (first), T2 (second), T3 (third).
These results identified the strength of the representation of a
segment in the population before drawing the shape as the
determinant of the serial position of that segment in the shape
drawn later. This relationship held for all shapes drawn, as can
be seen in Fig. 2. In addition, there was an orderly temporal
evolution of the strength of segment representation during the
execution of the trajectories, as follows. The representation of a
given segment peaked at roughly the middle of its execution and
then began to fall. The representation of the following segment
began to rise at roughly the middle of the current segment.
Finally, the representation of the previous and subsequent
segments crossed at approximately the point where the execution
of the subsequent segment began. These patterns of time courses
indicate that the drawing of a multisegment trajectory is actually
an instance of a serial order process and support the hypothesis
that the strength of segment representation is the neural code for
serial order. Inhibitory interactions between prefrontal neurons
may be part of the mechanism by which distinct ensemble activity
patterns are established, a process known to play a role in the
control of sequential events in prefrontal cortex (35). These
results provide strong support for Lashley’s (1) hypothesis that
before the execution of a sequence all elements are simulta-
neously represented in a form of parallel response activation. In
addition, our findings partially elucidate the kind of coding

scheme by which the serial order of the shape segments to be
drawn is represented during the time period preceding the
drawing of the shape. This code is reflected in the strength of the
representation of a given segment in the population and, as such,
alleviates the need for a separate, qualitatively distinct mecha-
nism of the serial order itself, a mechanism postulated by Lashley
(the ‘‘schema of order,’’ ref. 1). A related question is what aspect
of the segment is being coded in this activity. In a separate
multiple linear regression analysis taking into account multiple
aspects of each of the segments in the drawn copy, it was found
that the serial position of the segment in the sequence compris-
ing the shape was a prominent effect in the population that was
statistically independent from the effects of other motor vari-
ables such as direction (unpublished observations).

Serial Order Errors and Their Neural Correlates. Serial order pro-
cesses possess a number of interesting behavioral characteristics.
For example, errors in serial order tasks are characterized by a
U-shaped serial position curve (36), such that performance
(expressed, e.g., as percent correct) is better for early (i.e.,
primacy effect) and late (i.e., recency effect) elements, but
poorer for elements in the middle of the sequence. This error
pattern is observed for various such tasks across species (37).
Indeed, we found a similar pattern of errors in our behavioral
data (Fig. 3). Thus for most of the shapes, there were more errors
committed during the execution of the middle segments of the
shapes, than during the execution of the early or late segments.
Interestingly, the strengths of the neural representations during
the drawing of individual segments (Fig. 2) mirrored the serial
position curves. Thus, when the whole shape was correctly

Fig. 3. Serial position curves and classification performance on correct and error trials. (a) Graphs show the percent correct performance for each segment for
each shape. The primacy�recency effect can be see in the higher percent correct performance for the early and late segments of a shape, and the relative decrease
in performance for the middle segments of the shape. (b) Classification performance (mean � 2 SEM) on correct (green lines) and error (red lines) trials. The neural
activity pattern of each segment was classified by using the discriminant analysis. The neural activity patterns during the correct trials classified as the current
segment much more often than the neural activity patterns during the error trials.
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drawn, the strength of the representation of the first and last
segments was much higher than the strength of representation of
the middle segments. We suppose that the strength of segment
representation corresponds to performance, such that the stron-
ger the representation the more likely would be a correct
drawing of that segment. This would explain the high percent
correct values for the first and last segments, i.e., the segments
with strong representations. By the same token, the weaker
representations of the middle segments would render them more
prone to errors, as observed in the serial position error curve
mentioned above.

In addition, we analyzed the neural activity during the error
trials by examining the distribution of segments to which the
error segment was classified and comparing this distribution to
that observed during correct trials. The results are shown in Fig.
3. It can be seen that when the shape was copied correctly, the
current segment was classified in the proper serial position most
of the times (in �70% of trials, on the average), whereas, when
an error occurred, the current (error) segment was classified in
the correct serial position much less frequently (in �35% of
trials, on the average). This effect was statistically significant
across all shapes and segments of both monkeys (ANOVA; F
test, P � 0.0005).

Given that the neural activity during error trials was being
misclassified much more often than it is during correct trials, we
wanted to find out whether there was any systematic aspect to the
misclassification during the error trials. In other words, if the
neural activity was not representing the current segment being
drawn, which segment was it representing? To investigate this,
we plotted the segment to which the current segment was being
classified on error and correct trials. We know that even during
the execution of correct segments, the population is representing
the other segments of the trajectory; this is the basis of the
parallel representation. This can be seen in Fig. 2 by the nonzero
probabilities of representation of segments other than the cur-
rent segment being drawn, and also in Fig. 4 (green curve); the
representation of the previous and following segments are
approximately symmetric around the peak of the representation

of the current segment. Now, the error data plotted in Fig. 4 (red
curve) reveal a different picture. On error trials, segments
subsequent to the current segment being drawn have an in-
creased probability of representation. Thus, when the monkey
commits an error, it is, on average, getting ahead of itself, and
representing a subsequent segment prematurely.

This analysis of the errors and their neural correlates is
connected closely to Lashley’s ideas concerning error patterns in
sequential behaviors. Indeed, he based most of his arguments for
rejecting associative chaining theories of serial order behavior on
the error patterns he observed in his own typing, a pattern which
was rigorously documented later (3). A common finding across
typing (3), writing (38), and speech (4) is that transposition
errors, defined as the switching of elements of the sequence, are
one of the most common classes of errors. Indeed, transposition
errors are considered one of the cardinal characteristics of serial
order processes, and formal models of serial order behavior,
based on parallel response activation, have generally been based
on reproducing these error patterns (5–7). With respect to neural
coding, specific models have made certain predictions regarding
the neural activity associated with transposition errors. Inter-
estingly, the neural response profiles predicted by Houghton’s
model (6) mirror our empirically derived strength of represen-
tation quite accurately. Furthermore, most of these models
generate transposition errors by allowing for noise in the
strength of activation of the separate elements of the sequence.
As can be seen in our data, noisy representation patterns would
lead to a switch in the segment that had the strongest represen-
tation across the population, usually leading to an adjacent
element of the sequence being represented. As can be seen in
Fig. 4, during errors, subsequent segments were usually being
represented, though a complete transposition could not occur in
our task because a trial was aborted when the monkey’s trajec-
tory strayed too far from the ideal trajectory.

Conclusions
In this study, we sought to decode neuronal ensemble activity
before and during the execution of a sequence of segments to
investigate the neural representation of serial order. Before the
execution of a sequence of segments, there was a cotemporal
activation of all segments of the upcoming trajectory, with the
strength of the representation of a given segment specifying its
position in the upcoming sequence. The monkeys’ behavioral
performance was characterized by serial position curves, a
common feature of serial order tasks. The serial position curves
can be accounted for by the relative strengths of the represen-
tations of each segment during its execution. Initial and final
elements of the sequence had stronger relative strengths of
representation compared with the middle segments of the
trajectories. Neural activity on error trials was less likely to
represent the current segment being drawn. Thus, the relative
strength of the representation of the current segment was lower
on error trials, likely leading to the specification of a different
segment. When the segment being represented was assessed
relative to the segment being executed, it was found that on error
trials subsequent segments were more likely to be represented;
a neural trace of transposition errors. Thus, we have established
a neural code for serial position, while developing a heuristic on
multisegment copying, and used the code to try to understand
the neural basis of serial position curves and transposition errors.
Although this code was discovered in the prefrontal cortex, it is
reasonable to suppose that serial order information is distributed
in various brain areas (see above). The exact relations and modes
of interplay among those areas remain to be investigated.

This work was supported by United States Public Health Service Grant
NS17413, the United States Department of Veterans Affairs, and the
American Legion Brain Sciences Chair.

Fig. 4. Classification probability for relative segment number. By using the
same analysis as in Fig. 2, the segment to which the neural activity during the
drawing of a segment was classified is plotted as a probability. On correct trials
(green line), the neural activity usually was classified as the segment being
drawn (segment 0). Furthermore, misclassifications are symmetric. On error
trials, the neural activity classifies to the current segment much less often.
Interestingly, the misclassifications are predominately to subsequent seg-
ments of the shape. Thus, on error trials, the ensembles tend to represent
subsequent segments of the shape. Data points are mean � 2 SEM.
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