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Mice prefer to mate with individuals expressing different MHC
genes from their own. Volatile components presenting MHC-
dependent odor types are present in urine and can be detected by
mice, as shown by extensive behavioral studies. Similar odor types
are suspected to influence human behavior as well. Although a
recent report indicates that MHC expression influences the ratio of
volatile compounds such as phenylacetic acid, so far no other
means than studying the behavior of mice or rats has been
available to assess odor types. Here, we report the ability of a gas
sensor array (referred to as ‘‘electronic nose’’) to detect MHC-
dependent odor types. The electronic nose consists of an array of
chemophysical detectors, in our case quartz crystal microbalances
and semiconducting metal-oxide sensors that change frequency or
conductivity upon binding of very small numbers of individual
molecules present in the gas phase of odorous fluids. The pattern
of changes is characteristic for a particular smell. Our electronic
nose distinguishes the urine odor types of MHC congenic mouse
strains, MHC class I mutant mice, and HLA-A2 transgenic mice. In
addition, MHC-dependent odor types can be detected in serum.
The device also clearly differentiates between individual odor
types of human sera from HLA homozygous individuals; however,
HLA expression seems to have only a secondary influence. Thus,
odor-type research can now be carried out with an objective and
fast through-put system independent of behavioral studies.

The principal function of MHC molecules is to present peptides
to T cells (1). MHC class I molecules are expressed on the cell

membrane of almost all somatic cells. Typically, MHC I molecules
present virus-derived peptides of 8–11 aa to virus-specific cytotoxic
T cells. MHC class II molecules are expressed on a subset of cells
only, most notably on B cells, dendritic cells, and macrophages.
Typically, T-helper cells recognize peptides of 12–25 aa derived
from antigen presented on B cell MHC II molecules (2). This
induces the T cells to produce signals that activate the B cell to
produce antibody. MHC I and II molecules have well-defined
peptide receptor specificities that enable binding of peptides with
certain sequence patterns. MHC genes are extremely polymorphic;
there are, for example, more than 180 alleles at the HLA-B locus
(3). This polymorphism is reflected in different peptide receptor
specificities for each of the allelic products (4). In consequence, T
cells from different individuals recognize a different selection of
antigen peptides from the very same pathogen. Thus, pathogens can
mutate their MHC-presented peptide sequences to escape T cell
recognition in an individual; the same mutations, however, are
useless for the pathogen in other individuals with different MHC
expression. The extreme polymorphism is, therefore, assumed to
have evolved to avoid pathogen escape from immune recognition
on the species level (5).

A driving force for establishment and maintenance of MHC
polymorphism is probably the ‘‘survival of the fittest;’’ in addi-
tion, however, MHC polymorphism, at least in mice, is presumed
to be maintained by the mating preference toward MHC-
different individuals. This preference is mediated by volatile
substances present in the urine, as detected by behavioral studies

done with mice and also with rats that were trained to detect
odors (6–8). In humans, however, the influence of odor types on
mate selection is controversial, at least as based on scientific
investigation (9–12). Further investigation of this problem has
been hindered by the lack of objectively measurable biochemical
parameters reflecting the odor types. Here, we show that a
recently developed chemical sensor device, the so-called elec-
tronic nose (e-nose), is able to detect individual odor types in
mice and human individuals. The influence of MHC genes on the
odor type as presented by volatile substances in urine or serum
is the subject of our studies described below.

Materials and Methods
Mice. BALByc, BALB.B, B10.A, B10.BR, B10.D2, C3H, and
C57BLy6 mice were purchased from Charles River Breeding
Laboratories or from Harlan Winkelmann (Borchen, Germany);
B6.C-H2bm1 (bm1) mice were obtained from The Jackson Lab-
oratory. A2-Kb-transgenic mice were a gift from S. Pascolo
(Institute for Cell Biology, Tübingen, Germany). All were
maintained or bred in the animal facility at the Institute for Cell
Biology and fed with standard diet (SSNIFF, Soest, Germany)
and water ad libitum.

Sample Collection. Groups of 3–5 mice were placed in a standard
metabolism cage and left overnight with water ad libitum but
without food. Discharged urine was separated from feces and
collected in a glass beaker. Urine was transferred the next
morning into a glass vial and immediately stored at 279°C. Mice
were transferred back to standard conditions for a minimum of
3 days before the next urine collection. Several urine collections
from individual mouse groups were pooled afterward. Thus,
samples consisted of urine from 3–5 mice collected during a
period of 6–15 days. Blood samples were obtained by heart
puncture after cervical dislocation.

Human serum samples were obtained from HLA-homozygous
healthy male donors of the blood bank. Blood samples were
stored at 279°C.

Sample Preparation. To minimize the loss of volatile compounds,
samples were processed as rapidly as possible. Five hundred
microliters of thawed urine or serum was transferred into 10-ml
glass vials. Vials were immediately sealed with a gas-tight
siliconeypolytetrafluoroethylene septum (Roth, Karlsruhe, Ger-
many). Sample vials for e-nose measurements were placed into
the headspace oven. For GCyMS analysis, 400 ml of sample was
prepared in the same way.

Abbreviations: PCA, principal component analysis; MOX, metal oxide; QMB, quartz mi-
crobalance; e-nose, electronic nose.
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Chemical Sensor Device (E-Nose). The e-nose as a gas sensor array
is composed of a chemical sensor system (hardware) and pattern
recognition software. The set-up comprises the hybrid Modular
Sensor System (MOSES) connected to a headspace sampler for
sample preparation (13). The sensor system is equipped with two
different modules, each of them based on a different transducer
principle. The quartz microbalance (QMB) module consists of
eight individual sensors with varying polymer coatings. These
mass-sensitive quartz crystals change their fundamental fre-
quency according to the mass increase of absorbed molecules.
Advantages of the QMB sensors are good reproducibility and
long-term stability. The second module contains eight semicon-
ducting metal oxide (MOX)-based gas sensors, which are se-
lected on the basis of different sensitivity and selectivity. The
interactions between analyte molecules and the sensors are more
complex if compared with QMB sensors. They involve reactions
with oxygen on the sensor surface, which lead to a change of the
free charge carrier concentrations in the conducting metal oxide.
Advantages of these sensors are high sensitivities (14) and long
duration (15). The sample’s headspace (volume of 3 ml) is
carried through the measurement chambers of the modules
sequentially. The sensor modules are represented by software
objects. A controller is used to control the timing and to collect
the data from all modules. It uses a script language to describe
its measurement task, which transfers the parameters to the
modules, starts the measurement on the sensors, and reports the
results to an external computer. The whole measurement time
for one sample is 10 min (including the time until the sensor
reaches the original baseline). The exposure to the analytes is
less than 2 min. The external computer extracts from the
incoming data stream the features for the subsequent pattern
recognition (more details see below), performs the pattern
recognition itself, including statistical evaluation, and displays
and stores the results. The software running on the external PC
uses an internal representation of the hardware modules for the
feature extraction. As each hardware module is represented by
a corresponding software object, different feature extraction
algorithms can be applied for each individual module. Even
within one module, different feature extraction algorithms can
be applied to the individual sensory elements. As algorithm for
the subsequent pattern recognition, principal component anal-
ysis (PCA) is applied and fully integrated into the software.

Headspace Analysis. Headspace sampling is a means of introducing
the volatile components from a liquid sample into a gas chromato-
graph (GC) for analysis when the original sample cannot be injected
into the GC (16). Examples of headspace applications are the
analysis of organics in urine, blood, etc. The sample placed in a
sealed vial is heated, allowing the volatile components to escape
from the sample to form a gaseous headspace above the liquid.
After a preprogrammed heating time, the headspace gas is ex-
tracted from the vial and injected into a GC for analysis. The whole
procedure is fully automated; thus, it ensures the high reproduc-
ibility and comparability of the analyses. The GCyMS data evalu-
ation was performed by the Hewlett–Packard MSD Productivity
CHEMSTATION software (Rev. B.00.01), which enabled qualitative
and quantitative predictions by taking the retention time and the
peak areas into account. To identify the peaks, pure compounds
were chromatographed, and the National Institute of Standards and
Technology (Gaithersburg, MD) mass spectrum library served as a
reference data bank.

Pattern Recognition. Multivariate data—data that depend on more
than one variable—generated by an array of N sensors do not
necessarily span the complete N dimensional space defined by the
sensors (17). If cross-sensitivities exist between sensors, their output
values are at least partially intercorrelated. Thus, the existing linear
dependency of sensor signals means that the actual dimensionality

of the data space defined by the N sensors is typically smaller than
the maximum dimensionality N. PCA is an algorithm used to find
the optimum representation of a given data set in a space whose
dimensionality is less than N. It is attempted to achieve a reduction
to two or three dimensions so that the human mind’s limited
dimensional perception abilities are sufficient for visualizing simi-
larities or dissimilarities in the analyzed data sets. To fulfil this
purpose, not the whole measurement curve of each of the individual
16 sensors is taken into account. Fig. 1 displays in an exemplary
manner the data of the QMB and the MOX modules. Instead, only
a characteristic parameter (called ‘‘feature’’) describing one of the
curve’s properties, e.g., signal height, area under the curve, etc.,
serves as input for the PCA and is selected upon statistical
evaluation (Student’s t test). PCA is an unsupervised orthogonal
projection algorithm, which means that no input from the operator
is needed beyond the raw sensor data. It focuses only on classifi-
cation tasks; quantitative statements cannot be done by this tech-
nique. (A more detailed description about PCA can be found in ref.
18 and at http:yynose.uia.ac.be.)

GCyMS. GCyMS (19) was performed on a Hewlett–Packard gas
chromatograph (HP 6890 GC) and a Hewlett–Packard mass selec-
tive detector (HP 5973 MSD). The capillary column was 0.32 mm
i.d. with an intermediate polarity polysiloxane phase (HP-VOC,
Hewlett–Packard). The stationary-phase film thickness was 1.8 mm,
and the column’s length was 60 m. As carrier gas, helium (purity 6.0,
Messer-Griesheim, Krefeld, Germany) was used. The GCyMS
system was coupled to a Hewlett–Packard headspace autosampler
(HP 7694 HSS) applying the static headspace technique. With the
autosampler, 44 samples can be analyzed in one measurement run.
The fully automated and reproducible sample uptake is maintained
by the carrier gas supply through a thermostated injection needle,
sample loop (volume 1 ml), and transfer line to the GC inlet. The
mass spectrometer was operated in the scan mode; the mass
fragments (myz) were recorded in the range of 33 to 220 atomic

Fig. 1. Measurement curves of MOX (a) and QMB (b) sensors. Both indicate
the characteristic curve parameter (here, maximum height of the curve),
which served as input for the PCA.
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mass units. The molecule fragments were formed by electronic
ionization; the electron energy was 70 eV.

Results
Experimental Set-Up. The e-nose is an array of eight QMBs and eight
semiconducting MOXs (13). Molecular components in the gas
phase are allowed to pass by the sensors and thus change some of
their physical parameters (here, frequency in the case of the QMBs
or conductivity for the MOXs). These changes are recorded and
analyzed by a computer program as a 16-dimensional signal com-
plex. The device is not able to detect the identity of molecules (i.e.,
exact chemical structure). However, the device is able to tell the
difference in the molecular composition of different substances by
a different pattern in the 16-dimensional signal complex. The
e-nose thus compares patterns derived from different samples. A

PCA serves as an appropriate pattern recognition algorithm. The
PCA searches for the sensor signals providing the largest difference
between two or more samples (referred to as primary component
number 1) and does the same for the second largest difference, and
so on. The relative magnitude of the signal for the first and the
following components is given in percent. Usually, only the first two
components are considered. The differences are then compared in
arbitrary units and are plotted in two dimensions; the graphic
presentation is commonly called scores plot. The selection of the
features serving as input for the PCA was based on a statistical
evaluation related to the Student’s t test with a confidence level of
95%. The results of the Student’s t test are used to determine
whether differences of samples are random or not. In total, 153
individual samples consisting of pooled urine from 1–6 mice were
investigated with the sensor array. In the case of the MOX sensors,
the area under the measurement curve was the most reliable
parameter expressing the difference between the samples; in 85%
of all cases, the 95% confidence limit requirement was fulfilled.
Taking the height of the MOX curves into account, the reliability
amounts to 78%. Compared with the MOX sensors, the QMBs
hardly contribute to the differentiation of the samples.

This type of e-nose is typically used for the objective detection
of odors in foodstuff and other items of forensic importance
(20–23). The e-nose, for example, is able to qualitatively distin-
guish between different kinds of olive oils (24), different brands
of coffee (25), and different beers (26), and also can distinguish
the smell of car interiors (27). The philosophy behind the e-noses
is not to replace well established techniques such as GCyMS.
They are not able to describe an odor by certain attributes (e.g.,
fruity, green, rancid, etc), nor can they state the composition of
the evaluated odor. Gas sensor arrays have to be recognized as
complementary tools for particular practical applications, which
allow a rapid screening and are normally easy to handle.
According to the application, the transducers and their sensitive
layers can be selected. In all cases, an accurate optimization of
the measuring conditions (sample collection, temperature and

Fig. 2. E-nose measurement of urine from H2-different mice. Scores plot of
a PCA. The x axis shows principal odor component 1; the y axis shows principal
component 2 (arbitrary units). Each dot represents a pool of urine from five
[BALByc (H2d) and BALB.B (H2b)] or six [C3H (H2k)] male mice collected during
3 nights. Two samples from each pool were analyzed; the two dots represent-
ing one pool are marked by an ellipse.

Fig. 3. E-nose measurement of urine from H2-congenic mice. (a) Urine pools of five male C57BLy6 and five male B10.A collected during 2 nights; (b–d) three
independent measurements of urine from male B10.A (kkkd), B10.D2 (dddd), B10.BR (kkkk), and C57BLy6 (bbbb) mice. (b) Pools of urine of five males from each
strain collected during 5 nights; (c) urine of five males from each strain collected during 4 nights; (d) urine of five males from each strain collected during 2 nights.
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humidity control, working conditions of the sensors) is acquired.
In addition, an appropriate recalibration procedure has to be
developed to assure the comparability of temporally different
data because sensor long-term drifts or fluctuations are still an
unavoidable problem if using e-noses over a longer period.

Odor Differences Between Male and Female Urine. To obtain first
insights into the sensitivity of the e-nose toward different odor
components of mouse urine, we analyzed the urine of male and
female C57BLy6 mice, which are expected to smell differently.
The results clearly indicated that the e-nose is able to detect the
difference (data not shown). The odor components showing the
most marked difference between the sexes account for 79.1% of
the sensor signals and are very similar for the different individual
samples tested. To exclude sexual influences on odor types, all
of the following experiments were performed with male urine
(unless stated otherwise).

Odor of Unrelated H2 Haplotypes. Urine of mice expressing unre-
lated H2 haplotypes was tested. The e-nose could clearly differ-
entiate between BALByc (H2d), BALB.B (H2b), and C3H (H2k)
urine (Fig. 2). All of these strains differ in their principal
component (86.4%); C3H differs from the two BALB strains
also in the second component. Because BALByc and BALB.B
mice differ only in the MHC region, the results indicate already
that H2 genes influence odor types profoundly, as detected by
the e-nose. To substantiate this notion, a number of H2 congenic
strains were analyzed (Fig. 3). B6 (alleles at loci K, A, E, D:bbbb)
and B10.A (kkkd) mice clearly differed in the principal compo-
nent (96.9%, 94.5%, 96.0%, or 90.8%). The same is true for the
difference between B6 and B10.D2 (dddd). On the other hand,
B10.A, B10.D2, and B10.BR (kkkk) are closer together but are
still different from each other (Fig. 3 b–d), although in some
experiments this is the case only in the second component. Thus,
H2 genes contribute to the principal odor component detectable
by the e-nose. Because B10.BR (kkkk) and B10.A (kkkd) express

the same H2 class II genes but differ in class I, it can be
concluded that class I gene products contribute to the odor type.

Odor of F1, Mutant, and Transgenic Mice. Next, the dominance of
H2-dependent odor types was tested. As depicted in Fig. 4 a and b,
the urine of (B6 3 BALByc) F1 mice scored between both parental
strains in relation to the principal component 1. Thus, odor type
expression appears to be codominant. To clearly attribute the
odor-type influence to MHC class I genes, the urine of B6.C-H2bm1

(different from B6 only at three amino acid exchanges in the H2-K
gene) and transgenic mice expressing a1 and a2 domains of the
human HLA-A2 heavy chain was tested. In both cases, the primary
component (74.7% and 99.0%, respectively) indicated a strong
difference (Fig. 4 c and d).

Odor Components in Serum. Because the odor type is detected in
urine, it is likely that the responsible substances are also found in
blood. Indeed, odor components from serum of BALB.B, BALByc,
and B6 mice are clearly distinguished by the e-nose (Fig. 5a). All
three samples differ at the principal component (94.4%). A strong
difference between BALB.B and B6 indicates a profound influence
of non-MHC genes in addition to MHC, as also observed with urine
samples of BALB.B and B6 (data not shown).

HLA-dependent odors are suspected to be contained in human
sweat. However, the data leading to this conclusion are not very
convincing (9). To test whether the e-nose could help solve this
problem, and because the serum of mice does contain MHC-
dependent odor components, we analyzed the serum of eight HLA
homozygous male individuals (Fig. 5b). Each sample was tested
twice to control for reproducibility of the assay. The e-nose indeed
could distinguish between the eight individual odor types by
primary and secondary components. Three of the individuals were
of the HLA-A1, HLA-B8 haplotype. They were similar with regard
to the second component but different in the first. Thus, these
preliminary data show that individual human odor types can be
detected by the e-nose in serum. The odor type appears to be

Fig. 4. E-nose measurement of F1, H2 class I mutant, and HLA-A2 transgenic mice. (a) Pools of urine from two female (C57BLy6 3 BALByc)F1, five female C57BLy6,
and five female BALByc collected during 2 nights; (b) pools of urine from two female (C57BLy6 3 BALByc)F1, five female C57BLy6, five female BALByc, and five
female C3H collected during 4 nights; (c) pools of urine from four male B6.C-H2bm1, four male C57BLy6, and five male B10.D2 collected during 4 nights; (d) pools
of urine from eight male HLA-A2A2KbH22/2 mice and eight male C57BLy6 collected during 1 night.
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influenced by non-MHC as well as MHC genes. Because, in
contrast to laboratory mice, the diet of these individuals was not
controlled and therefore probably rather different, food intake is
likely to be a third major source of odor component difference.

GCyMS Analysis of Volatile Substances. To get an insight into the
identity and complexity of the volatile substances measured by the

e-nose, the headspaces of urine from four different H2 congenic
mouse strains (B10.D2, B6, B10.A, and B10.BR) were subjected to
GC, and the separated compounds were detected by MS (Fig. 6).
A number of individual components could be detected and partially
identified. Similar to previous work (28) that analyzed other mouse
strains (B6 and B6-H2k), we did not find obvious signals that are
present in one but absent in the other strain. It has to be stressed,
however, that the analytical approach used by Singer et al. (28) and
the headspace technique presented here differ to a large extent.
Especially different are the classes of compounds that can be
detected. Headspace analyses naturally focus on volatile compo-
nents, whereas substances of low volatility such as organic acids are
hardly identified. We do confirm, however, that the ratio of volatile
substances differs according to H2 expression. For example, the
ratio of the peak at 13 min (3-methylbutanal) and the peak at 14 min
(2-pentanone) is about 1:1 in B10.D2 (Fig. 6a) but about 20:1 in B6
(Fig. 6b), 10:1 in B10.A (Fig. 6c), and 3:1 in B10.BR (Fig. 6d). As
a well established analytical technique, the GCyMS analyses indi-
cate the reproducibility of sample handling. Thus, the results can be
correlated with those of the e-nose measurements.

Discussion
Our e-nose distinguishes the odor types of different mouse strains.
As expected, the sexes smell differently. If only sex-matched mice
are considered, dominant components of the odor-type are MHC-
dependent. Another important contribution comes from non-H2
genes. Thus, our approach allows for the objective analysis of odor
types independent of behavioral studies with either mice trying to
reach a sexual partner or with trained rats that have learned that a
certain reaction to a particular odor is awarded by a drink or
foodstuff. Our data are in agreement with the behavioral results
obtained during the last 20 years, led by Boyse and colleagues (6,
8, 28). Our results demonstrate that H2 congenic and mutant mouse
strains do smell differently; for example, B6, B10.A, B10.D2,
B10.BR, and B6bm1 all are typed as being different by the e-nose.
Thus, H2 class I gene products contribute to odor type (29). This
does not indicate, however, that class II has no influence. In
addition, non-H2 genes influence the odor type significantly. Most

Fig. 5. E-nose measurement of mouse and human serum. (a) Serum of
BALB.B, BALByc, and B6 mice (punction of one mouse per strain); blood was
split into two samples of 150 ml each. (b) Serum of eight HLA homozygous male
individuals; serum was split into two samples.

Fig. 6. GCyMS measurements of urine from H2-congenic strains. Chromatograms of urine pools from four male mice per strain collected during 4 nights. (a)
B10.D2, three samples of the pool; (b) C57BLy6, three samples; (c) B10.A, three samples; (d) B10.BR, two samples.
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interestingly, the e-nose-detected odor type is present not only in
urine but also in serum. For many years, it has been impossible to
obtain this information from behavioral studies. Only recently has
it been shown that mice are able to distinguish the odor of
protease-treated and diluted serum (30). Our e-nose data confirm
and extend these results. One caveat here, however, is that we
cannot be sure that the MHC-dependent substances recog-
nized by the e-nose are identical to those used by mice to
differentiate between the odor types. This problem could be
solved once the respective substances are identified (see
below).

For humans, HLA-dependent odor is even more difficult to
detect. A study suggested that female students prefer the odor of
worn T-shirts from HLA different male colleagues (9). Con-
vincing in this study is that women taking the contraceptive pill
or during menses do not like the smell of sweaty male T-shirts;
influences of HLA on odors were, however, not impressive. Our
e-nose is able to tell the difference between individual odor types
as present in human serum and thus will allow a larger study to
investigate a possible HLA dependency of human odor type.

Our data now allow for a biochemical approach to study the
influence of genetically determined odor types on social behavior,
including that of humans. Samples determined by the e-nose to
differ strongly in odorous substances can now be further analyzed
by sensitive molecular identification methods, such as GC followed
on-line by MS. Gas sensor arrays can be considered as a kind of
screening instrumentation that provides the researcher with rather
simple analytical information, e.g., the discrimination of chemically
different samples, or the assignment of an unknown sample to a
certain classystrain. Because the analyses carried out with e-noses
are highly automated (which is also true for the subsequent data
evaluation), this technique can be considered as very user-friendly
and time-saving. The results of Singer et al. (28) as well as our own
results presented here indicate that the abundant volatile sub-
stances of urine have the same identity in mice of different MHC
haplotypes and show that their relative quantities depend on MHC
expression. For example, the peaks for 3-methylbutanal and 2-pen-
tanone occur in a ratio of 1:1 in B10.D2 mice but 20:1 in B6 (Fig.
6 a and b). Thus, the mouse nose and the e-nose might record these
ratio differences as a particular odor trait. On the other hand,

however, it is possible that the presence of less abundant substances
that are more difficult to detect depend on the expression of a
particular MHC allele. Indeed, we found evidence for such a
substance present in HLA-A2 transgenic mice but absent in their
nontransgenic counterparts. The identification of substances that
depend on a single gene—in their absolute presence or in their
relative quantity—will allow the identification of the relationship
between the gene product and the odorous substance. For MHC-
dependent odor types, there might be catabolic derivatives from the
MHC protein itself, from the peptides bound to it, or from
molecules influenced secondarily by MHC expression (30–32).
Such molecules could be derived from environmental viruses or
bacteria, as MHC expression influences the immune response
against these organisms. However, as detected with behavioral
studies (8), the odor type of germ-free mice is not different from
that of mice living in a normal environment. MHC-influenced
molecules other than environmental antigens are T-cell receptors,
which are selected on MHC molecules in the thymus, and all of the
peptides not binding to the MHC molecules in a cell because these
peptides are not protected from rapid degradation.

Thus, our studies might help to identify the odorous sub-
stances characterizing individuality. The possibility to detect
such substances by our e-nose should help to analyze the
influence of genetically different odor types on our societies. It
might well be that primary influences on mate choice, for
example, cannot be found any more because other sociocultural
influences, extended use of perfumed cosmetic products, and
inhibitors of sweating overlay the inherent individual odor type.
A person’s odor still might have secondary influences that are at
work in the long run, as precipitated, for example, in divorce
rates. Thus, studying the extent of e-nose-detectable odor type
differences, or better substances responsible, in couples living in
stable relationships vs. divorces might help to solve this issue.
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eds. Baltes, H., Göpel, W. & Hesse, J. (VCH, Weinheim), pp. 119–180.

16. Kolb, B. & Ettre, L. S. (1997) Static Headspace-Gas Chromatography: Theory
and Practice (Wiley, New York).

17. Manly, B. F. J. (1986) Multivariate Statistical Analysis (Chapman & Hall,
London).

18. Jurs, P. C., Bakken, A. & McClelland, H. E. (2000) Chem. Rev. 100, 2649–2678.
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