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A number of recent studies have focused on the statistical prop-
erties of networked systems such as social networks and the
Worldwide Web. Researchers have concentrated particularly on a
few properties that seem to be common to many networks: the
small-world property, power-law degree distributions, and net-
work transitivity. In this article, we highlight another property that
is found in many networks, the property of community structure,
in which network nodes are joined together in tightly knit groups,
between which there are only looser connections. We propose a
method for detecting such communities, built around the idea of
using centrality indices to find community boundaries. We test our
method on computer-generated and real-world graphs whose
community structure is already known and find that the method
detects this known structure with high sensitivity and reliability.
We also apply the method to two networks whose community
structure is not well known—a collaboration network and a food
web—and find that it detects significant and informative commu-
nity divisions in both cases.

Many systems take the form of networks, sets of nodes or
vertices joined together in pairs by links or edges (1).

Examples include social networks (2–4) such as acquaintance
networks (5) and collaboration networks (6), technological
networks such as the Internet (7), the Worldwide Web (8, 9), and
power grids (4, 5), and biological networks such as neural
networks (4), food webs (10), and metabolic networks (11, 12).
Recent research on networks among mathematicians and phys-
icists has focused on a number of distinctive statistical properties
that most networks seem to share. One such property is the
‘‘small world effect,’’ which is the name given to the finding that
the average distance between vertices in a network is short (13,
14), usually scaling logarithmically with the total number n of
vertices. Another is the right-skewed degree distributions that
many networks possess (8, 9, 15–17). The degree of a vertex in
a network is the number of other vertices to which it is connected,
and one finds that there are typically many vertices in a network
with low degree and a small number with high degree, the precise
distribution often following a power-law or exponential form
(1, 5, 15).

A third property that many networks have in common is
clustering, or network transitivity, which is the property that two
vertices that are both neighbors of the same third vertex have a
heightened probability of also being neighbors of one another.
In the language of social networks, two of your friends will have
a greater probability of knowing one another than will two
people chosen at random from the population, on account of
their common acquaintance with you. This effect is quantified by
the clustering coefficient C (4, 18), defined by

C �
3� (number of triangles on the graph)

(number of connected triples of vertices)
. [1]

This number is precisely the probability that two of one’s friends
are friends themselves. It is 1 on a fully connected graph
(everyone knows everyone else) and has typical values in the
range of 0.1 to 0.5 in many real-world networks.

In this article, we consider another property, which, as we will
show, appears to be common to many networks, the property of
community structure. (This property is also sometimes called
clustering, but we refrain from this usage to avoid confusion with
the other meaning of the word clustering introduced in the
preceding paragraph.) Consider for a moment the case of social
networks—networks of friendships or other acquaintances be-
tween individuals. It is a matter of common experience that such
networks seem to have communities in them: subsets of vertices
within which vertex–vertex connections are dense, but between
which connections are less dense. A figurative sketch of a
network with such a community structure is shown in Fig. 1.
(Certainly it is possible that the communities themselves also
join together to form metacommunities, and that those meta-
communities are themselves joined together, and so on in a
hierarchical fashion. This idea is discussed further in the next
section.) The ability to detect community structure in a network
could clearly have practical applications. Communities in a social
network might represent real social groupings, perhaps by
interest or background; communities in a citation network (19)
might represent related papers on a single topic; communities in
a metabolic network might represent cycles and other functional
groupings; communities on the web might represent pages
on related topics. Being able to identify these communities
could help us to understand and exploit these networks more
effectively.

In this article we propose a method for detecting community
structure and apply it to the study of a number of different social
and biological networks. As we will show, when applied to
networks for which the community structure is already known
from other studies, our method appears to give excellent agree-
ment with the expected results. When applied to networks for
which we do not have other information about communities, it
gives promising results that may help us understand better the
interplay between network structure and function.

Detecting Community Structure
In this section we review existing methods for detecting com-
munity structure and discuss the ways in which these approaches
may fail, before describing our own method, which avoids some
of the shortcomings of the traditional techniques.

Traditional Methods. The traditional method for detecting com-
munity structure in networks such as that depicted in Fig. 1 is
hierarchical clustering. One first calculates a weight Wij for every
pair i,j of vertices in the network, which represents in some sense
how closely connected the vertices are. (We give some examples
of possible such weights below.) Then one takes the n vertices in
the network, with no edges between them, and adds edges
between pairs one by one in order of their weights, starting with
the pair with the strongest weight and progressing to the weakest.
As edges are added, the resulting graph shows a nested set of
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increasingly large components (connected subsets of vertices),
which are taken to be the communities. Because the components
are properly nested, they all can be represented by using a tree
of the type shown in Fig. 2, in which the lowest level at which two
vertices are connected represents the strength of the edge that
resulted in their first becoming members of the same commu-
nity. A ‘‘slice’’ through this tree at any level gives the commu-
nities that existed just before an edge of the corresponding
weight was added. Trees of this type are sometimes called
dendrograms in the sociological literature.

Many different weights have been proposed for use with
hierarchical clustering algorithms. One possible definition of the
weight is the number of node-independent paths between ver-
tices. Two paths that connect the same pair of vertices are said
to be node-independent if they share none of the same vertices
other than their initial and final vertices. One can similarly also
count edge-independent paths. It is known (20) that the number
of node-independent (edge-independent) paths between two
vertices i and j in a graph is equal to the minimum number of
vertices (edges) that must be removed from the graph to
disconnect i and j from one another. Thus these numbers are in
a sense a measure of the robustness of the network to deletion
of nodes (edges) (21). Numbers of independent paths can be

computed quickly by using polynomial-time ‘‘max-flow’’ algo-
rithms such as the augmenting path algorithm (22).

Another possible way to define weights between vertices is to
count the total number of paths that run between them (all
paths, not just those that are node- or edge-independent).
However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length
� by a factor �� with � small, so that the weighted count of the
number of paths converges (23). Thus long paths contribute
exponentially less weight than those that are short. If A is the
adjacency matrix of the network, such that Aij is 1 if there is an
edge between vertices i and j and 0 otherwise, then the weights
in this definition are given by the elements of the matrix

W � �
� � 0

�

��A�� � �I � �A� � 1. [2]

For the sum to converge, we must choose � smaller than the
reciprocal of the largest eigenvalue of A.

Both of these definitions of the weights give reasonable results
for community structure in some cases. In other cases they are
less successful. In particular, both have a tendency to separate
single peripheral vertices from the communities to which they
should rightly belong. If a vertex is, for example, connected to the
rest of a network by only a single edge then, to the extent that
it belongs to any community, it should clearly be considered to
belong to the community at the other end of that edge. Unfor-
tunately, both the numbers of independent paths and the
weighted path counts for such vertices are small and hence single
nodes often remain isolated from the network when the com-
munities are constructed. This and other pathologies, along with
poor results from these methods in some networks where the
community structure is well known from other studies, make the
hierarchical clustering method, although useful, far from perfect.

Edge ‘‘Betweenness’’ and Community Structure. To sidestep the
shortcomings of the hierarchical clustering method, we here
propose an alternative approach to the detection of communi-
ties. Instead of trying to construct a measure that tells us which
edges are most central to communities, we focus instead on those
edges that are least central, the edges that are most ‘‘between’’
communities. Rather than constructing communities by adding
the strongest edges to an initially empty vertex set, we construct
them by progressively removing edges from the original graph.

Vertex betweenness has been studied in the past as a measure
of the centrality and influence of nodes in networks. First
proposed by Freeman (24), the betweenness centrality of a vertex
i is defined as the number of shortest paths between pairs of
other vertices that run through i. It is a measure of the influence
of a node over the flow of information between other nodes,
especially in cases where information flow over a network
primarily follows the shortest available path.

To find which edges in a network are most between other pairs
of vertices, we generalize Freeman’s betweenness centrality to
edges and define the edge betweenness of an edge as the number
of shortest paths between pairs of vertices that run along it. If
there is more than one shortest path between a pair of vertices,
each path is given equal weight such that the total weight of all
of the paths is unity. If a network contains communities or
groups that are only loosely connected by a few intergroup edges,
then all shortest paths between different communities must go
along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing
these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm we propose for identifying communities is
simply stated as follows:

Fig. 1. A schematic representation of a network with community structure.
In this network there are three communities of densely connected vertices
(circles with solid lines), with a much lower density of connections (gray lines)
between them.

Fig. 2. An example of a small hierarchical clustering tree. The circles at the
bottom represent the vertices in the network, and the tree shows the order in
which they join together to form communities for a given definition of the
weight Wij of connections between vertex pairs.
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1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.
3. Recalculate betweennesses for all edges affected by the

removal.
4. Repeat from step 2 until no edges remain.
As a practical matter, we calculate the betweennesses by using

the fast algorithm of Newman (25), which calculates betweenness
for all m edges in a graph of n vertices in time O(mn). Because
this calculation has to be repeated once for the removal of each
edge, the entire algorithm runs in worst-case time O(m2n).
However, after the removal of each edge, we only have to
recalculate the betweennesses of those edges that were affected
by the removal, which is at most only those in the same
component as the removed edge. This means that running time
may be better than worst-case for networks with strong com-
munity structure (those that rapidly break up into separate
components after the first few iterations of the algorithm).

To try to reduce the running time of the algorithm further, one
might be tempted to calculate the betweennesses of all edges only
once and then remove them in order of decreasing betweenness.
We find, however, that this strategy does not work well, because
if two communities are connected by more than one edge, then
there is no guarantee that all of those edges will have high
betweenness—we only know that at least one of them will. By
recalculating betweennesses after the removal of each edge we
ensure that at least one of the remaining edges between two
communities will always have a high value.

Tests of the Method
In this section we present a number of tests of our algorithm on
computer-generated graphs and on real-world networks for
which the community structure is already known. In each case we
find that our algorithm reliably detects the known structure.

Computer-Generated Graphs. To test the performance of our
algorithm we have applied it to a large set of artificial, computer-
generated graphs similar to those depicted in Fig. 1. Each graph
was constructed with 128 vertices divided into four communities
of 32 vertices each. Edges were placed between vertex pairs
independently at random, with probability Pin for vertices be-
longing to the same community and Pout for vertices in different
communities, with Pout � Pin. The probabilities were chosen so
as to keep the average degree z of a vertex equal to 16. This
produces graphs that have known community structure, but
which are essentially random in other respects. Feeding these
graphs into our algorithm, we measured the fraction of vertices
that were classified by the algorithm into their correct commu-
nities, as a function of the average number of intercommunity
edges per vertex. The results are shown in Fig. 3 (circles). As Fig.
3 shows, the algorithm performs nearly perfectly when zout � 6,
classifying 90% or more of the vertices correctly. Only for zout �
6 does the fraction correctly classified start to fall off substan-
tially. In other words, the algorithm performs very well almost
to the point at which each vertex has as many intercommunity as
intracommunity connections.

For comparison we also show in Fig. 3 (squares) the fraction
of vertices classified correctly by a standard hierarchical clus-
tering calculation based on independent path counts computed
by using max-flow. As Fig. 3 shows, the performance of this
method is far inferior to that of our method.

Zachary’s Karate Club Study. Although computer-generated net-
works provide a reproducible and well controlled test bed for our
community-structure algorithm, it is clearly desirable to test the
algorithm on data from real-world networks as well. To this end,
we have selected two datasets representing real-world networks
for which the community structure is already known from other
sources. The first of these is drawn from the well known karate

club study of Zachary (26). In this study, Zachary observed 34
members of a karate club over a period of 2 years. During the
course of the study, a disagreement developed between the
administrator of the club and the club’s instructor, which ulti-
mately resulted in the instructor’s leaving and starting a new
club, taking about a half of the original club’s members with him.

Zachary constructed a network of friendships between mem-
bers of the club, using a variety of measures to estimate the
strength of ties between individuals. Here we use a simple
unweighted version of his network and apply our algorithm to it
in an attempt to identify the factions involved in the split of club.
Fig. 4a shows the network, with the instructor and the admin-
istrator represented by nodes 1 and 34, respectively. Fig. 4b shows
the hierarchical tree of communities produced by our method.
The most fundamental split in the network is the first one at the
top of the tree, which divides the network into two groups of
roughly equal size. This split corresponds almost perfectly with
the actual division of the club members after the break-up, as
revealed by which club they attended afterward. Only one node,
node 3, is classified incorrectly. In other words, the application
of our algorithm to the empirically observed network of friend-
ships is a good predictor of the subsequent social evolution of the
group.

For comparison we also have performed a traditional hierar-
chical clustering based on edge-independent paths for the karate
club network; the resulting tree is shown in Fig. 4c. As Fig. 4c
shows, this method correctly identifies the core vertex sets
{1,2,3} and {33,34} of the two communities, but otherwise there
appears to be little correlation with the actual split of the club,
indicating once again that our method is significantly more
accurate and sensitive than the standard method.

College Football. As a further test of our algorithm, we turn to the
world of United States college football. (Football here means
American football, not soccer.) The network we look at is a
representation of the schedule of Division I games for the 2000
season: vertices in the graph represent teams (identified by their
college names) and edges represent regular-season games be-
tween the two teams they connect. What makes this network

Fig. 3. The fraction of vertices correctly classified in computer-generated
graphs of the type described in the text, as the average number of intercom-
munity edges per vertex is varied. The circles are results for the method
presented in this article; the squares are for a standard hierarchical clustering
calculation based on numbers of edge-independent paths between vertices.
Each point is an average over 100 realizations of the graphs. Lines between
points are included solely as a guide to the eye.
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interesting is that it incorporates a known community structure.
The teams are divided into conferences containing around 8–12
teams each. Games are more frequent between members of the
same conference than between members of different confer-
ences, with teams playing an average of about seven intracon-
ference games and four interconference games in the 2000
season. Interconference play is not uniformly distributed; teams
that are geographically close to one another but belong to
different conferences are more likely to play one another than
teams separated by large geographic distances.

Applying our algorithm to this network, we find that it
identifies the conference structure with a high degree of success
(Fig. 5). Almost all teams are correctly grouped with the other
teams in their conference. There are a few independent teams
that do not belong to any conference—these tend to be grouped
with the conference with which they are most closely associated.
The few cases in which the algorithm seems to fail actually

correspond to nuances in the scheduling of games. For example,
the Sunbelt Conference is broken into two pieces and grouped
with members of the Western Athletic Conference. This happens
because the Sunbelt teams played nearly as many games against
Western Athletic teams as they did against teams in their own
conference. They also played quite a large fraction of their
interconference games against Mid-American teams. Naturally,
our algorithm fails in cases like this where the network structure
genuinely does not correspond to the conference structure. In all
other respects, however, it performs remarkably well.

Fig. 4. (a) The friendship network from Zachary’s karate club study (26) as
described in the text. Nodes associated with the club administrator’s faction
are drawn as circles, those associated with the instructor’s faction are drawn
as squares. (b) Hierarchical tree showing the complete community structure
for the network calculated by using the algorithm presented in this article. The
initial split of the network into two groups is in agreement with the actual
factions observed by Zachary, with the exception that node 3 is misclassified.
(c) Hierarchical tree calculated by using edge-independent path counts, which
fails to extract the known community structure of the network.

Fig. 5. Hierarchical tree for the network reflecting the schedule of regular-
season Division I college football games for year 2000. Nodes in the network
represent teams, and edges represent games between teams. Our algorithm
identifies nearly all of the conference structure in the network.
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Applications
In the previous section we tested our algorithm on a number of
networks for which the community structure was known before-
hand. The results indicate that our algorithm is a sensitive and
accurate method for extracting community structure from both
real and artificial networks. In this section, we apply our method
to two more networks for which the structure is not known and
show that in these cases it can help us to understand the make-up
of otherwise complex and tangled datasets. Our first example is
a collaboration network of scientists; our second is a food web
of marine organisms in the Chesapeake Bay.

Collaboration Network. We have applied our community-finding
method to a collaboration network of scientists at the Santa Fe
Institute, an interdisciplinary research center in Santa Fe, New
Mexico (and current academic home to both authors of this
article). The 271 vertices in this network represent scientists in
residence at the Santa Fe Institute during any part of calendar
year 1999 or 2000 and their collaborators. An edge is drawn
between a pair of scientists if they coauthored one or more
articles during the same time period. The network includes all
journal and book publications by the scientists involved, along
with all papers that appeared in the institute’s technical reports
series. On average, each scientist coauthored articles with ap-
proximately five others.

In Fig. 6 we illustrate the results from the application of our
algorithm to the largest component of the collaboration graph
(which consists of 118 scientists). Vertices are drawn as different
shapes according to the primary divisions detected. We find that
the algorithm splits the network into a few strong communities,
with the divisions running principally along disciplinary lines.
The community indicated by diamonds is the least well defined
and represents a group of scientists using agent-based models to
study problems in economics and traffic f low. The algorithm
further divides this group into smaller components that corre-

spond roughly with the split between economics and traffic. The
community represented by circles is comprised of a group of
scientists working on mathematical models in ecology and forms
a fairly cohesive structure, as evidenced by the fact that the
algorithm does not break it into smaller components to any
significant extent. The largest community, indicated by squares
of various shades, represents a group working primarily in
statistical physics and is subdivided into well defined smaller
groups, which are denoted by the different shadings. In this case,
each subcommunity seems to revolve around the research in-
terests of one dominant member. The community represented by
triangles is a group working primarily on the structure of RNA.
It, too, can be divided further into smaller subcommunities,
centered once again around the interests of leading members.

Our algorithm thus seems to find two types of communities:
scientists grouped together by similarity either of research topic
or methodology. It is not surprising to see communities built
around research topics; we expect scientists to collaborate
primarily with others with whom their research focus is closely
aligned. The formation of communities around methodologies is
more interesting and may be the mark of truly interdisciplinary
work. For example, the grouping of those working on economics
with those working on traffic models may seem surprising, until
one realizes that the technical approaches these scientists have
taken are quite similar. As a result of these kinds of similarities,
the network contains ties between researchers from traditionally
disparate fields. We conjecture that this feature may be peculiar
to interdisciplinary centers like the Santa Fe Institute.

Food Web. We have also applied our algorithm to a food web of
marine organisms living in the Chesapeake Bay, a large estuary
on the east coast of the United States. This network was
originally compiled by Baird and Ulanowicz (27) and contains 33
vertices representing the ecosystem’s most prominent taxa. Most
taxa are represented at the species or genus level, although some
vertices represent larger groups of related species. Edges be-
tween taxa indicate trophic relationships—one taxon feeding on
another. Although relationships of this kind are inherently
directed, we here ignore direction and consider the network to
be undirected.

Applying our algorithm to this network, we find two well
defined communities of roughly equal size, plus a small number
of vertices that belong to neither community (see Fig. 7). As Fig.
7 shows, the split between the two large communities corre-
sponds quite closely with the division between pelagic organisms
(those that dwell principally near the surface or in the middle
depths of the bay) and benthic organisms (those that dwell near
the bottom). Interestingly, the algorithm includes within each
group organisms from a variety of different trophic levels. This
finding contrasts with other techniques that have been used to
analyze food webs (28), which tend to cluster taxa according to
trophic level rather than habitat. Our results seem to imply that
pelagic and benthic organisms in the Chesapeake Bay can be
separated into reasonably self-contained ecological subsystems.
The separation is not perfect: a small number of benthic
organisms find their way into the pelagic community, presumably
indicating that these species play a substantial role in the food
chains of their surface-dwelling colleagues. This finding suggests
that the simple traditional division of taxa into pelagic or benthic
may not be an ideal classification in this case.

We also have applied our method to a number of other food
webs. Interestingly, although some of these show clear commu-
nity structure similar to that of Fig. 7, some others do not. This
could be because some ecosystems are genuinely not composed
of separate communities, but it also could be because many food
webs, unlike other networks, are dense, i.e., the number of edges
scales as the square of the number of vertices rather than scaling
linearly (29). Our algorithm was designed with sparse networks

Fig. 6. The largest component of the Santa Fe Institute collaboration
network, with the primary divisions detected by our algorithm indicated by
different vertex shapes.
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in mind, and it is possible that it may not perform as well on
dense networks.

Conclusions
In this article we have investigated community structure in
networks of various kinds, introducing a method for detecting
such structure. Unlike previous methods that focus on finding
the strongly connected cores of communities, our approach
works by using information about edge betweenness to detect
community peripheries. We have tested our method on
computer-generated graphs and have shown that it detects the

known community structure with a high degree of success. We
have also tested it on two real-world networks with well docu-
mented structure and find the results to be in excellent agree-
ment with expectations. In addition, we have given two examples
of applications of the algorithm to networks whose structure was
not previously well documented and find that in both cases it
extracts clear communities that appear to correspond to plau-
sible and informative divisions of the network nodes.

A number of extensions or improvements of our method may
be possible. First, we hope to generalize the method to handle
both weighted and directed graphs. Second, we hope that it may
be possible to improve the speed of the algorithm. At present, the
algorithm runs in time O(n3) on sparse graphs, where n is the
number of vertices in the network. This makes it impractical for
very large graphs. Detecting communities in, for instance, the
large collaboration networks (6) or subsets of the web graph (9)
that have been studied recently, would be entirely unfeasible.
Perhaps, however, the basic principles of our approach—
focusing on the boundaries of communities rather than their
cores, and making use of edge betweenness—can be incorpo-
rated into a modified method that scales more favorably with
network size.

We hope that the ideas and methods presented here will prove
useful in the analysis of many other types of networks. Possible
further applications range from the determination of functional
clusters within neural networks to analysis of communities on the
Worldwide Web, as well as others not yet thought of. We hope
to see such applications in the future.

We thank Jennifer Dunne, Neo Martinez, Matthew Salganik, Steve
Strogatz, and Doug White for useful conversations, and Jennifer Dunne,
Sarah Knutson, Matthew Salganik, and Doug White for help with
compiling the data for the food web, collaboration, college football, and
karate club networks, respectively. This work was funded in part by
National Science Foundation Grants DMS-0109086, DGE-9870631, and
PHY-9910217.

1. Strogatz, S. H. (2001) Nature (London) 410, 268–276.
2. Wasserman, S. & Faust, K. (1994) Social Network Analysis (Cambridge Univ.

Press, Cambridge, U.K.).
3. Scott, J. (2000) Social Network Analysis: A Handbook (Sage, London), 2nd Ed.
4. Watts, D. J. & Strogatz, S. H. (1998) Nature (London) 393, 440–442.
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