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Precise classification of tumors is critically important for cancer
diagnosis and treatment. It is also a scientifically challenging task.
Recently, efforts have been made to use gene expression profiles
to improve the precision of classification, with limited success.
Using a published data set for purposes of comparison, we intro-
duce a methodology based on classification trees and demonstrate
that it is significantly more accurate for discriminating among
distinct colon cancer tissues than other statistical approaches used
heretofore. In addition, competing classification trees are dis-
played, which suggest that different genes may coregulate colon
cancers.

Targeting specific therapies to pathogenetically distinct tumor
types is important for cancer treatment, because it maximizes

efficacy and minimizes toxicity (1). Thus, precisely classifying
tumors is of critical importance to cancer diagnosis and treat-
ment. Diagnostic pathology has traditionally relied on macro-
and microscopic histology and tumor morphology as the basis for
tumor classification. Current classification frameworks, how-
ever, are unable to discriminate among tumors with similar
histopathologic features, which vary in clinical course and in
response to treatment (2). Recently, there is increasing interest
in changing the basis of tumor classification from morphologic
to molecular. In the past decade, microarray technologies have
been developed that can simultaneously assess the level of
expression of thousands of genes (3–11). Several studies have
used microarrays to analyze gene expression in colon, breast, and
other tumors and have demonstrated the potential power of
expression profiling for classifying tumors (12–14). Gene expres-
sion profiles may offer more information than classic morphol-
ogy and provide an alternative to morphology-based tumor
classification systems.

Increasingly detailed information and sensitive data analytic
techniques are key ingredients for successful development of
tumor classification systems based on gene expression profiles.
Most existing statistical and computational methods for gene
expression data analysis focus on differential gene expression or
cluster analysis (15). The goal of clustering is to group together
objects (genes or tissue samples) with similar properties. The
hierarchical (16) and k-mean clustering algorithms (17), as well
as self-organizing maps (18), have been used for clustering
expression profiles (19). Recently, a coupled two-way clustering
algorithm was proposed to identify subsets of genes and tissue
samples (20). Although clustering techniques will continue to be
popular methods for gene expression data analysis, this meth-
odology has the disadvantage that it represents an instance of
unsupervised learning. In addition, it is difficult to incorporate
prior knowledge about gene expression patterns. Thus, cluster
analysis may not be a good statistical framework for diagnosis of
disease.

Alternatively, in classification analyses, we are given a training
set of observations that contain vectors of gene expressions as
well as the labeled (normal or tumor) tissues. These observations
are used to induce a classification model. This model can then
be applied to predict the class label (normal or tumor) for a set
of previously unseen instances (new tissue samples).

To predict tumor type, Golub et al. (1) used supervised
learning and derived discriminant decision rules on the basis of
magnitude and threshold of prediction strength. However, they
did not provide the procedure for selecting a threshold of
prediction strength, an essential ingredient for classification.
Heuristic rules for selection of the threshold of prediction
strength can be used, but with a certain unavoidable level of
subjectivity. Brown et al. (21) applied the method of support
vector machine to classify genes on the basis of expression data
from DNA microarray hybridization experiments and illustrated
the method for predicting functional roles of 2,467 uncharac-
terized genes from yeast Saccharomyces cerevisiae using the
expression data. The support vector machine method is based on
supervised learning. It can take advantage of prior knowledge by
beginning with a set of genes that have a common function, and
what is learned from the known genes will be used to discrim-
inate new genes. Although it may not be difficult to assemble a
set of training examples from the extant literature and existing
databases, the uncertainty that results from the assembled
choices is not well-defined. Classifying unknown genes through
gene expressions is different from (although related to) classi-
fying tissues through gene expressions. Moler et al. (22) proposed
using a naive Bayesian model and support vector machine for
tumor classification, both of which achieved comparable classi-
fication accuracy. Xiong et al. (23) conducted Fisher’s linear
discriminant analysis on the data analyzed here for tumor
classification. The clustering and classification methods used in
the existing literature (1, 12, 21–23) do not have a user-friendly
gene selection mechanism and are generally time-consuming
when there is a large number of genes to begin with. In particular,
the support vector machine makes use of the quadratic pro-
gramming algorithm and demands even more computational
time than other statistical classification methods.

We introduce the technique of recursive partitioning (24, 25)
for classifying tissues on the basis of gene expression data. This
technique has some major advantages over the more traditional
methods used by others (1, 12, 21–23). It is very efficient for
dealing with a large number of genes. It can classify more than
two types of tissues simultaneously, and it automatically selects
genes whose expression can distinguish different tissue classes.
In addition to this convenience and flexibility, we demonstrate
that the classification rules resulting from recursive partitioning
can be remarkably precise in comparison to those derived from
other methods (1, 12, 21–23).

Materials and Methods
Recursive Partitioning. Suppose we have data from n units of
observations. Each unit contains a vector of feature measure-
ments or covariates (gene expression profiles from a tissue) and
a class label (normal or tumor). Recursive partitioning is a
technique that builds a classification rule to predict the class

†To whom reprint requests should be addressed. E-mail: heping.zhang@yale.edu.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

6730–6735 u PNAS u June 5, 2001 u vol. 98 u no. 12 www.pnas.orgycgiydoiy10.1073ypnas.111153698



membership on the basis of feature information. Unlike Fisher’s
linear discriminant analysis, which uses linear combinations of
the covariates, the recursive partitioning technique extracts
homogeneous strata from the data and constructs tree-based
classification rules (see Fig. 1, for example). We focus on
application of the technique for tissue classification type using
gene expression data and refer to Zhang and Singer (24) for a
thorough technical description of the method. In essence, the
classification tree is constructed through a recursive partitioning
process that divides the study sample into smaller and smaller
samples (every subsample is called a node) according to whether
a particular selected predictor is above a chosen cutoff value.
The choices of the selected predictor and its corresponding
cutoff value are designed to purify the distribution of the
response; namely, separating normal tissues from cancer tissues
in the present context. The sample (node) purity is measured by
Plog(P) 1 (1 2 P)log(1 2 P), where P is the probability of a
tissue being normal within the node. This entropy function
reaches its maximum when P 5 0 or 1 (all tissues are of the same
type within the node) and minimum when P 5 0.5 (the two types
of tissues are equally likely). In general, we have to be careful not
to overgrow the tree. A pruning procedure can be used to cut off
redundant nodes (24). However, this is less of an issue in the
present application, because a relatively small tree can achieve
a high precision. Thus, we will not elaborate on the pruning
procedure here.

Gene Expression Data of Tumor and Normal Colon Tissues. To dem-
onstrate and explain the use of recursive partitioning, we analyze
a data set from the expression profiles of 2,000 genes using an
Affymetrix oligonucleotide array in 22 normal and 40 colon

cancer tissues, which can be retrieved from the website www.
sph.uth.tmc.eduyhgc.

Results
Fig. 1 is a classification tree that divides the 62 tissues into 4
groups labeled nodes 2, 5, 6, and 7. Two of them (nodes 2 and
7), shaded in green, contain 21 normal tissues and no cancer
tissue. In contrast, the other two nodes (nodes 5 and 6), shaded
in red, contain 40 cancer tissues and 1 normal tissue. If we predict

Fig. 2. A scatter plot of expression data from M26383 and R15447. The dots
are colored in green and red for normal and cancer tissues, respectively. The
dotted line marks the cutoff value for node 1 in Fig. 1, and the two regions are
labeled with their corresponding nodes in the same figure.

Fig. 1. Classification trees for tissue types by using expression data from three genes (M26383, R15447, M28214). Circles represent internal nodes that are
subsequently divided into daughter nodes. The boxes are terminal nodes that do not have further partition and determine the tissue class membership; the red
ones contain a total of 40 cancer tissues and 1 normal tissue, and the green ones contain 21 normal tissues. Beneath each internal node is the gene whose
expression level is used to split the node, and the cutoff is displayed on the arrow next to the right. The four companion tables provide the information of the
predictive precision of the tree based on a cross-validation scheme; see text for details. CT, number of cancer tissues; NT, number of normal tissues.

Zhang et al. PNAS u June 5, 2001 u vol. 98 u no. 12 u 6731

G
EN

ET
IC

S



the tissue type by the shaded color (green for normal and red for
cancer), we misclassify 1 normal tissue out of the total 62 tissues
(error rate, 1.6%). This is far more precise than the classification
rules using other methods (23).

Now, we explain how to read Fig. 1. First, node 1 is split into
nodes 2 and 3 in this figure, on the basis of the expression level
of gene M26383. The 48 tissues (40 cancer and 8 normal tissues)
that have the M26383 level beyond 60 are moved to node 3, and
the remaining 14 tissues (all are normal tissues in this case) to
node 2. The choices of the M26383 level and its corresponding
threshold of 60 are automatically determined by the recursive
partitioning algorithm. Briefly, the algorithm examines all of the
2,000 gene expression levels and all possible thresholds for each
of the expression levels and selects the combination of gene
expression level and threshold that results in the ‘‘best’’ separa-
tion of cancer and normal tissues on the basis of the node purity
(or impurity) function introduced above. After node 1 is divided
into nodes 2 and 3, node 3 is split into nodes 4 and 5 by the same

algorithm, while restricting to the 40 tissues in node 3 only.
Analogously, node 4 is further partitioned into nodes 6 and 7.

Figs. 2 and 3 are presented to enhance Fig. 1. In Fig. 2, the gene
expression from M26383 is plotted against the gene expression
from R15447. The 40 points from cancer tissues are labeled in
red and the 22 points from normal tissues in green. On the
left-hand side of the vertical dotted line are the 14 normal tissues
contained in node 2. On the right-hand side are the 48 remaining
tissues contained in node 3. Those 48 tissues are plotted again
in Fig. 3, although gene expression data from R15447 and
M28214 are used this time. The upper left corner in Fig. 3
corresponds to node 7 in Fig. 1. The remaining points are from
nodes 5 and 6. The lone green point in the lower left corner is
the misclassified tissue in node 6. Furthermore, Fig. 4 is a three-
dimensional presentation of Fig. 1 using the gene expressions
from M26383, R15447, and M28214 as the three coordinates.

We have reported the quality of the tree classification on the
basis of the number of misclassified tissues. It is important to
recall that the tree structure in Fig. 1 was selected to minimize
the number of misclassifications. Without adjustments, this
selection procedure tends to result in overly optimistic assess-
ments of the tree quality. A commonly used statistical approach
is cross-validation (24). Because we have a total of only 62
tissues, the obvious procedure described by Breiman et al. (25)
and Zhang and Singer (24) would use very few learning and test
samples and produce more uncertainty. Instead, a localized
procedure (26) is adopted here to balance the needs of validating
the results and retaining as many observations as possible.

Specifically, we first fix the tree frame in Fig. 1. The same
genes will be applied to the same nodes, but the cutoff values for
the selected gene profiles can vary. Let us begin with node 1. The
40 cancer tissues were divided randomly into 5 subsamples of 8,
and the 22 normal tissues into 5 subsamples of 4, 4, 4, 5, and 5.
Four subsamples each from the cancer and normal tissues were
used to choose the cutoff values for the three splits. The
remaining subsamples were used to count the misclassified
tissues as a result of new cutoff values. This 5-fold cross-
validation procedure was repeated a second time. The result for
node 2 is presented in the 5 3 4 table to the left of the node in
Fig. 1. The first column in that table is the cutoff value chosen
during each of the five validations, and the second column
reports the number of classification errors within node 2. The

Fig. 3. A scatter plot of expression data from R15447 and M28214 for a subset
of tissues (node 3 in Fig. 1). The dots are colored green and red for normal and
cancer tissues, respectively. The dotted lines mark the cutoff values for nodes
3 and 4 in Fig. 1, and the three regions are labeled with their corresponding
nodes in the same figure.

Fig. 4. Three-dimensional illustration of gene expressions from M26383, R15447, and M28214, along with tissue types. The 40 points from cancer tissues are
labeled in red and the 22 points from normal tissues in green. Because cancer tissues end up in two terminal nodes in Fig. 1 and so are normal tissues, two levels
of intensities for each of the red and green colors are highlighted to indicate different terminal node assignments of the same type of tissues.
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last two columns are analogous to the first two and report the
results for the repeated 5-fold cross-validation.

This cross-validation was then applied to the split of node 3.
The table to the right of node 5 displays the result. Likewise, we
did the same for the split of node 4. The table to the right of node
6 summarizes the result for node 6, and the table to the left of
node 7, for node 7, except that the latter table contains two
columns, because the cutoff values are the same as those in the
former table and hence are not repeated. In summary, 4 of 62
tissues were misclassified during the first 5-fold cross-validation,
and 5 were misclassified the second time. These 6–8% error

rates are unbiased estimates. The predictive precision of over
90% is still much better than that obtained by existing analyses.

Fig. 1 displays a simple tree constructed from 3 genes that
correctly classifies 61 of 62 tissues. It is common that functional
expressions from various genes are correlated. Thus, it is inter-
esting to examine the correlation patterns of the expression data
between the three selected genes in Fig. 1 with the expression
profiles in the remaining genes. Fig. 5 reveals that the correla-
tions among the three selected genes themselves are not high.
However, many gene expressions are highly correlated (Pear-
son’s correlation coefficient greater than 0.7) with the expres-
sions from M28214. Fewer gene expressions are highly corre-
lated with the expressions from R15447 and none with
expression from M26383. Thus, not only are the expression data
from M26383 able to distinguish the tissue types, but they are
also relatively unique and may not be easily replaceable, as they

Fig. 5. Correlation curves between the three selected gene expressions in Fig.
1 and the remaining expression data. Genes are sorted according to the
absolute correlation levels with one of the three selected genes and, obvi-
ously, the orders are different among the three selected genes.

Fig. 6. Classification trees for tissue types by using expression data from three genes (R87126, T62947, X15183). Circles represent internal nodes that are
subsequently divided into daughter nodes. The boxes are terminal nodes that do not have further partition and determine the tissue class membership; the red
ones contain a total of 40 cancer tissues, and the green ones contain 22 normal tissues. Beneath each internal node is the gene whose expression level is used
to split the node, and the cutoff is displayed on the arrow next to the right. The four companion tables provide the information of the predictive precision of
the tree based on a cross-validation scheme; see text for details. CT, number of cancer tissues; NT, number of normal tissues.

Table 1. Correlation matrix among gene expression profiles that
determine Figs. 1 and 6

M26383 R15447 M28214 R87126 T62947 X15183

M26383 1 0.224 20.053 20.315 0.300 0.333
(0.08) (0.68) (0.01) (0.02) (0.01)

R15447 1 0.271 20.143 0.605 0.489
(0.03) (0.27) (,0.001) (,0.001)

M28214 1 0.318 0.363 0.390
(0.01) (0.004) (,0.001)

R87126 1 20.144 20.002
(0.26) (0.99)

T62947 1 0.412
(,0.001)

Pearson’s correlations and their P values are displayed.
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are not highly correlated with the other genes. As we move down
the tree in Fig. 1, the gene expressions used for classification are
more and more replaceable, as highly correlated genes are likely
to have a similar performance in classification precision.

The correlation among many gene profiles makes it likely that
there exist other competing tree structures that could have similar
predictive precision. Using the RTREE (http:yypeace.med.yale.edu)
program, we identified another tree, as displayed in Fig. 6, that is
based on a different set of three genes. This can be done by selecting
competitive node splits rather than the ones that have the best
numerical values of node purity as defined through the entropy
function. Table 1 shows that there are modest correlations among
the new set of three genes and the previous three genes. Thus,
different genes may coregulate colon cancer even though their gene
expression profiles do not resemble each other very much. The
classification prior to the cross-validation is perfect. The tree
correctly classifies the 62 tissues. However, if we use the same
cross-validation procedure as described above, the error rate is
estimated to be between 8 and 11%, slightly higher than the rate for
Fig. 1. Similar to Fig. 4, Fig. 7 is used to illustrate Fig. 6. Both of the
trees in Figs. 1 and 5 specify high-precision classification rules.

Discussion
The simultaneous monitoring of the expression of thousands of
genes holds great promise for a better understanding of cancer
biology and for development of accurate tumor classification
schemes. However, the very large amount of gene expression
information provided by contemporary microarray technology
leads to difficulties for both basic research and clinical applica-
tions. Gene expression analyses for tumor classification requires
cost-effective and streamlined methodology. In particular, if a
handful of genes provide the basis for an accurate tumor
classification scheme, the cost and complexity of monitoring the
expression of thousands of genes will not be necessary in a
clinical setting. In this report, we have demonstrated the use of
recursive partitioning tree-based rules for tumor classification.

The selection of an optimal subset of genes poses two related
problems: determining the number of genes to be selected and
determining which genes belong to the set. Recursive partitioning
is able to incorporate feature (gene) selection as a part of its

learning algorithm and thus to simultaneously address these two
issues. Using recursive partitioning, we have analyzed available
expression data from 2,000 genes in 22 normal and 40 colon cancer
samples and found that using three genes, IL-8 (M26383), CANX
(R15447), and RAB3B (M28214), we can achieve 98% classifica-
tion accuracy. These three genes are related to tumors. It was
reported that IL-8 is correlated with the stage of colon cancer (27),
the migration of human colonic epithelial cell lines (28), and
metastasis of bladder cancer (29). The expression of the molecular
chaperone CANX was found to be decreased in HT-29 human
colon adenocarcinoma cells (30) and to be involved in apoptosis in
human prostate epithelial tumor cells (31). RAB3B is a member of
the RAS oncogene family. It is associated with significant increase
of the mRNA expression in a human leukemia cell line (32).

This result is appealing and may have profound implications
for clinical applications. It bodes well for the following scenario.
Initially, basic research and clinical trials will monitor the
expression of thousands of genes by using microarrays to identify
a handful of genes providing optimal tumor classification infor-
mation. Clinical applications will then require monitoring of only
this small subset of genes, thus avoiding the cost and complexity
of large-scale gene expression arrays. Of course, the number of
selected genes and the optimal set of genes will likely differ
according to tumor type, and thus clinical laboratories will still
need the capability of monitoring a variety of genes.

Some of the gene expression levels across tissue samples are
correlated and may form clusters. As a result, it is likely that the
information contained in a large number of genes can be captured
by a smaller number without significant loss of information. This is
a direct result of the fact that clusters of genes are similarly
regulated and hence play a similar role in tumor classification. The
precision of classification exhibited herein by recursive partition-
ing—in comparison, for example, with linear discriminant analysis
(23)—is critically important for such clinical applications. Further-
more, our results imply that gene expression on the basis of tumor
classification systems not only provides an informative supplement
to morphology-based classification systems but also possibly rep-
resents an improved alternative to them.

This research was supported in part by National Institutes of Health
Grants DA12468 and AA12044.

Fig. 7. Three-dimensional illustration of the gene expressions from X15183, R87126, and T62947, along with tissue types.
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