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It is increasingly recognized that material surface topography is
able to evoke specific cellular responses, endowing materials with
instructive properties that were formerly reserved for growth fac-
tors. This opens the window to improve upon, in a cost-effective
manner, biological performance of any surface used in the human
body. Unfortunately, the interplay between surface topographies
and cell behavior is complex and still incompletely understood.
Rational approaches to search for bioactive surfaces will therefore
omit previously unperceived interactions. Hence, in the present
study, we use mathematical algorithms to design nonbiased, ran-
dom surface features and produce chips of poly(lactic acid) with
2,176 different topographies. With human mesenchymal stromal
cells (hMSCs) grown on the chips and using high-content imaging,
we reveal unique, formerly unknown, surface topographies that
are able to induce MSC proliferation or osteogenic differentiation.
Moreover, we correlate parameters of the mathematical algo-
rithms to cellular responses, which yield novel design criteria for
these particular parameters. In conclusion, we demonstrate that
randomized libraries of surface topographies can be broadly ap-
plied to unravel the interplay between cells and surface topogra-
phy and to find improved material surfaces.

high-throughput screening ∣ microfabrication ∣ mesenchymal stromal cells

Biomaterials are applied for numerous clinical applications,
ranging from stents, orthopaedic implants, and sutures to

contact lenses. In all these cases, the response of the human body
to the material depends on the interface between the material
and the cells. Often, interaction is not optimal. For instance,
orthopaedic implants may get encapsulated by fibrous tissue upon
implantation, rather than bonding directly with the bone, which
can result in implant failure. Hence, a lot of effort is dedicated to
modify the surface of implants by either using coatings [e.g., using
calcium phosphate coatings (1) on hip implants] or through
physically modifying the surface of the implant by varying the sur-
face roughness [e.g., by sand blasting and electropolishing (2)].
Considerable improvement of orthopaedic implant performance
in the past decades signifies the potential of surface modification
for optimizing medical devices in general. One of the drawbacks
of these techniques is that they offer only limited control of
surface characteristics. However, with the advent of new devel-
opments in micro- and nanotechnologies, it is possible to create
surfaces with precisely designed feature sizes and shapes up to
nanometer resolution. Some of the pioneering manuscripts in
the field did not only provide proof-of-principle for micro- and
nanopatterning of biomaterial surfaces but also disclosed unpre-
cedented control of material surface on the behavior of cells
growing on them (3, 4). For instance, using different concentra-
tions of poly(2-hydroxyethyl methacrylate), Folkman and Mosco-
na were able to control cell proliferation through the extent of
cell spreading (5). Using micro pattering techniques, Chen and

coworkers showed that the decision of a mesenchymal stromal
cell (MSC) to either become a fat or a bone cell depends on
the shape the cell, which correlated with the activation of the
RhoA signaling pathway (6). Micro- and nanotechnology can also
be used to determine surface topography, a parameter that is
known to influence the behavior of cells growing on it (7). Micro-
meter-range patterning is used to align cells on biomaterial
surfaces (8–10), whereas Dalby et al. reported that randomly
placed nanotopographies were able to induce osteogenic differ-
entiation of MSCs (11). Unfortunately, nature does not prescribe
the optimal surface topography for a given biomedical applica-
tion, and the number of possible surface patterns that can be
created is virtually unlimited, considering that cells are in the
order of tens of micrometers whereas patterns can be created at
nanometer resolution. The underlying mechanisms defining the
interplay of cells with substrates are only partially understood
(12–15). Additionally, the specific application of a biomedical
device dictates the optimal surface as, e.g., an orthopaedic im-
plant requires a different biological response than a cardiovascu-
lar stent. Determining the distinct surface to elicit an appropriate
biological response is thus a big challenge. Due to this complex
interplay between cells and substrates, rational approaches may
omit unperceived paradigms (16). Hence, in recent years, there
has been a shift from the rational design of biomaterials to com-
binatorial screening approaches used typically in the pharmaceu-
tical industry for drug discovery, which we and others refer to as
materiomics (17, 18). Thus, materiomics can be defined as large
scale study of structure, function, and properties of natural and
synthetic materials. In a landmark study, Anderson et al. identi-
fied a host of unexpected material effects that offered new levels
of control over human embryonic stem cell behavior while eval-
uating an array of nearly 600 different copolymer compositions
(16). In this manuscript, we show that combining the power of
high-throughput screening with mathematical design of micro-
meter-range surface topographies, enables deciphering the
“Braille code” of cell-topography interactions.
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Results
We created a library of 2,176 distinct, randomly designed surface
topographies using mathematical algorithms as a design tool (see
Fig. 1A for an outline). They were reproduced in duplicate on a 2
by 2 cm2 chip (“TopoChip”) from poly(DL-lactic acid) (PLA) in
areas of 290 by 290 μm2, designated as “TopoUnits” (see Fig. 1B).
First, a library of surface topographies was designed by generat-
ing topographic features, which are topography containing ele-
ments with a height of 5 μm arranged within an imaginary square
with a size of either 10 by 10, 20 by 20, or 28 by 28 μm2 (Fig. 1B).
Topographic features are built up using three types of microscale
primitive shapes: circles, isosceles triangles (with one angle of
36° and two angles of 72°), and thin rectangles (3 μm width).
We choose these shapes because by combining these primitives,
we can generate different types of patterns—e.g., circles can cre-
ate large smooth areas, triangles can generate angles, and thin
rectangles can result in stretched elements. With integral values
for geometrical parameters (see Tables S1 and S2) such as primi-
tive type, primitive size, and angle of rotation in the algorithm,
154,320,600 possible surface topographies can be defined. If
we include nonintegral values for these parameters, the possibi-
lities are infinite. From the in silico library, 2,176 topographic de-
signs were randomly selected. In addition, four TopoUnits with a
flat, nonpatterned surface were included as reference surfaces.
We divided the TopoChip into four quadrants (Fig. 1C) where
quadrant A has identical TopoUnits to that of Ai and quadrant
B is identical to quadrant Bi to assure that TopoUnits at the per-
iphery have duplicates in the middle of the chip (Fig. 1C). With
the TopoChip design, a silicon mould was fabricated using photo-
lithography and etching, which was then used for imprinting of
topographies onto PLA films. The chips were diced and further
characterized using scanning electron microscopy (SEM; Fig. 2 A
and B). Upon characterization, we observed uniformity in the
filling of the polymer into the mould cavities spaces. To assess
the accuracy of replication of topographies, 32 TopoUnits were
randomly chosen and height profile measurements of them per-
formed using a Keyence VK9700 confocal laser scanning micro-
scope. It is important to note that the chips used in this study were
composed of features with a height of 5 μm and 20-μm-high walls
between adjacent TopoUnits (Fig. S1). For each location, the
measurements were performed on three chips. The average dif-
ference in height profile measurements was 99 nm with a stan-
dard deviation of 56 nm. TopoChips can also be coated with
different materials used in tissue engineering. In Fig. S2, Topo-
Chips are displayed with a layer of titanium oxide, deposited

using plasma sputtering, and a calcium phosphate coating depos-
ited using supersaturated simulated body fluids. Thus, we created
a library of thousands of surfaces with unique physicochemical
compositions.

Cell Seeding and Culture.To analyze the bioactivity of topographies,
primary human mesenchymal stromal cells (hMSCs) were seeded
onto PLA TopoChips and cell-material interaction was analyzed
by high-content imaging. We anticipated that quantification of
cell behavior relies on a critical number of cells per TopoUnit.
Cell seeding has to be homogenous across the chip and the seed-
ing density needs to be controlled. To this end, we designed and

Fig. 1. TopoChip design. (A) A schematic representation of a sequence of events that is proposed to be followed for high-throughput screening of biomedical
materials starting from initial design to clinical application. (B) Design of the TopoChip is based on the use of primitives. Three types of primitives, namely
circles, triangles, and lines were used to construct features. Repeated features constitute a TopoUnit and two times 2;176 ¼ 4;352 TopoUnits constitute a
TopoChip (size ranges are indicated). In addition, four flat control surfaces are included. (C) TopoChip is divided into four quadrants. TopoUnits in quadrant
A are repeated in quadrant Ai and similarly TopoUnits in quadrant B are repeated in quadrant Bi in order to exclude site specific or localized effects.

Fig. 2. TopoChip fabrication and characterization. (A and B) SEM images of
sections of TopoChips, displaying accurate feature replication on the Topo-
Chip. (Scale bar: 50 μm.) (C) The TopoChip carrier, lid, and chip assembly. This
chip carrier can even be used as a micro-bioreactor for perfusion culture of
cells, or with a second set of attachment (not shown) for static cell culture. (D
and E) Light microscopic images of cells seeded using the chip carrier display-
ing homogeneity of cell distribution within and between TopoUnits.
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fabricated a chip carrier by micromachining poly(methylmetha-
crylate) (Fig. 2C) to retain the chip in position. Design and quality
control aspects of TopoChip seeding and the culturing device
will be described in a separate manuscript. The chip carrier was
fabricated with a removable closing lid that can be fixed within a
slot which is placed 100 μm above the chip. Homogeneous dis-
tribution of the cell suspension across the chip area was observed
upon closure of the lid and the cells were deposited into the
TopoUnits by gravity (Fig. 2 D and E). To confirm that the topo-
graphic features affect hMSC behavior, we fixed the cells 8 h after
seeding and stained their actin cytoskeleton. Visual inspection
of the chip confirmed that a multitude of different cellular
morphologies were induced by surface topography (Fig. 3 A–J).
For instance, TopoUnits were found in which hMSCs adopted
an elongated shape, or in which cells spread extensively, but also
TopoUnits were seen in which the hMSCs remained mostly
rounded. In many TopoUnits, cells exhibited extensive filopodia,
and many cells were observed that clearly followed the outlines of
the features.

Mitogenic Effect of Surface Topographies. To quantitatively screen
for surface topographies that can exert a mitogenic effect on
hMSCs, we seeded the cells, synchronized the cell cycle by serum
deprivation and treated the cells with the nucleoside analogue
EdU at the moment that serum was added to the cells. After
8 h of culture with serum, cells were stained for EdU and nuclei
were stained with TOTO-3. Fluorescent images of the nuclei,
proliferating nuclei and bright field images of TopoUnits were
acquired for the whole chip area using an automated microscope.
A preprocessing pipeline was designed in which the images were
corrected for background and signal intensity distribution and
quality control metrics were calculated in order to remove unreli-
able results (Fig. S3). The images obtained from preprocessing
were analyzed using a CellProfiler pipeline (19), which was used
to count the total number of cells per TopoUnit as well as the
number of proliferating cells per unit, represented by the number
of EdU-positive cells. To improve reliability, the experiment was
repeated five times, giving us for each of the 2,176 units ten mea-
surements (two per chip, n ¼ 10). In Fig. 4A, the average number
of cells per TopoUnit is represented. Similarly, the average num-
ber of EdU-positive cells is represented in a heat map (Fig. S4),
which clearly shows that large differences occur between different

TopoUnits confirming that surface topography influences cell
proliferation (20). Finally, we analyzed the number of EdU-
positive cells per total cell number per TopoUnit (Fig. 4B). The
surface patterns of top scoring units in terms of the number of
proliferating cells are shown in Fig. S4 C–F. Because all cells
in the TopoChip share the same 5 ml of medium in the reservoir,
it is possible that the biological response is not a direct effect of

Fig. 3. Morphology of hMSCs on different TopoUnits. (A–D) Fluorescent microscopic images of spread and elongated cells showing alignment on topographic
features (pseudocolored green: actin stained with Alexa Fluor 488 phalloidin; red: nuclear staining with TOTO-3; scale bar: 90 μm). (E–H) SEM images of
cells showing diverse cellular morphologies. (Scale bar: 90 μm.) (I and J) High magnification SEM images of rounded cells on two distinct TopoUnits showing
differences in the texture of cell membrane. (Scale bar: 10 μm.)

Fig. 4. Cell proliferation assay. (A) Heat map of the mean cell number per
TopoUnit. The numbers represent the average of 10 TopoUnits on five Topo-
Chips (n ¼ 10). (B) Heat map of the ratio of the mean number of proliferating
cells over total cell number. TopoUnits marked with red circles indicate high-
scoring units in terms of cell proliferation ratio. Flat TopoUnits (without any
features) are indicated with green circles.
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the surface topography but rather mediated through short-range
signals produced by cells in adjacent units. Under these circum-
stances, a “colony” of positive TopoUnits would be expected,
which we did not observe in the heat maps. Furthermore, it is
not very likely that the small numbers of cells in the TopoUnit
are able to create a morphogen gradient in such a large volume
of medium. However, to represent the extent to which the surface
topography itself is predictive of class fate (proliferating or non-
proliferating), we trained a nearest-neighbor classifier (21) (see
Materials andMethods) to distinguish between high- and low-scor-
ing TopoUnits based on surface topography parameters using the
highest and lowest 10% of the observations. The classifier was
employed in a 10-fold cross-validation setting, in which it was
trained with a subset of the TopoUnits, and afterwards used to
predict the outcome of another subset of TopoUnits. By compar-
ing predictions with the actual measurements, an area under
curve score (AUC) (22) from the receiver operating characteris-
tics (ROC) curve (see Materials and Methods) of 0.68 (Fig. 5A)
was obtained, confirming that surface topography correlates to
the proliferation of hMSCs, and thus mitogenicity depends on
surface topography.

Machine Learning Algorithms for Identification of Important Topo-
graphic Parameters. At first sight, no apparent common design
theme could be observed between the four topographic features
that stimulate cell proliferation (Fig. S4 C–F). To gain more in-
sight in which (combination) of the 35 topographic parameters
was most influential in determining proliferation, we performed
a forward parameter selection. For this, a classifier algorithm was
trained using only a subset of topographic parameters to distin-
guish between TopoUnits with high and low numbers of prolifer-
ating cells. This was again done for the 10% highest vs. 10%

lowest measurements. The classifier was tested using a cross-
validation strategy to give us an estimation of the predictive
power of subsets of topographic parameters. As shown in Fig. 5B,
we found that the best single parameter predictive of the number
of proliferating cells was the Fourier-based parameter WN1
(AUC ¼ 0.67). Performance improved even further when for-
ward selection included WN1.5 along with feature size and WN1
(AUC ¼ 0.70). The parameters WN1.5 and WN1 represent the
fraction of the total energy contained in the feature after applying
discrete Fourier transformation that is present in sinusoids
with wave number approximately 1.5 and 1, respectively. These
observations suggest that cell proliferation can be triggered by
concentrating on designs that are composed of a certain spatial
distribution.

Surface Topography Enhances Osteogenic Differentiation of hMSCs.
High-content screening of TopoChips can be performed using
virtually any fluorescence-based cellular staining. To further illus-
trate this, we analyzed the expression of alkaline phosphatase
(ALP), a marker for early osteogenic differentiation, using
hMSCs growing in basic medium on TopoChips. It has been
shown in the past that surface topography is able to induce os-
teogenic differentiation in the absence of growth factors (11).
Following cell culture, the cells were stained by immunofluores-
cence using a bone-specific antihuman ALP antibody. Immuno-
fluorescence images of chips were acquired and ALP intensity
was analyzed using CellProfiler software. First of all, we detected
ALP-positive cells in less than 10% of the TopoUnits. Fig. 6A re-
presents mean ALP signal measured across five chips (n ¼ 10) ,
and immunofluorescent staining of hMSCs on the flat control is
shown in Fig. 6B. The TopoUnit with the highest average/mean
ALP intensity across 10 measurements is shown in Fig. 6 C andD.
It has been reported that cell shape can influence osteogenic dif-
ferentiation, and cell spreading seems to correlate positively to
osteogenic differentiation (6). To investigate whether cell spread-
ing was also related to ALP expression in our hit surfaces, we
analyzed the morphology of hMSCs on the top hit surface and
flat reference surfaces using CellProfiler software (see Table 1).
Of the 13 parameters analyzed, cells on the hit surface displayed
a significantly smaller cell area and a higher major axis length.
Osteogenic differentiation is known to be enhanced in more com-
pact three-dimensional structures, such as nodules or spheroids
(23) and the area of the ALP-positive MSCs on the high-scoring
surface could be related to this, which is currently under inves-
tigation.

Discussion
Taken together, our data confirm the viability of a previously un-
described approach to address the problem of unknown biologi-
cal responses to a virtually unlimited number of potential surface
pattern designs. In this manuscript, we have combined algorith-
mic generation of surface topographies with high-throughput
screening of hMSCs, aiming at the identification of bioactive sur-
face topographies.

An important pillar of the study is the use of high-content ima-
ging and assay miniaturization. The current TopoChip contains
2,176 unique surface topographies, which we were able to screen
and analyze simultaneously. Typically, research on the effect of
surface topography on cell behavior is characterized by low
throughput, with some notable exceptions (24, 25). Although ex-
act calculations are difficult to make, we think that more unique
surface patterns were screened for an effect on proliferation and
osteogenic differentiation of hMSCs in this manuscript alone
than ever published in literature. As such, we believe TopoChip
screening can lead to a paradigm shift in research on surface
topography, not only because of the throughput but also because
our approach is based on the design of the surfaces. The current
TopoChip comprises features down to a few micrometers, but

Fig. 5. Data validation for the cell proliferation assay. (A) ROC curve to rule
out stochastic events for validation of proliferating cell count ratio as a
function of surface topography after tenfold cross-validation. (B) ROC curve
to determine surface topographic parameters responsible for enhanced pro-
liferation with a machine-learnt model.
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future work will also focus on fabrication of TopoChips with
nanometer scale topographic features, where the interaction with
the cells may lead to yet another level of control.

Another powerful aspect of the TopoChip platform is its ver-
satility. We used it to screen biological responses that are useful in
bone regeneration strategies—i.e., hMSC proliferation and dif-
ferentiation—but the platform can be used with different mate-
rials and cell types as well. For example, we have initiated experi-
ments to screen for surfaces that support embryonic stem cell
pluripotency, for surfaces that are favorable for proliferation of
endothelial cells and surfaces with antiadhesive properties for
bacteria to prevent biofilm formation (26). With a well-defined
biomaterial and biological readout, straightforward screening

projects for a myriad of different medical devices can be en-
visaged.

Beyond the use of TopoChip technology as a biomaterial de-
velopment tool, we think it will also be instrumental in shedding
new light on the scientific questions around the interplay between
surface topography and cell behavior. It is well recognized that
cells respond to the surface they sit on, or in other words, we
do know that cells can read a “Braille language” and respond to
it. Analogous to the six simple dots that are enough to encode the
Braille alphabet, it would be very interesting to decode the cell’s
Braille script. How many unique cellular responses can be evoked
by virtue of surface topography and what are the molecular
mechanisms behind it? The algorithmic approach we used in
the current study is particularly suited for this enterprise because
the biological response can be correlated to design criteria of
the materials. For instance, we did not anticipate that hMSC
proliferation would correlate to the Fourier transform of certain
features, a mathematical description of the spatial organization
of topographic features on the surface (27). To fully explore the
potential of this approach, systematic development of methodol-
ogies is needed that allows for generations of favorable surface
topographies in environments with unpredictable response. This
asks for development of new tools and insights in the design of
(evolutionary) search algorithms, requires pushing the limits in
imaging and nanoscale fabrication technologies, and most impor-
tantly, calls for a carefully designed hybrid of algorithmic and
biological experiments. For instance, we are currently developing
a nanoTopoChip for which e-beam lithography will be used, and
we already produced TopoChips of various compositions includ-
ing hydrogels. Moreover, we are developing the TopoChip into
a device that is compatible with six-well plates in order to make
the technology more accessible for other research groups and
to be able to screen even larger numbers of different TopoUnits.
We believe that incorporation of iterative experimental and
bioinformatics-based computational approaches for studying bio-

Fig. 6. ALP expression on hMSCs. (A) Heatmap of the mean intensity of fluorescently labeled ALP of hMSCs grown on different topographies. (B) Cells on/in a
flat TopoUnit not expressing any ALP. In this image, actin staining is pseudocolored in red, ALP expression in green, and nucleic acid staining in blue. (C) Cells on
the TopoUnit with the highest ALP expression. The corresponding TopoUnit is marked with a yellow circle on the heat map. (D) SEM image of the TopoUnit
showing the highest intensity for ALP staining. The inset shows a higher magnification view of features. (Scale bar: 20 μm.)

Table 1. CellProfiler analysis of hMSCs on a flat versus a hit surface*

Parameter Flat surface Hit surface P value†

Area 2868‡ 2333 0.009
Compactness 1.45 1.51 0.06
Eccentricity 0.77 0.78 0.26
Center X 221 231 0.37
Center Y 222 225 0.39
Euler no. 0.898 0.809 0.52
Extent 0.507 0.511 0.76
Form factors 0.235 0.227 0.47
Major axis length 78.9 84.2 0.004
Minor axis length 43.4 48.2 0.06
Orientation −19.2 6.4 0.09
Perimeter 431 388 0.18
Solidity 0.76 0.75 0.25

*Cell profiler parameters were selected describing cell shape and measured
in the flat reference surfaces and the hit surface with the highest ALP
intensity.

†Student’s t test on the average parameter values.
‡On three TopoChips, about 40–50 cells were imaged per indicated TopoUnit.
Average numbers are represented.
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materials will help us better understand cell–material interactions
and develop better surfaces for medical devices.

Materials and Methods
Design and Fabrication. As mentioned previously, topographies were de-
signed using three types of primitive shapes—i.e., triangles, circles, and rec-
tangles. A feature was generated by first randomly selecting parameter
values for its size, the number of primitives to be used and the distribution
over the different primitive types, the size of the primitives, and the degree
to which the primitives were to be aligned. Next, each primitive was placed at
a random position inside the feature. Overlapping of primitives was allowed.

After designing the chip, a chromium mask was made and used for
photolithography. The micro patterns were etched from the silicon wafer,
generating a silicon master for hot embossing. To render a hydrophobic
mould surface for easier demoulding, the master was coated with a layer
of perfluorodecyltrichlorosilane (FDTS) (ABCR, AB111155) in an evacuated
recipient. The master was subsequently used for hot embossing of PLA films
(250 μm thick) (Folienwerk Wolfen GmbH) using an Obducat nanoimprint
tool. Briefly, the silicon master was placed at the bottom and the PLA
film was sandwiched between the silicon master and an Obducat UV Sheet
Polyester (100 Micron 10638). Imprinting was carried out at 80 °C with 30
bars of pressure for 10 min and then the assembly was allowed to cool down
to 40 °C prior to demoulding. The chips were diced from the imprinted PLA
films using a wafer saw.

Cell Culture. HMSCs were isolated from a healthy donor and expanded as
described previously (28). Briefly, cells were expanded in proliferation med-
ium containing α-MEM (Gibco, 22-571-038), 10% foetal bovine serum (FBS;
Lonza), 2 mM L-glutamine (Gibco, 25030), 0.2 mM ascorbic acid (Sigma,
A8960), 100 U∕mL penicillinþ 100 g∕ml streptomycin (Gibco, 15140-122)
and 1 ng∕mL basic fibroblast growth factor (bFGF; Instruchemie, PhP105).
For the cell proliferation assay, hMSCs were trypsinised using 0.25% tryp-
sin-EDTA (Invitrogen 25200-072), resuspended in basic medium (proliferation
medium devoid of bFGF) and treated with Component A from a Click-iT™
EdU Alexa Fluor® 488 Imaging Kit (C10083) according to manufacturer’s
protocol. For immunofluorescence staining of ALP, cells were resuspended
in basic medium to a concentration of 1.2 million cells per millilitre and
seeded on the chips. The cells were cultured in a humid 5% CO2 environment.

Immunofluorescence Staining. After cell culture, the chips were washed with
phosphate buffered saline and cells were fixed with 4% (w∕v) paraformal-
dehyde for 10 min and permeabilized with 0.01% Triton X-100. Staining
for EdU detection was performed using the EdU imaging kit according to
manufacturer’s protocol and cells were counterstained with TOTO-3 iodide
nucleic acid stain (Invitrogen, T3604) according to manufacturer’s protocol.
For ALP detection, following permeabilization cells were incubated with a
solution of 10% FBS for nonspecific antibody blocking and stained for
ALP using a bone-specific human ALP antibody (developmental study hybri-
doma bank B4-78). The cells were counterstained with Alexa Fluor 568 phal-
loidin (Invitrogen, A12380) and TOTO-3 iodide.

Image Acquisition and Analysis. Images were acquired using a BD Pathway 435
automated microscope. A montage of a total of 221 montage images with
respective filter sets for each fluorophore was acquired. Each image consti-
tuted a 3 by 5 montage of an area covering approximately 20 TopoUnits.
All the 221 montage images were combined into one large montage
(35,000 by 35,000 pixels) for each channel and corrected for rotation, overlap,
and intensity. Focus performance was determined using a Laplace operator
and unreliable measurements were discarded. Subsequently, images of indi-
vidual TopoUnits were cropped and analyzed using CellProfiler. For details
see Fig. S3.

Data Analysis. To distinguish high-scoring TopoUnits from low-scoring ones,
a nearest-neighbor classifier was applied. This is a method for classifying
objects based on closest training examples (TopoUnits) in the (surface topo-
graphy) parameter space and is widely used in the field of signal processing
and pattern recognition. To determine classifier performance, a 10-fold cross-
validation strategy was employed, and ROC curves were constructed. ROC
curves are a widely used standard for describing and comparing the accuracy
of diagnostic tests. It represents the trade-off between the true and false
positive rates for every possible classifier threshold. For each ROC curve,
the AUC was determined, which is a measure of the probability that a clas-
sifier based on this label would rank a randomly chosen positive observation
(e.g., enhanced proliferation) higher than a randomly chosen negative
observation. AUC ¼ 1 is a perfect ranking classifier and AUC ¼ 0.5 depicts
complete randomness.
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