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Major efforts to sequence cancer genomes are now occurring
throughout the world. Though the emerging data from these
studies are illuminating, their reconciliation with epidemiologic
and clinical observations poses a major challenge. In the current
study, we provide amathematical model that begins to address this
challenge. We model tumors as a discrete time branching process
that starts with a single driver mutation and proceeds as each
new driver mutation leads to a slightly increased rate of clonal
expansion. Using the model, we observe tremendous variation in
the rate of tumor development—providing an understanding of
the heterogeneity in tumor sizes and development times that have
been observed by epidemiologists and clinicians. Furthermore, the
model provides a simple formula for the number of driver muta-
tions as a function of the total number of mutations in the tumor.
Finally, when applied to recent experimental data, the model
allows us to calculate the actual selective advantage provided by
typical somatic mutations in human tumors in situ. This selective
advantage is surprisingly small—0.004� 0.0004—and has major
implications for experimental cancer research.

genetics ∣ mathematical biology

It is now well accepted that virtually all cancers result from the
accumulated mutations in genes that increase the fitness of a

tumor cell over that of the cells that surround it (1, 2). “Fitness”
is defined as the net replication rate, i.e., the difference between
the rate of cell birth and cell death. As a result of advances in
technology and bioinformatics, it has recently become possible
to determine the entire compendium of mutant genes in a tumor
(3–9). Studies to date have revealed a complex genome, with
∼40–80 amino acid changing mutations present in a typical solid
tumor (6–10). For low-frequency mutations, it is difficult to dis-
tinguish “driver mutations”—defined as those that confer a selec-
tive growth advantage to the cell—from “passenger mutations”
(11–13). Passenger mutations are defined as those which do
not alter fitness but occurred in a cell that coincidentally or sub-
sequently acquired a driver mutation, and are therefore found in
every cell with that driver mutation. It is believed that only a small
fraction of the total mutations in a tumor are driver mutations,
but new, quantitative models are clearly needed to help interpret
the significance of the mutational data and to put them into the
perspective of modern clinical and experimental cancer research.

In most previous models of tumor evolution, mutations accu-
mulate in cell populations of constant size (14–16) or of variable
size, but the models take into account only one or two mutations
(17–21). Such models typically address certain (important) as-
pects of cancer evolution, but not the whole process. Indeed,
we now know that most solid tumors are the consequence of
many sequential mutations, not just two. These tumors typically
contain 40–100 coding gene alterations, including 5–15 driver
mutations (6–9). The exploration of models with multiple muta-
tions in growing tumor cell populations is therefore an essential

line of investigation which has just recently been initiated (22,
23). In the model presented in this paper, we assume that each
new driver mutation leads to a slightly faster tumor growth rate.
This model is as simple as possible, because the analytical results
depend on only three parameters: the average driver mutation
rate u, the average selective advantage associated with driver
mutations s, and the average cell division time T.

Tumors are initiated by the first genetic alteration that pro-
vides a relative fitness advantage. In the case of many leukemias,
this would represent the first alteration of an oncogene, such as a
translocation between BCR (breakpoint cluster region gene) and
ABL (V-abl Abelson murine leukemia viral oncogene homolog 1
gene). In the case of solid tumors, the mutation that initiated the
process might actually be the second “hit” in a tumor suppressor
gene—the first hit affects one allele, without causing a growth
change, whereas the second hit, in the opposite allele, leaves
the cell without any functional suppressor, in accord with the
two-hit hypothesis (24). It is important to point out that we
are modeling tumor progression, not initiation (14, 15), because
progression is rate limiting for cancer mortality—it generally
requires three or more decades for metastatic cancers to develop
from initiated cells in humans.

Our first goal is to characterize the times at which successive
driver mutations arise in a tumor of growing size. We have em-
ployed a discrete time branching process (25) for this purpose be-
cause it makes the numerical simulations feasible. In a discrete
time process, all cell divisions are synchronized. We present
analytic formulas for this discrete time branching process and
analogous formulas for the continuous time case whenever possi-
ble (SI Appendix). At each time step, a cell can either divide or
differentiate, senesce, or die. In the context of tumor expansion,
there is no difference between differentiation, death, and senes-
cence, because none of these processes will result in a greater num-
ber of tumor cells than present prior to that time step. We assume
that driver mutations reduce the probability that the cell will take
this second course, i.e., that it will differentiate, die, or senesce,
henceforth grouped as “stagnate.” A cell with k driver mutations
therefore has a stagnation probability dk ¼ 1

2
ð1 − sÞk. The division

probability is bk ¼ 1 − dk. The parameter s characterizes the
selective advantage provided by a driver mutation.

Author contributions: I.B., T.A., R.K., B.V., and M.A.N. designed research; I.B., T.A., H.O.,
H.C., D.K., and S.C. performed research; I.B., T.A., H.O., H.C., D.K., S.C., R.K., and M.A.N.
contributed new reagents/analytic tools; I.B., T.A., R.K., K.W.K., B.V., and M.A.N. analyzed
data; and I.B., T.A., R.K., K.W.K., B.V., and M.A.N. wrote the paper.

The authors declare no conflict of interest.

See Commentary on page 18241.
1To whom correspondence may be addressed. E-mail: bertvog@gmail.com or
martin_nowak@harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1010978107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1010978107 PNAS ∣ October 26, 2010 ∣ vol. 107 ∣ no. 43 ∣ 18545–18550

G
EN

ET
IC
S

A
PP

LI
ED

M
AT

H
EM

AT
IC
S

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1010978107/-/DCSupplemental


When a cell divides, one of the daughter cells can receive an
additional driver mutation with probability u. The point mutation
rate in tumors is estimated to be ∼5 × 10−10 per base pair per cell
division (26). We estimate that there are ∼34;000 positions in the
genome that could become driver mutations (see Materials and
Methods and SI Appendix). As the rate of chromosome loss in
tumors is much higher than the rate of point mutation (14), a
single point mutation is rate limiting for inactivation of tumor
suppressor genes (when a point mutation in a tumor suppressor
gene occurs, the other copy of that gene will likely be lost rela-
tively quickly; ref. 27). The driver mutation rate is therefore
∼3.4 × 10−5 per cell division (≈2 × 34;000 × 5 × 10−10), because
u is the probability that one of the daughter cells will have an
additional mutation. Our theory can accommodate any realistic
mutation rate and the major numerical results are only weakly
affected by varying the mutation rate within a reasonable range.

Experimental evidence suggests that tumor cells divide about
once every 3 d in glioblastoma multiforme (28) and once every 4 d
in colorectal cancers (26). Incorporating these division times into
the simulations provided by our model leads to the dramatic
results presented in Fig. 1. Though the same parameter values
—u ¼ 3.4 × 10−5 and s ¼ 0.4%—were used for each simulation,
there was enormous variation in the rates of disease progression.
For example, in patient 1, the second driver mutation had only
occurred after 20 y following tumor initiation and the size of
the tumor remained small (micrograms, representing <105 cells).

In contrast, in patient 6, the second driver mutation occurred
after less than 5 y, and by 25 y the tumor would weigh hundreds
of grams (>1011 cells), with the most common cell type in the
tumor having three driver mutations. Patients 2–5 had progres-
sion rates between these two extreme cases.

We can calculate the average time between the appearance of
successful cell lineages (Fig. 2). Not all new mutants are success-
ful, because stochastic fluctuations can lead to the extinction of a
lineage. The lineage of a cell with k driver mutations survives only
with a probability approximately 1 − dk∕bk ≈ 2sk. Assuming that
u ≪ ks ≪ 1, the average time between the first successful cell
with k and the first successful cell with kþ 1 driver mutations
is given by

τk ¼
T
ks

log
2ks
u

: [1]

The acquisition of subsequent driver mutations becomes faster
and faster. Intuitively, this is a consequence of each subsequent
mutant clone growing at a faster rate than the one before. For
example, for u ¼ 10−5, s ¼ 10−2, and T ¼ 4 d, it takes on average
8.3 y until the second driver mutation emerges, but only 4.5 more
years until the third driver mutation emerges. The cumulative
time to accumulate k mutations grows logarithmically with k.

In contrast to driver mutations, passenger mutations do not
confer a fitness advantage, and they do not modify tumor growth
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Fig. 1. Variability in tumor progression. Number of cells with a given number of driver mutations versus the age of the tumor. Six different realizations of the
same stochastic process with the same parameter values are shown, corresponding to tumor growth in six patients. The process is initiated with a single
surviving founder cell with one driver mutation. The times at which subsequent driver mutations arose varied widely among patients. After initial stochastic
fluctuations, each new mutant lineage grew exponentially. The overall dynamics of tumor growth are greatly affected by the random time of the appearance
of new mutants with surviving lineages. Parameter values: mutation rate u ¼ 3.4 × 10−5, selective advantage s ¼ 0.4%, and generation time T ¼ 3 d.
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rates. We find that the average number of passenger mutations,
nðtÞ, present in a tumor cell after t days is proportional to t, that is
nðtÞ ¼ vt∕T, where v is the rate of acquisition of neutral muta-
tions. In fact, v is the product of the point mutation rate per base
pair and the number of base pairs analyzed. This simple relation
has been used to analyze experimental results by providing esti-
mates for relevant time scales (26).

Combining our results for driver and passenger mutations,
we can derive a formula for the number of passengers that are
expected in a tumor that has accumulated k driver mutations

n ¼ v
2s

log
4ks2

u2
log k: [2]

Here, n is the number of passengers that were present in the last
cell that clonally expanded. Eq. 2 can be most easily applied to
tumors in tissues in which there is not much cell division prior to

tumor initiation. Otherwise, the expected number of passengers
that accumulated in a precursor cell prior to tumor initiation
would have to be included in the model, and this would be diffi-
cult to estimate.

We tested the validity of our model on two tumor types that
have been extensively analyzed. Neither the astrocytic precursor
cells that give rise to glioblastoma multiforme (GBM) (29) nor
the pancreatic duct epithelial cells that give rise to pancreatic
adenocarcinomas (30) divide much prior to tumor initiation
(31, 32). Therefore, the data on both tumor types should be sui-
table for our analysis. Parsons et al. (8) sequenced 20,661 protein
coding genes in a series of GBM tumors and found a total of 713
somatic mutations in the 14 samples that are depicted in Fig. 3.
Similarly, Jones et al. (9) sequenced the same genes in a series
of pancreatic adenocarcinomas, finding a total of 562 somatic
mutations in the nine primary tumors graphed in Fig. 3. In both
cases, we classified missense mutations as drivers if they scored
high (false discovery rate ≤ 0.2) with the CHASM algorithm (33)
and considered all nonsense mutations, out-of-frame insertions
or deletions (INDELs), and splice-site changes as drivers because
these generally lead to inactivation of the protein products (9).
All other somatic mutations were considered to be passengers.

CHASM is a supervised statistical learning method that uses a
Random Forest (34) to identify and prioritize somatic missense
mutationsmost likely to that enhance tumor cell proliferation (dri-
vers). The forest is trained on a positive class of ∼2;500 missense
mutations previously identified as playing a functional role in on-
cogenic transformation from the COSMIC database (35) and a
negative class of ∼4;000 random (passenger) missense mutations,
which are synthetically generated with a computer algorithm.
Mutations are represented by features derived from protein
andnucleotide sequence databases, such asmeasures of evolution-
ary conservation, amino acid physiochemical properties, predicted
protein structure, and annotations curated from the literature

Fig. 2. Schematic representation of waves of clonal expansions. An illustra-
tion of a sequence of clonal expansions of cells with k ¼ 1, 2, 3, or 4 driver
mutations is shown. Here τ1 is the average time it takes the lineage of the
founder cell to produce a successful cell with two driver mutations. Similarly,
τk is the average time between the appearance of cells with k and k þ 1

mutations. Eq. 1 gives a simple formula for these waiting times, which shows
that subsequent driver mutations appear faster and faster. The cumulative
time to have k driver mutations grows with the logarithm of k.
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Fig. 3. Comparison of clinical mutation data and theory. Our theory provides an estimate for the number of passenger mutations in a tumor as a function of
the number of driver mutations. Parameter values used in Eq. 2 and computer simulations were s ¼ 0.4% and u ¼ 3.4 × 10−5. (A) Eq. 2 (green line) fitted to GBM
data. (B) Eq. 2 (green line) fitted to pancreatic cancer data. (C) Comparison of computer simulations and Eq. 2. For each k between 2 and 10, the number of
passengers that were brought along with the last driver in 10 tumors with k drivers is plotted. Blue circles represent averages from 100 simulations. (D) Com-
parison between computer simulations and Eq. 2 for selective advantage of the kth driver, sk , taken from a Gaussian distribution with mean s and standard
deviation σ ¼ s∕2. For each k between 2 and 10, the number of passengers that were brought along with the last driver in 10 tumors with k drivers is plotted.
Blue circles represent averages from 100 simulations. Note that in A, the tumor with only one driver mutation has 16 passenger mutations, instead of the
theoretically predicted zero. A possible reason for this discrepancy could be that the CHASM algorithm did not manage to classify all driver mutations as such,
or perhaps that the ancestry of the founder cell of the tumor experienced a significant level of proliferation before the onset of neoplasia.
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(fromUniProtKB; ref. 36). There is nothing in the construction of
the CHASM training set or features that mirrors the assumptions
underlying the formulas derived here.

From Fig. 3 A and B, it is clear that the experimental results on
both GBM and pancreatic cancers were in good accord with the
predictions of Eq. 2. A critical test of the model can be performed
by comparison of the best-fit parameters governing each tumor
type. It is expected that the average selective advantage of a
driver mutation should be similar across all tumor types given
that the pathways through which these mutations act overlap
to a considerable degree. Setting the driver mutation rate to be
u ¼ 3.4 × 10−5, passenger mutation rate to be v ¼ 3.15 × 107 ·
5 × 10−10 ≈ 0.016, and fitting Eq. 2 to the GBM data using least
squares analysis, we found that the optimum fit was given by
s ¼ 0.004� 0.0004. Remarkably, using the same mutation rate
in pancreatic cancers, we find that the best fit is given by a nearly
identical s ¼ 0.0041� 0.0004. This consistency not only provides
support for the model but also provides evidence that the average
selective advantage of a driver is s ≈ 0.4%. For u ¼ 10−6 and
u ¼ 10−4, we get s ≈ 0.65% and s ≈ 0.32%, respectively. The fact
that these estimates are not strongly dependent on the mutation
rate supports the robustness of the model. Of course, we note that
the reliability of the estimation of the passenger mutation rate
v directly influences the reliability of estimating selection coeffi-
cients.

We conducted further testing of our model on data from two
clinical studies (37, 38) of familial adenomatous polyposis (FAP)
(39). FAP is caused by a germline mutation in one copy of the
adenomatosis polyposis coli (APC) gene. Inactivation of the
second copy of the APC gene in a colonic stem cell initiates
the formation of a colonic adenoma. If untreated (by colectomy),
patients with FAP develop adenomas while teenagers, but do
not develop cancers until their fourth or fifth decades of life,
by which time there are thousands of tumors per patient.

We performed computer simulations of the evolution of polyps
in FAP patients. Assuming a constant number of susceptible stem
cells and a constant rate of APC inactivation, new polyps in a pa-
tient are initiated at a constant rate. In simulations based on our
model, we keep track of the number and size of all polyps in a
patient and their change in time. We then compare simulation
results with the clinical data from two studies (37, 38), focusing
on three metrics of disease: (i) age distribution of FAP patients,
(ii) number and size of visible polyps, and (iii) polyp growth rate.

To estimate the rate of polyp initiation in FAP, we estimate that
there are ∼600 positions in the APC gene that, when mutated,
could inactivate the APC gene product. However, the inactivation
of APC in FAP patients more often happens by loss of heterozyg-
osity (LOH) than by mutation—the ratio is ∼7∶1 (for justification
for these estimates, see Materials and Methods). Using the muta-
tion rate per base pair per generation (26) of 5 × 10−10, the rate of
inactivation of APC is 2.4 × 10−6 per cell per generation. A typical
human colon is ∼1.5 m long and has about 108 stem cells, each of
which divides roughly once every week (40). In the clinical studies

(37, 38), the authors only measure the number and size of polyps
in the last 20 cm of the colon; the effective rate of APC inactiva-
tion in this part of the colon is ∼32 per stem cell generation,
i.e., we estimate that 32 new polyps are initiated per week in this
section of the colon. Note, however, that only a small fraction
of these initiated cells will survive stochastic fluctuations.

The first study (37) included FAP patients that had at least five
visible polyps, but no history of cancer. The number and size of
their polyps was measured at baseline and a year later. To emulate
the design of the study, each run of our simulation corresponded
to one FAP “patient” <40 y old who had at least five visible
polyps and no cancer (see SI Appendix). We then compared the
age distribution of the patients in our simulation to the age dis-
tribution of patients in the study (37). Using the polyp initiation
rate deduced above, mutation rate u ¼ 3.4 × 10−5, generation
time T ¼ 4 d (26), and employing the selective advantage calcu-
lated from the GBM and pancreatic cancer data described above
(s ¼ 0.004), we find remarkable agreement between our model
and the clinical data (Fig. 4). Our model predicted that patients
would be entered into this study at an average of 25 y, with 35
polyps of average diameter 3.1 mm. The actual patients entered
into the study had average age of 24 y, with 41 polyps of average
diameter 3.2 mm. In comparison, if we keep mutation rate the
same but emply a twofold lower or twofold higher value of s, then
there is little agreement with the clinical data (e.g., age of diag-
nosis is either 38 or 14 y instead of the actual 24 y). We then used
our model to predict the change in number and size of the polyps
in these patients 1 y later. Our simulations predicted that the dia-
meter and number of polyps would be 113% and 135% of the
baseline values, respectively, whereas the diameter and number
of polyps were 100% and 220% of baseline values in the actual
patients.

We also modeled the results of a second study (38) that in-
cluded 41 young FAP patients who had inherited alterations of
the APC gene but had not yet developed polyps. These patients
were followed for 4 y to determine when polyps first developed.
Using the same simple assumptions noted above, our simulations
predicted that 43% of these patients would develop at least
one polyp within 4 y, and that the average diameter of polyps
after 4 y would be 0.8 mm with standard deviation 0.9 mm. These
predictions were remarkably similar to the data actually obtained,
because 49% of the patients developed at least one polyp over
the 4 y of observation and the average size of polyps was 0.9 mm
with standard deviation 1.2 mm. However, our simulations under-
estimated the average number of polyps that developed (1.5
by the model, 6.7 in data), though there was a large variation
in the number of polyps that developed in different patients (stan-
dard deviation of 12.5 polyps), complicating this metric.

Beerenwinkel et al. (22) previously modeled tumor evolution
using a Wright–Fisher process. That model was specifically
designed to model the evolution from a small adenoma to carci-
noma, and it is not suitable for describing the dynamics of a
population initiating with one or a small number of cells, as done
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Fig. 4. Comparison of clinical FAP data and computer simulations of our model. A uniform random age <40was picked first and only those patients who had
at least five polyps and no history of cancer at the sampled age were retained. We compared the number and size of the polyps in these patients with the
clinical data on number and size of polyps in FAP patients at study (37) entry. The age distribution of patients from the simulation was compared to the age
distribution of patients in the study (37). Parameter values used in simulations are s ¼ 0.4%, u ¼ 3.4 × 10−5, T ¼ 4 days, and polyp initiation rate 32 per week.
Error bars represent standard deviation.
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here. Accordingly, the Beerenwinkel model does not address the
long initial stages of the adenoma-carcinoma sequence (26)
nor can it be used to model polyp development in FAP patients.
Tumor progression in FAP patients has been previously modeled
by Luebeck and coworkers (21, 41). At their rates, however, it
takes a polyp about 60 y to grow to the average size of polyps
reported in ref. 37. Our multistage model, where the growth rate
is increasing with each new driver mutation, fits the observed
polyp sizes well, providing strong and independent support for
s ¼ 0.004 as the selective growth advantage of a typical driver.

Like all models, ours incorporates limiting assumptions. How-
ever, many of these assumptions can be loosened without chan-
ging the key conclusions. For example, we assumed that the
selective advantage of every driver was the same. We have tested
whether our formulas still hold in a setting where the selective
advantage of the kth driver is sk, and sks are drawn from a Gaus-
sian distribution with mean s and standard deviation σ ¼ s∕2. The
simulations were still in excellent agreement with Eq. 2 (Fig. 3D).
Similarly, we assumed that the time between cell divisions (gen-
eration time T) was constant. Nevertheless, Eq. 2, which gives the
relationship between drivers and passengers, is derived without
any specification of time between cell divisions. Consequently,
this formula is not affected by a possible change in T. Finally,
there could be a finite carrying capacity for each mutant lineage.
In other words, cells with one driver mutation may only grow
up to a certain size, and the tumor may only grow further if it
accumulates an extra mutation, allowing cells with two mutations
to grow until they reach their carrying capacity and so on. It is
reasonable to assume that the carrying capacities of each class
would be much larger than 1∕u, which is approximately the num-
ber of cells with k mutations needed to produce a cell with kþ 1
mutation. Thus, the times at which newmutations arise would not
be much affected by this potential confounding factor.

Given the true complexity of cancer, our model is deliberately
oversimplified. It is surprising that, despite this simplicity, the
model captures several essential characteristics of tumor growth.
Simple models have already been very successful in providing
important insights into cancer. Notable examples include Armi-
tage-Doll’s multihit model (42), Knudson’s two-hit hypothesis
(24), and the carcinogenesis model of Moolgavkar and Knudson
(43). The model described here represents an attempt to provide
analytical insights into the relationship between drivers and
passengers in tumor progression and will hopefully be similarly
stimulating. One of the major conclusions, i.e., that the selective
growth advantage afforded by the mutations that drive tumor
progression is very small (∼0.4%), has major implications for
understanding tumor evolution. For example, it shows how diffi-
cult it will be to create valid in vitro models to test such mutations
on tumor growth; such small selective growth advantages are
nearly impossible to discern in cell culture over short time per-
iods. And it explains why so many driver mutations are needed to
form an advanced malignancy within the lifetime of an individual.

Materials and Methods
Oncogenes and Tumor Suppressor Genes Classifications. The COSMIC database
contains sequencing information on 91,991 human tumors representing 353
different histopathologic subtypes (http://www.sanger.ac.uk/genetics/CGP/
cosmic/). The database encompasses 105,084 intragenic mutations in 3,142
genes. Of these, 937 genes contained at least two nonsynynomousmutations,
for a total of 97,567mutations.Weconsideredagene tobea tumor suppressor

if the ratio of inactivatingmutations (stop codons due to nonsensemutations,
splice-site alterations, or frameshifts due to deletions or insertions) to other
mutations (missense and in-frame insertions or deletions) was >0.2. This
criterion identified all well-studied tumor suppressor genes and classified
286 genes as tumor suppressors (SI Appendix). We considered a gene to be
an oncogene if it was not classified as a tumor suppressor gene and either
(i) the same amino acid was mutated in at least two independent tumors or
(ii) >4 different mutations were identified (SI Appendix). This criterion classi-
fied 91 genes as oncogenes; the remaining 560 genes were considered to
be passengers. There were an average of 13.6 different nucleotides mutated
per oncogene.

Driver Positions in APC. In the entireAPC gene, there are 8,529 bases encoding
2,843 codons. Of these bases, there are 3,135 bases representing 1,045
codons in which a base substitution resulting in a stop codon could occur.
Only one-third of these 3,135 bases could mutate to a stop codon (e.g.,
an AAA could mutate to TAA to produce a stop codon, but a mutation to
ATA would not produce a stop codon). Moreover, only one of the three
possible substitutions at each base could result in a stop codon (e.g., a C could
change to a T, A, G in general, but could only change to one of these bases
to produce a stop codon). Therefore, the bases available for creating stop
codons should be considered to be 3;135∕9 ¼ 348 bases in the entire APC
gene (i.e., 348 driver positions in APC). Insertions or deletions could also
create stop codons in the APC gene. An estimate for the relative likelihood
of developing an out-of-frame mutation can be obtained from our previous
data (7–9). The number of nonsense mutations was 319, whereas the number
of frameshift-INDELs was 235. Therefore, the total number of mutations
leading to inactivating changes was 554, i.e., 174% of the number of non-
sense codon-producing point mutations. The total number of driver positions
in APC would therefore be 604 (174% of 348 nonsense driver positions).

Driver Positions in an Average Tumor Suppressor Gene. Assuming that the
average tumor suppressor statistics follows that of the APC, and taking into
account that the average number of base pairs in the coding region of the
23,000 genes listed in the Ensembl database (http://www.ensembl.org) is
1,604, we estimate that there are 604 · 1;604∕8;529 ∼ 114 driver positions
in an average tumor suppressor gene.

Number of Driver Positions in the Genome. As noted above and in SI Appendix,
we estimate that there are 286 tumor suppressor genes and 91
oncogenes in a human cell, and that on average each tumor suppressor gene
can be inactivated by mutation at 114 positions and each oncogene can be
activated in 14 positions. There are thus a total of 33,878 positions in the
genome that could become driver mutations.

Relative Rate of LOH. The relative rate of LOH can be estimated from the data
of Huang et al. (44). In this paper, mismatch repair (MMR)-deficient cancers
were separated from MMR-proficient cancers. This separation is important
because MMR-deficient cancers do not have chromosomal instability and
they do not as often undergo LOH. We assume in all cases that the first
hit was a somatic mutation of APC, and then the second hit could either have
been LOH or mutation of a second allele. There were a total of 56 cancers
analyzed in the study (44). Seven cancers had mutations in the other allele
(i.e., two intragenic mutations), whereas the other 49 appeared to lose the
second allele through an LOH event. Thus the relative rate of LOH vs. point
mutation in APC is 7∶1.

For further discussion and analysis of the model, see SI Appendix.
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