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Human cancer is caused by the accumulation of genetic alterations
in cells. Of special importance are changes that occur early during
malignant transformation because they may result in oncogene
addiction and represent promising targets for therapeutic interven-
tion. Here we describe a computational approach, called Retracing
the Evolutionary Steps in Cancer (RESIC), to deduce the temporal
sequence of genetic events during tumorigenesis from cross-
sectional genomic data of tumors at their fully transformed stage.
When applied to a dataset of 70 advanced colorectal cancers, our
algorithm accurately predicts the sequence of APC, KRAS, and TP53
mutations previously defined by analyzing tumors at different
stages of colon cancer formation. We further validate the method
with glioblastoma and leukemia sample data and then apply it to
complex integrated genomics databases, finding that high-level
EGFR amplification appears to be a late event in primary glioblas-
tomas. RESIC represents the first evolutionary mathematical
approach to identify the temporal sequence of mutations driving
tumorigenesis and may be useful to guide the validation of candi-
date genes emerging from cancer genome surveys.
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Recent technological advances have empowered researchers to
examine the cancer genome at unprecedented throughput

and resolution (1–3). Computational algorithms designed to
filter random genetic events have begun to uncover mutational
patterns that are typical for a particular cancer type and highly
consistent between sample sets (1, 2, 4, 5). Further functional
validation of these recurrent genetic events in nontransformed
primary cells and mouse models of human cancer is hampered
by the lack of knowledge of the sequence in which these altera-
tions occur during human tumorigenesis. This temporal order
can guide the generation of the correct genomic context in animal
models of human cancer and can prioritize the validation of
potential drug targets because those changes that occur early
during malignant transformation may result in rewiring of the
signaling circuitry or confer a state of addiction to the new signal.
Here we describe a unique computational approach, called Re-
tracing the Evolutionary Steps in Cancer (RESIC), to determine
the sequence of genetic events using cross-sectional genomic data
from a large number of tumors at their fully transformed stage
(Fig. 1).

Model
RESIC is based on the principles of population genetics—the
mathematical study of the dynamics of genetic variation within
populations (6). Consider a population of N cells at risk of accu-
mulating the genetic changes leading to cancer (Fig. 2A). Cells
proliferate according to a stochastic process (7): At each time
step, a cell is chosen proportional to fitness to produce a possibly

mutated daughter cell. Subsequently another cell is chosen at
random to die and is replaced by the newly produced cell to
maintain homeostasis. A mutated cell can take over the popula-
tion (i.e., reach fixation) or go extinct due to stochastic fluctua-
tions (Fig. 2A, Inset). Depending on the order of appearance
of particular mutations, the population of cells follows different
evolutionary paths toward the fully mutated state (Fig. 2A). We
developed a mathematical model describing the evolutionary
dynamics of this system (see SI Text).

We assume that cancers originate from a single population of
cells per person and study the evolutionary dynamics of indivi-
duals accumulating the mutations leading to cancer (Fig. 2B).
We consider the dynamics of patients in steady state: There is a
constant influx into the unmutated state, representing diagnosis
of disease, and a constant outflux from the fully mutated state,
accounting for deaths of patients or their cure. At steady state,
the population is distributed across all possible states; this stea-
dy-state distribution can be compared to the numbers of clinical
samples with the corresponding genotypes, where the total num-
ber of patients in a dataset is equal to the sum of patients in all
states. This mapping is used to optimize a subset of parameters
in the mathematical model (i.e., the fitness values of cell types)
by minimizing the difference between the prediction and the ob-
served frequencies in the dataset (see SI Text). Other parameters,
such as cellular population size, mutation rate and influx rate, are
estimated from experimental results (8, 9) and tested for robust-
ness over several orders of magnitude (see SI Text). The output
of RESIC is given as percent of the flux through the network via
each particular path.

Results
The established sequence of genetic events arising during the
multistep process of colorectal carcinogenesis (10) provides a un-
ique example to test the ability of RESIC to recover this sequence
from a cross-sectional dataset. We gathered genomic data from
70 advanced colorectal tumors (1, 2) (Table S1) and used RESIC
to predict the temporal relationship between alterations in the
APC, KRAS, and TP53 genes. RESIC predicts that the most likely
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Fig. 1. Schematic diagram of RESIC. For cancer types with clinicopathologically defined stages (e.g., colorectal cancer), the temporal sequence in which genetic
alterations arise during tumorigenesis can be identified by genotyping samples from patients at different stages of disease progression. For cancer types that
are diagnosed de novo without detectable precursor lesions (e.g., primary GBM), the order of alterations cannot be identified with a similar approach. We
present an evolutionary computational algorithm (RESIC) to identify the temporal sequence of events arising during tumorigenesis utilizing genomic data from
a large number of samples (one per patient) of a particular histological type. In step 1, we use an algorithm such as GISTIC (4) to identify recurrent genetic
aberrations in the genomics dataset. In step 2, these aberrations are ranked according to their pairwise association (statistically significant correlation,
e.g., Fisher’s exact test). In step 3, the most likely sequence of these associated events is identified using RESIC. The results generated by RESIC are used
to reconstruct the order in which alterations arise during development of a particular cancer type (step 4). Our methodology is applicable to large-scale
datasets and can be used to identify the temporal sequence of many genetic alterations.

A B

Fig. 2. Evolutionary dynamics of genetic alterations leading to cancer. (A) Transition between mutational states and schematic representation of different
evolutionary trajectories toward cancer. Initially, the population consists of N cells with genotype i and fitness (i.e., growth rate) ri (detail). During each time
step, a cell is chosen at random proportional to fitness to divide, and its daughter cell replaces another randomly chosen cell. During each cell division, a
mutation arises with probability u. The mutated daughter has genotype j and fitness rj . If rj > ri , the mutated daughter cell is advantageous as compared
to the mother cell; if rj < ri , it is disadvantageous, and if rj ¼ ri , it is selectively neutral. The probability that a mutated cell takes over the population is given by
its fixation probability, ρðri ;rjÞ ¼ ½1 − 1∕ðrj∕riÞ�∕½1 − 1∕ðrj∕riÞN �. If rj ¼ ri , then ρðri ;rjÞ ¼ 1∕N. The transition rate between states i and j is given by Nuρðri ;rjÞ in
small populations. A population of wild-type cells may accumulate mutations in different orders; an example path from the unmutated population to a state
with three mutations is highlighted in green. (B) Population dynamics. The dynamics of patients accumulating mutations is represented in this network where
nodes (i.e., mutational states) are populated according to the transition rates from one mutational state to the next. In the example shown here, cells can
accumulate two mutations. The number of patients harboring cells with no mutations are denoted by X0, whereas those harboring mutations are denoted by
X1, X2, and X3. There is a constant influx of cases into the initial node. Cells in these patients accumulate mutations and populate the mutational states. The
outflow from the fully mutated state eventually drives the system into steady state. An optimization algorithm is used to identify the transition rates for which
the number of patients in each node at steady state coincides with the observations in a cross-sectional genomics dataset. The optimized parameter values of
the evolutionary process serve to identify the most likely trajectory through the network.
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sequence of events is homozygous inactivation of APC occurring
before alterations of KRAS (Fig. 3A and Table S2). Similarly, we
found that both APC alleles are likely mutated before TP53 is
homozygously inactivated, and that at least one KRAS allele is
likely mutated before inactivation of TP53 (Fig. 3A). Although
the small number of samples prevents us from investigating the
complete network of APC, KRAS, and TP53mutations in a single
computational analysis, the results of the separate smaller analyses
can be combined into a sequence of events (see also Figs. S1
and S2) that coincides with the multistep model of colorectal can-
cer (10, 11). The results are very robust with regard to sampling
stochasticity and variations of the population size, mutation rates,
and influx values (Figs. S3–S6 and Table S3).

The temporal relationship between TP53 inactivation and
mutations in the RAS pathway may not be the same in all cancer
types. For example, genetic inactivation of neurofibromin-1
(NF1), a negative regulator of RAS activity (12), induces senes-
cence of human astrocytes in the absence of TP53mutations (13);
furthermore, mice develop high-grade gliomas only if TP53 is
inactivated prior to or simultaneously with NF1 (14). To investi-
gate the temporal relationship between NF1 and TP53 inactiva-
tion in human primary glioblastoma (GBM), we applied RESIC
to a genomic dataset containing sequence and copy number in-
formation regarding these two genes for 91 primary human GBM
samples (3) (Table S1). We found that TP53 is likely inactivated
before NF1 is lost (Fig. 3B). Because several GBMs in this par-
ticular sample set were collected after treatment with radiation
and/or chemotherapy—therapies that might increase mutation
rates (3), we reran RESIC using only GBMs that had not received
prior therapy (n ¼ 72). We again found that TP53 is likely mu-
tated first (Fig. 3B). Our predictions are thus consistent with
experimental data and suggest that TP53 inactivation may not
only be an early genetic event in TP53-mutant secondary glioblas-
tomas (15) but also in TP53-mutant primary glioblastomas.

We next applied RESIC to a leukemia dataset to test whether it
also accurately predicts the order of mutations arising in “liquid”
tumors. We investigated the order of mutations in the JAK2 and
TET2 genes in a set of 57 secondary acute myelogenous leukemia
(AML) samples transformed from a preexisting myeloprolifera-
tive neoplasm (MPN) (Fig. 4A). The classical MPNs are clonal
disorders of hematopoiesis characterized by the presence of the
JAK2V617F mutation in most patients as well as an increased
likelihood of transformation to AML (16). Clonality studies
suggest that acquired JAK2V617Fmutationsmaynot represent the
earliest genetic event in MPN pathogenesis and are not required
for transformation toAML(17, 18).Recent studies have identified
mutations in the putative tumor suppressor gene TET2 in MPNs
(17, 19–23), and clonal analysis suggested that TET2 mutations
precede the acquisition of JAK2V617F mutations in MPN patho-
genesis (19). However, these studies were done on a small number
of patients. We therefore analyzed a larger set of patients with
leukemic transformation from a preceding MPN, including
samples from two different disease states (MPN and post-MPN
AML) from 14 different patients (19, 24). When applying RESIC
to the set of secondary AML samples for which JAK2 and TET2
mutational status was known, we found that JAK2mutations likely
preceded mutation in TET2 (Fig. 4B). Notably, analysis of 14
patients for which samples were available from the MPN and
AML disease states showed that TET2 mutations were present
in the AML, but not preceding MPN sample, in 5 patients with
concomitant JAK2/TET2mutations (Fig. 4C) at the time of leuke-
mic transformation. These data demonstrate, contrary to previous
reports of smaller patient cohorts from a single time point, that
TET2 mutations are more commonly acquired subsequent to
JAK2 in MPN/AML pathogenesis (24), as predicted by RESIC.

After validation of RESIC using examples for which the tem-
poral order of alterations is known, we analyzed a large integrated
genomics dataset of primary glioblastoma samples (n ¼ 594)

(3, 4). These samples were used together with RESIC to identify
genetic alterations occurring early during malignant transforma-
tion. Such alterations may result in “rewiring” of the signaling
circuitry, confer a state of “addiction” to the new signal (25),
and thus represent particularly promising targets for therapeutic
intervention (26). We first identified areas of statistically signifi-
cant gene copy number alterations using GISTIC (4). For each
locus, we distinguished gain of a single copy from high-level
amplification, and hemizygous from homozygous deletions
(Table S1). We then identified alterations that are significantly
positively correlated (Fig. 4D), because the determination of an
order of oncogenic events is meaningful only for those events
that co-occur sufficiently often. Although MDM2 and CDK4 on
chromosome 12 and EGFR and MET on chromosome 7 were
the most significantly correlated mutations, these associations are
likely the result of large-region deletion or amplification events;
because such changes cannot be attributed to independent muta-
tional events, we excluded them from our analyses. Low- and
high-level amplification of EGFR and homozygous loss of PTEN
are the most significantly correlated events on separate chromo-
somes (p values < 10−30 and 10−24) (Fig. 4D). Because the dataset
contains copy number information for 552 GBMs (excluding
samples with homozygous loss of PTEN due to their relative infre-
quency) but sequence data for only 125 GBMs and because for
both genes, copy number alterations and point mutations occur
frequently, we first sought to investigate the robustness of the
algorithm to the exclusion of sequence information. With only
copy number data, we found that the twomost frequentmutational
paths through this network—initiating with EGFR low-level
amplification and homozygous PTEN loss, respectively (Fig. S1)
—have very similar frequencies. Therefore, RESIC identifies
no clear order of events for this mutational network. Using both
copy number and point mutation data, we found that EGFR
biallelic alterations likely occur before PTEN loss (Fig. S1). Hence
the only difference between the two analyses is loss of significance
of the dominant path, suggesting that analyzing copy number
information only may be a viable option.

To perform a computational analysis on a large mutational
network, we next determined that p16 homozygous deletions
frequently co-occur with EGFR and PTEN alterations (p value
<10−8) in the dataset containing copy number alterations only
(Fig. 4D). When studying the mutational network of EGFR,
PTEN, and p16 (Figs. S2–4), RESIC predicts that the most com-
mon early alterations are EGFR low-level amplification and p16
deletion, with similar likelihood (Fig. 4E). Although there is
no single most frequent path through the network (Fig. S3),
the frequency of paths concluding with high-level amplification
of EGFR is highest; the second most frequent final event is
homozygous p16 deletion (Fig. 4E). These data suggest that glial
progenitor cells may tolerate full EGFR activation only after
inactivation of p16 or PTEN. This result agrees with the fact that
EGFR overexpression is insufficient for tumorigenesis in mouse
models of glioblastoma (27, 28), providing support for the tem-
poral order of events predicted by RESIC.

Discussion
We have presented a rational methodology, RESIC, to identify
the temporal order of oncogenic events during tumorigenesis.
This computational pipeline uses cross-sectional genomic data
as input and provides the most likely temporal order of genomic
alterations as output. We validated the predictions of RESIC
with events for which the temporal order is known and then
applied it to a large integrated genomic dataset of primary glio-
blastoma samples. RESIC is based on three assumptions: (i) For
each network under consideration, all cancers initiate without
any of the mutations in the network. Hence all patients enter
the network through the unmutated node, but might already have
accumulated other mutations causing malignancy. This assump-
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Fig. 3. Validation of RESIC utilizing colorectal cancer and glioblastoma data. We tested the predictions of RESIC in colorectal cancer and glioblastoma because
the order of some events leading to those tumor types has been identified (10, 14). In the schematics of the networks, nodes represent the numbers of patients
with a particular genotype, whereas black arrows represent transitions between mutational states. (A) The order of APC, KRAS, and TP53 in colorectal cancer.
APC is shown in red, KRAS in green, and TP53 in blue. All mutation rates are 10−7 per allele per cell division. We apply a pseudocount of 1 to the entire system to
prevent states with zero observations. Schematics of the networks are shown at Left. We display the numbers and frequencies of patients in each mutational
node in the network and show the most frequent paths through the network in the histograms at Right. Detailed results are listed in Table S2. (First Row) The
APC–KRAS network. RESIC predicts that biallelic inactivation of APC likely occurs before any KRAS alteration. (Second Row) The APC–TP53 network. RESIC
predicts that biallelic inactivation of APC likely occurs before TP53 inactivation. (Third Row) The KRAS–TP53 network. RESIC predicts that an alteration of KRAS
likely occurs first. (B) The order of NF1 and TP53 in glioblastoma. NF1 is shown in orange. We study the mutational network of heterozygous alterations only
since all NF1 and most TP53 mutations in the dataset are heterozygous (Table S1). A schematic of the network is shown at Left. Detailed results are listed in
Table S2. We show the number of samples with each genotype observed in the complete set of 91 The Cancer Genome Atlas samples (black) and in the
restricted set of 72 untreated samples (blue) (3). For both the unrestricted and the restricted sets, RESIC predicts that a TP53 point mutation likely occurs
before NF1 is altered (Right).

Attolini et al. PNAS ∣ October 12, 2010 ∣ vol. 107 ∣ no. 41 ∣ 17607

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009117107/-/DCSupplemental/ST02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009117107/-/DCSupplemental/ST01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009117107/-/DCSupplemental/ST02.xls


tion ensures that the model is consistent with the use of cross-
sectional data and is important for situations in which more than
one set of mutually exclusive mutations lead to cancer; in such
cases, tumor samples can be subdivided into classes of different
tumor subtypes, and each subtype must be analyzed individually.
(ii) The likelihood of diagnosis is uniform across all states. This
assumption can be partially relaxed if more biological data are
included in the model, which is equivalent to changes in the
number of observed samples with each combination of mutations;
variations in these numbers have negligible impact on the results
(Fig. S5). (iii) The order of mutations arising during tumorigen-
esis can be inferred from the order of mutations arising after
diagnosis. This assumption links the results obtained from a data-
base containing diagnosed cancer samples to the processes of
tumorigenesis before diagnosis. Interactions between tumor cells
and the microenvironment or immune system can be considered

as a modulation of mutation rates and fitness values but are
excluded from the current implementation of RESIC for clarity.
The results of RESIC are very robust to changes in the number of
samples per genotype due to variability in sampling or the rate
of diagnosis (Figs. S5 and S6), the population size of cells at risk
of accumulating mutations, the influx value into the unmutated
state, and the mutation rate (Table S3).

The frequencies of evolutionary paths through mutational
networks identified by RESIC are never 100%. This finding
may suggest that there is not a unique order in which these altera-
tions occur—a hypothesis proposing that the genetic model of
colorectal cancer (10) describes the order of mutations of only
a subset of colorectal tumors (29). Alternatively, it may be attrib-
uted to the alteration of signaling pathways through alterations
of mutually exclusive but functionally equivalent genes; it could
also be the result of distinct mutational classes within the same

A

C

B

E

D

last

Fig. 4. Application of RESIC to secondary AML and primary GBM. (A) We analyzed a dataset of 57 patients with AML, including samples from two different
disease states (MPN and post-MPN AML) from 14 different patients (19, 24). The data of AML patients were analyzed with RESIC (see B), whereas data from
both MPN and AML patients were sequenced for JAK2 and TET2 (see C). (B) When applying RESIC to a set of secondary AML samples for which JAK2
and TET2 mutational status was known for both AML and MPN disease states, we found that JAK2 mutations likely precede TET2 mutations in this sample
set. (C) Analysis of 14 patients for which samples were available from the MPN and AML disease states showed that TET2 mutations were present in the AML,
but not preceding MPN sample, in 5 patients. (D) Genetic alterations in primary glioblastoma. The statistical significance of correlations between genetic
alterations was calculated with Fisher’s exact test. Color codes range from 10−20 (red) to 100 (white). Significance after Bonferroni correction is marked
at ∼3 × 10−7 (orange). Note that lesions colocalized on the same chromosome have stronger correlations likely caused by large-region amplifications or dele-
tions and thus cannot be considered as independent genetic events. (E) Prediction of RESIC for the PTEN-p16-EGFR network in primary glioblastoma. We show
the frequencies of the initiating and final mutational events of this network. RESIC predicts that p16 deletion or EGFR low-level amplification are the most
common initiating events with frequencies of about 35–39% each, whereas high-level amplification of EGFR is the most frequent last event of this network
with a frequency of 56.4%.
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cancer subtype. The latter issue is addressed by studying highly
correlated mutations because strong correlation may reflect func-
tional associations.

We have restricted our analysis to only a subset of mutations
implicated in tumorigenesis because RESIC requires correlated
alterations as input; the question of the sequence of alterations
is meaningful only if those alterations co-occur sufficiently fre-
quently. Even the largest currently available dataset, the The
Cancer Genome Atlas data, combined with separate glioblastoma
studies (n ¼ 594), contains only a small number of associated
lesions (Fig. 4D). These correlated lesions also reflect individual
molecular subtypes of glioblastoma. Based upon our analyses, we
expect that of the order of 100 samples are sufficient to analyze
mutational networks containing several loci. However, RESIC
can be applied to any tumor type by analyzing significantly cor-
related genetic alterations in separate computational analyses
(see Fig. 3). Furthermore, RESIC can be applied to individual
subtypes of cancers after these subtypes have been identified uti-
lizing gene expression or other data.

Based on the examples presented here, we anticipate that
our algorithm will provide the research community with a tool
for the identification of tumor-initiating events using the emer-
ging cross-sectional cancer genome datasets and will help with

the generation of hypotheses about carcinogenesis that can be
tested using modern mouse models of human cancer (30). The
identification of the order of genetic alterations in specific cancer
(sub)types may lead to important insight into cancer biology
and should inspire studies aimed at elucidating how specific genes
cooperate (or in a different order may prevent) tumorigenetic
processes.
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