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It has long been assumed that differences in the relative abun-
dance of taxa in microbial communities reflect differences in envir-
onmental conditions. Here we show that in the economically and
environmentally important microbial communities in a wastewater
treatment plant, the population dynamics are consistent with neu-
tral community assembly, where chance and random immigration
play an important and predictable role in shaping the communities.
Using dynamic observations, we demonstrate a straightforward
calibration of a purely neutral model and a parsimonious method
to incorporate environmental influence on the reproduction
(or birth) rate of individual taxa. The calibrated model parameters
are biologically plausible, with the population turnover and diver-
sity in the heterotrophic community being higher than for the
ammonia oxidizing bacteria (AOB) and immigration into AOB com-
munity being relatively higher. When environmental factors were
incorporated more of the variance in the observations could be
explained but immigration and random reproduction and deaths
remained the dominant driver in determining the relative abun-
dance of the common taxa. Consequently we suggest that neutral
community models should be the foundation of any description of
an open biological system.

microbial community assembly

Naturally occurring populations of bacteria and archaea are
vital to life on Earth and are of enormous practical signifi-
cance in medicine (1), engineering (2), and agriculture (3). How-
ever the rules governing the formation of such communities are
still poorly understood. Typically, microbial community structure
is thought to be shaped mainly by deterministic factors such as
competition and niche differentiation, where the relationship
between taxon traits and the environment dominate (4, 5). How-
ever, such theories when applied to macroorganisms struggle to
explain very diverse environments where many rare taxa can
coexist (6, 7). An alternative neutral theory has emerged (8, 9)
that considers birth, death, dispersal, and speciation and disre-
gards the differences between species at the same trophic level.
Hence, in the neutral theory, the explicit link between the distri-
bution of relative abundances and the distribution of niches is
broken. Despite their apparent simplicity and small number of
parameters, neutral models have been remarkably successful at
reproducing some of the most widely studied patterns in commu-
nity ecology, including species abundance distributions (SADs)
and species-area relationships (SARs) in a wide range of commu-
nities from tropical trees to bacteria (10-16). However, neutral
models are not without their critics. Some argue that alternative
phenomenological models fit a particular dataset marginally
better (e.g., refs. 17 and 18), others that the mechanisms are just
plain “too simple” to represent biological reality, and yet more
that small deviations from neutrality would have large repercus-
sions for the predicted patterns (19, 20). The arguments on
the relative importance of niche and neutral forces in shaping
community structure are, however, muddied by the inconclusive
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nature of the most common method for testing neutral theory. In
this method, the single observed distribution of taxa abundances
at one location and at one period of time is compared to a dis-
tribution of abundances produced by a neutral model (15). The
parameters are calibrated and it has not been possible to validate
the models, and hence the underlying mechanisms (21). There is
however a push to move beyond this method of fitting neutral
models and use data from multiple sites (11, 22) and explore
some of the richer predictions of neutral theory. The capacity
of neutral theory to unite SADs and SARs has been demon-
strated, which adds strength to the veracity of the underlying as-
sumptions (12). Neutral models are derived from a dynamic
stochastic process, so they might gain even more credence if
the dynamics in abundance and the SAD could be explained
by the same neutral model (23). We present an analysis where
the population dynamics and the SAD are explained by the same
neutral model.

The initial polarization of “nichists” and “neutralists” caused
by Hubbell’s (9) monograph has waned and recognition that neu-
tral models embody mechanisms (birth, death, immigration, and
sometimes speciation) that are indisputable features of virtually
all biological systems (24) has led to calls for, what some call,
“reconciliation” (25, 26). To this end, a variety of niche models
have been extended to include some stochastic elements (27-29).
Although these are often elegant expressions of plausible concep-
tual models, they mostly defy calibration. For the microbial
communities in which we are interested, where diversity is awe
inspiring (30) and traits are difficult to measure, it is impractical
to aim for a model that requires a suite of taxon-specific para-
meters. However, we maintain that a more parsimonious purely
statistical approach can be taken to layering the influence of the
environment on top of a neutral model when multiple realizations
of a community composition exist.

Here we examine the microbial communities in a wastewater
treatment plant to see if the stationary taxa rank abundance
distribution is consistent with neutral theory. From ranked abun-
dance distributions alone we cannot rigorously calibrate the
model; we can only determine whether or not the neutral model
is a candidate. Etienne et al. (2006) (31) and Hubbell (2001) (9)
demonstrate the insensitivity of the abundance distributions where
modest changes in the parameter values are only reflected in
the abundance of rare taxa. In microbial surveys using molecular
finger printing techniques, like terminal restriction fragment
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length polymorphism (T-RFLP), we can only observe taxa that
exist at a relative abundance above approximately 0.01 and hence
the rare taxa are missed. However, in removing the taxon names
and considering merely their rank, a huge amount of information
contained within the time series is lost. Wells et al. (32) suggest that
the uncertainty in parameter values might be reduced by supple-
menting taxa-abundance distributions with time-series data.
Therefore, we examine the dynamics of the most abundant taxa
to see if they are also consistent with the neutral model, to refine
the parameter estimates, and to see if adding the influence of
environmental covariates allows more of the variance to be
explained.

Wastewater treatment plants are inherently open systems that
rely on dozens, perhaps hundreds, of different species of bacteria
and protozoa coming together to form a microbial community that
will transform the waste into biomass, CO,, or some other, less
harmful, substances. Thus a model of the community assembly
process could have wide practical application. Wells et al.’s (32)
comprehensive study of bacterial population dynamics of the Palo
Alto Regional Water Quality Control Plant (PARWQCP) is used
to test our hypotheses with dynamic data for the heterotrophic and
ammonia oxidizing communities. They collected samples weekly
for 1 year and profiled the communities ammonia oxidizing
bacteria (AOB) and heterotrophs using T-RFLP analysis. Ten
operational taxonomic units (OTUs) were identified for AOB
on the basis of amoA analysis and 126 of heterotrophic bacterial
OTUs were identified from 16S rRNA gene analysis. Wells et al.
(32) managed to encapsulate the patterns of relative abundance of
taxa in areduced set of ordinates that did a good job of preserving a
measure of the distance between samples in the original data. They
were then able to relate these coordinates of samples to combina-
tions and interactions between a large number of operating/
environmental conditions, explaining as much as 30.2% and
25.5% of the variance for the AOB community and heterotrophic
bacteria, respectively. So the community as a whole, at least
partially, responds to the environment with temperature, dissolved
oxygen, influent nitrite, and chromium appearing to be important.
However, the response of the microbial communities in a waste-
water treatment plant to changing operating conditions is unlikely
to be immediate. Therefore, it becomes important to analyze serial
correlations and characterize the dynamics of individual taxa,
preferably in a manner that lends itself to biological interpretation.
Furthermore, it is natural to speculate on the 70% variance that is
unexplained by the multivariate statistical methods, which when
used with many environmental variables, offer up the best prospect
of explaining the variance in the data. Although modeling the fluc-
tuation in the biomass of distinct functional groups of organisms
has been successfully achieved in microbial ecology, we know of no
studies in which a significant portion of the dynamics of individual
taxa within a functional group has been explained. In our study,
we assume that the relative height of peaks in T-RFLP plots
are estimates of the relative abundance of taxa.

The neutral model we use is that of Hubbell (9) formulated
and extended for microbial communities into a continuous for-
mat that permits the inclusion of environmental effects (11).
Thus, the wastewater treatment communities were assumed to
be fed by immigrants from a source community where taxa abun-
dances are distributed according to a log-series distribution with a
single parameter € that determines its shape. High values of 6
correspond to diverse source communities and low values to less
diverse communities. The distribution of taxa in the local com-
munity deviates from that in the source community as a function
of the product of a pair of parameters, Ny and m (Nym). Nt is
the number of individuals in the neutrally assembled local com-
munity and m is the probability that when a member of the local
community dies or is removed, it is replaced by an individual from
the source community rather than through local reproduction.
Low migration tends to deplete the local richness of taxa and
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promote the dominance of common taxa. Advantage or disadvan-
tage is conferred on a particular taxon by a factor a’ (11) applied
to the probability of birth.

The dynamics of the relative abundance, X (¢), of the ith taxon
at time ¢ is entirely governed by Nym and the relative abundance
of the taxon in the source community, p say, and can be described
by a stochastic differential equation (SI 7ext)

AX (1) = {Nymlp — X ()] + 2 X (0)[1 = X ()]} aldt
+ % X[ =X (O)dW.. [

where W, is a Wiener process (standard Brownian motion) and a
is an unknown constant that is related to the time between births
and deaths. This differential equation is more general than a
purely neutral model, because the term involving o’ confers an
advantage (@’ > 0) or disadvantage (¢’ < 0) in the birth rate of
the ith taxon (33). The advantage coefficient o’ is assumed to
depend on external factors, thereby breaking the neutrality
assumption but consistent with the simplifying assumptions of
“mean field” models (34) in that it uses an equation for a given
species which does not involve relative abundance of other
species. A different o’ can be used for each taxon and hence
the model allows for differential birth rates but is not specific
about the biological mechanisms that convey the advantage;
we allow the data to define the advantage. When o« = 0, then
the differential equation describes purely neutral dynamics. From
the observations of abundance for the ith taxon, X (¢) is known at
52 discrete time points and dX (¢) can be crudely approximated as
the change in relative abundance between successive times. So
Eq. 1 maps onto a simple linear model,

dX:mo +le1 +m2Y2+8, [2]

where mozNTamp, my = —=1%, =

X(1-X), and e is an error term given by &=

7 V2XO[l -X()ldW,. Thus, whereas W, is normally
distributed, N(0,1), ¢ is not. However, Eq. 2 gives us a straight-
forward method of calibrating the unknown parameters Npm
and a, under the assumption that o' = 0. Performing a weighted
least-squares regression analysis, using observations of the
dependent dX and independent variable in which the weights
are [X(1 —X)]™!, gives estimates of the parameters m, and
m;. The weighted errors should be normally distributed and
hence the standard residual error produced by the least-squares
analysis should be \/2/a. Thus, all of the original model para-
meters in Eq. 1 can be retrieved from a linear least-squares ana-
lysis (SI 7Text). Furthermore, if we allow a nonzero advantage
term, o', to be a linear function of n observed covariates,
{Z;}/_,, such as temperature or chemical concentration,

Nrm

my=%Y =X, Y,=

d =a+ ) oz [3]
j=1

then incorporating the effects of environment on the birth-death
process in the community is achieved by merely extending the
linear least-squares analysis to incorporate more independent
variables,
ax = my +m1Y1 +m2Y2 +m3(YzZl) +m4(Y2Z2) + -
+ My (YZZn) T+, [4]

where the coefficients are related to the advantage parameters by
m; =242 for j > 2.

Ofiteru et al.
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Results

One of the predictions of neutral theory is that for a neutrally
assembled community the distribution of ranked abundances
for the taxa will essentially remain constant within bounds
imposed by the natural variability of a stochastic birth-death—im-
migration process. The relative abundance of the most abundant
AOB and heterotrophic bacteria, is very dynamic (Fig. 1). The
identity of the top ranked taxon changes many times during
the year. However, ignoring the taxon labels and merely ranking
their relative abundance for each week (Fig. 2), we see order
emerge from what appeared to be a highly complex and dynamic
system. It is extremely rare to see a time series of so many ranked
abundance distributions from a single site, and the prediction that
ranked abundances will remain constant even if the individual
taxa abundances are highly dynamic has never previously been
shown experimentally. We sought the best fit of the neutral model
to these data in a least-squares sense. It transpires, however, that
a very good fit to the data was achievable for both communities
for a broad swathe of the parameter space (Fig. 3), which
confirms previous findings (31). However, much of the informa-
tion in the original time series is lost by ignoring the identity of
the taxon. Therefore, working with the dynamic representation
of the model (Eq. 1), we calibrated a completely neutral model
a = 0 using the time series of abundances of the two most abun-
dant organisms in the two communities (Table 1). The estimates
of the model parameters are statistically significant at the 99.9%
level and the 95% confidence limits of the parameter estimates
within each community overlap significantly for both the AOB
and the heterotrophs. The R-squared values indicate that ap-
proximately a fifth of the variance in the time series of abundance
are explained by a purely neutral model.
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Fig. 1. Relative abundance of (A) the three most abundant AOB and (B) the
five most abundant heterotrophic bacterial measure at weekly intervals
for 1 year in the PARWQCP. The OTUs and their abundances were using
the relative area under peaks in T-RFLP electropherogram of the amoA genes
for the AOB and the 165 rRNA genes for the heterotrophs. The identity of the
most abundant taxon changes over time, both for AOB and heterotrophic
OTUs. The abundance of rarer organisms, which are not shown on these
graphs, frequently drop below the measurement detection limit.

Ofiteru et al.

Examining the dynamics has allowed us to determine the para-
meter Nym for a neutral model without any knowledge of the
distribution of taxa in the source community; the parameter ¢
does not appear in the stochastic differential equation [1] for
the relative abundance of a single taxon. Armed with this knowl-
edge, we can go back to the ranked abundance distribution which
gives an indication of how the log-series distribution of the taxa
abundances in the source community is distorted by dispersal
limitation into the local wastewater treatment plant, and refine
our estimates of 6 for both for AOB and the heterotrophs.
The best least-squares fit between the observed and simulated
ranked abundance distribution was achieved using a 6 value of
2.5 for the AOB and 23 for the heterotrophs. These values are
consistent with the widespread and plausible assumption that
the AOB are much less diverse than the heterotrophs.

For our optimal parameter pairs (N7m = 55 and 6 = 2.5 for
AOB data, Nym = 198 and 0 = 23 for heterotrophs), we gener-
ated 500 realizations of the wastewater treatment communities
from which we sampled 10° individuals at random to simulate
the physical sampling done in a T-RFLP analysis. The average
abundances and the fifth and the 95th percentile abundances
(Fig. 2) for each rank were calculated using these simulations.
Clearly, the vast majority of the observed ranked abundances
for each week fall within the 90% confidence limits of the simu-
lated abundance distributions. Thus determining the Nym from
dynamic data constrains our search for the value of data € using
the ranked abundance distributions.

We tested whether more of the variance in the time-series data
might be explained by incorporating the effects of environment by
conveying an advantage on the birth rate of taxa that is linearly
related to environmental factors. Thus environmental variables
were incorporated by adding extra terms in the linear model
(Eq. 3). Wells et al. (32) collated a times series of 20 environmen-
tal variables measured at the same time as the microbiological
samples were taken. We tested a suite of linear models (Eq. 3)
that included each of these variables individually and models
where combinations of the variables were included, but we have
only presented the models that explained the most variance over-
and-above the purely neutral model as defined by the first two
terms in the linear model (Eq. 2) using statistically significant
estimators for the environmental factors included. For the most
abundant heterotrophs, the model which best met these criteria
was achieved by making the advantage term in Eq. 3 a linear
function of the dissolved oxygen concentration (Z,),

2 /
my = 7“ — _0.08%Z,, (5]

whereas for the most frequently occurring AOB species, it is a
function of temperature (Z,) and chromium (Z,) concentration:

2d
my, = 7 =0.027 x Zl —0.026 x Zz. [6]

The complete sets of parameters m for both sets of data are
reported in Table 2. The o confers a relative advantage on the
individual taxon, not the community as whole. Thus, although
the productivity of the whole heterotroph community may
increase with an increasing concentration of dissolved oxygen,
some taxa within the community will respond relatively less well
than others.

The purely neutral model (o = 0) accounts for 0.23 of the
variability (measured by R?) in the time-series data for AOB
and 0.20 for heterotroph data. When these taxa were allowed
an advantage, «, in the probability of birth, which was linearly
related to environmental variables, a bigger percentage of
the variability could be explained, increasing the coefficient of
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Fig. 2. Weekly ranked abundance distributions
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determination to 0.37 for AOB data and 0.28 for the hetero-
trophs, respectively.

Discussion

The call for a reconciliation of niche and neutral models (25, 26)
of community assembly has, until now, been met by adapting what
were deterministic niche-based models to include stochasticity
and immigration (27-29). We have argued in the introduction
to this paper that the emergent parameter-rich models defy cali-
bration for very diverse microbial communities. However if, as
recent studies suggest, neutral dynamics have a significant influ-
ence on the community composition (11), then an alternative
approach seems logical where neutral dynamics forms the core
of the model and environmental effects are layered on top as
and when required. This structure should ultimately lead to a
more parsimonious description of the system. It could be argued
that conceptually building on a neutral core is a more pleasing
approach to modeling the assembly of any open biological com-
munity. Births, deaths, and immigration are inevitable, although
the relative importance of environmental effects on individual
taxa (as opposed to the community as a whole) may vary. How-
ever, building a model on a foundation of neutral dynamics, how-
ever conceptually pleasing, is only of practical benefit if neutral
dynamics do indeed account for a significant proportion of the
variance in the observed dynamics, which has not previously been
tested. Using both static and dynamic observations, we have
demonstrated that a straightforward calibration of a purely neu-
tral model is possible and we give a parsimonious method to
incorporate environmental influence on individual taxa.

We have reiterated the fact that using taxa-abundance distri-
butions from one site is a poor test of neutral theory (31). Many
parameter pairs will lead to similar shaped abundance distribu-
tions (Fig. 2), especially when the distribution is truncated by
methodological constraints, like the threshold in abundance

A Sum of squared errors for AOB data
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dant taxa allows the value of Nrm to be deter-
mined independently of the ranked abundance
distributions. Thus it is only the value of  in these
plots that has optimized on the basis of the ranked
abundance distribution.

below which taxa cannot be observed using T-RFLP. Nonetheless,
the ranked abundance distributions for each week from the two
bacterial communities in the Palo Alto sewage works are consis-
tent with neutral theory and do remain constant through time.
So the taxa-abundance distributions by themselves give no reason
for rejecting neutral theory as the foundation of a mathematical
description of community assembly. Woodcock et al. (12) demon-
strated that it is possible to pin down the parameters of a neutral
model using taxa-abundance distributions if they come from mul-
tiple sites and either the immigration rate or the population sizes
change significantly between sites. With data from a single site
then, the only alternative is to extract more information from
the time series of abundance for named taxa, the Palo Alto sew-
age works time series are a rare example of such data. We were
able to explain 23% and 27% of the variance in the time series of
abundance for the two ranked AOB taxa using a purely neutral
model. For the top two heterotrophs, we could explain 20% and
27% of the variance using neutral dynamics. These values sug-
gested that neutral dynamics plays a significant role. In addition,
there is a large overlap in the confidence limits on the best values
of Nym for taxa within each functional group. If the taxa were
behaving entirely neutrally then this consistency in the estimates
for Nym calibrated on the dynamics of individual taxa would ex-
tend deeper into the community. However, the depth of agree-
ment between modeled and observed abundance distributions is
difficult to test using the current data because the abundances of
all other AOB taxa often drop below the detection limit of the
T-RFLP method and, for the very low abundances in the hetero-
trophs, measurement noise is relatively large. Nonetheless, the
consistency in estimates of the communities Nym value using
the dynamics of the top two most abundant taxa from each group
does suggest that migration-driven drift is important and consis-
tent within functional groups. In addition, the difference in the

Fig. 3. The sum of the square of the errors between
the observed ranked abundance distributions (Fig. 2A)
and the modeled distribution for a wide range of para-
meter pairs, (A) for the AOB and (B) for the hetero-
trophs. The dark-blue regions with similarly low sum
of squared errors indicates there is a broad swathe
of the parameter space, with a good fit to the model
and the ranked abundance data. This fact reinforces
that calibrating a neutral model based solely on ranked
abundance distributions from one site will yield uncer-
tain parameter estimates. Thus supplementing the
ranked abundance distributions with additional data
is required to reduce the uncertainty. Times series of
the abundance are used to achieve the best fitting
distributions in Fig. 2.
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Table 1. Parameter values for a purely neutral model for the most abundant organisms in the heterotrophic and AOB communities, respectively

Ofiteru et al.

Neutral model

parameters

Regression coefficients

From least-

squares
estimates of

mqy and m,

and SE

SE

RZ

my

my

Least-

Least-

squares
estimate
—0.400
-0.461

squares
estimate
0.157
0.143

Nrm

Pi
0.39
0.31

Qqg755

P value
<0.001
<0.001

Qs
-0.610

-0.678

Qo755

P value
<0.001
<0.001

Qs
0.075

55
30

0.12
0.18

0.23
0.27

—-0.191
-0.245

0.239

OoTU 1

Ammonia

0.208

0.077

OoTU 2

oxidizing
bacteria

199
170

0.20 0.06 0.06
0.05 0.06

0.27

-0.176
-0.285

<0.001
<0.001

-0.391
-0.526

0.036 —-0.605
—-0.766

<0.001
<0.001

0.023

0.010

OoTU 1

Heterotrophic

0.045

0.032

0.018

OoTU 2

bacteria

estimated parameters between functional groups makes biologi-
cal sense. We estimated the timescale constant a = 520 for the
heterotrophs and a = 139 for the AOB. These values can be
interpreted (see Methods) as there being 520 replacements in
the heterotrophic community for every 139 replacements in
the ammonia oxidizing community or the turnover in hetero-
trophic taxa being 3.75 times greater than the AOB. This in-
creased turnover partly reflects the different community sizes;
the total count, N7, of AOB (35-37) in a wastewater treatment
plant is approximately 5-10% that of the heterotrophic commu-
nity. The best value of Nym for the heterotrophs is 3.6 times
greater than the AOB. It is difficult to translate these values into
an estimate of the absolute immigration probability because it
will depend on our definition of the local community and thus
N7 (12). However, given that the total number of AOB is about
10% of the number of heterotrophs, the values would indicate
that the probability of replacement in the AOB community by
an immigrant is actually higher than for the heterotrophs. This
higher immigration rate may again reflect the relative population
sizes because, the smaller the community, the higher the prob-
ability of a dead individual being replaced by immigration
(38). The parameter p is the relative abundances of the taxon
in the source community, which we estimate to be to be 0.06
for the most common heterotroph and 0.39 for the most common
AOB. These values are the same orders of magnitude as the aver-
age relative abundances displayed in Fig. 1. Unfortunately, our
lack of knowledge of the abundances when they drop close to
or below the T-RFLP detection limit means that we cannot esti-
mate the average abundance for all taxa in community in this way,
which would have defined the source community abundance dis-
tribution. Therefore, to estimate €, the parameter that defines the
log-series abundance distribution for the source community, we
needed to return to the ranked abundance distributions armed
with the knowledge of Nym gained from examining the time ser-
ies of the most abundant organisms. We estimate that 6 is 2.5 for
the AOB and 39 for the heterotrophs. Hubbell (9) calls 6 the fun-
damental biodiversity number because it is an index to the rich-
ness of taxa in the source community. Our values suggest that the
AOB are much less diverse than the putative heterotrophs, an
observation consistent with prevailing opinion in microbial
ecology and the specificity of the PCR primers used in the ana-
lysis of each community.

The inclusion of an advantage/disadvantage term which acts on
the probability of birth for each taxa means that the core migra-
tion and stochastic births and deaths are retained in a model that
can also represent niche effects. The birth rates are no longer
equivalent and hence the model is no longer neutral, but Sloan
et al. (33) show that the migration and stochasticity will ensure
that biodiversity is maintained. The advantage term was made a
linear function of any number of environmental variables and we
sought the combination of variables that explained the most of
the variance in the time series of abundance. It is gratifying that
the same environmental factors (dissolved oxygen, temperature,
chromium; Table 2) determined by multivariate statistics to

Table 2. Parameter values for the combined model for the most
abundant organisms in the heterotrophic and AOB communities,
respectively

Coefficient SE P value
Heterotrophic bacteria (R? = 0.28)
my 0.03 0.01 <0.001
m'] - h— h—
m, (dissolved oxygen) —0.08 0.02 <0.0001
Ammonia oxidizing bacteria (R> = 0.37)

myg 0.11 0.05 <0.05
my -0.86 0.24 <0.001
m, (temperature) 0.027 0.012 0.02
m;, (chromium) —0.026 0.011 0.02
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influence the community (32) were also identified by this com-
bined model. There is still substantial unexplained variation in
the data, which could be attributable to unmeasured environmen-
tal factors, a nonlinear relationship between environment and
advantage, or substantial measurement error. The effect of the
environment on the most abundant T-RF could also be weakened
if the T-RF did not comprise an ecologically homogenous group,
for example, an unrelated less-abundant organism had the same
T-RE However, it should be remembered that the very best quan-
titative molecular methods have a coefficient of variation of
about 20% (37) and so we can expect at least this much “noise.”
It may be that the model could be improved if the advantage
parameter o was allowed to vary nonlinearly with environmental
factors. However, this added complexity is unlikely to be worth-
while until we are able to garner more high-resolution and high-
quality data. In particular, our ability to encapsulate the dynamics
using a stochastic differential equation model would be enhanced
if regular weekly samples were supplemented by periods of more
frequent sampling.

Sceptics might suggest that the excellent performance of the
neutral community models (NCMs) may occur because the Palo
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a climate with little seasonal variations. Only high-quality, high-
resolution time series in more variable environments can answer
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application. The gut, for example, is a plug flow reactor held at a
constant temperature. Those wishing to explore or engineer the
human or animal microbiome will find NCM invaluable. It could,
for example, be used to rationally design and deploy pro- and pre-
biotics. From an engineers perspective, realizing that microbial
community composition is so dependent on neutral processes
and cannot be entirely shaped by environmental conditions could
change the way we design sewage works. Bacterial community
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size correlates with the volume of the sewage works and immigra-
tion of new species with the rate at which waste is fed, so changing
these two variables could allow us to manipulate the diversity and
the timescales over which the population dynamics occur. So, for
example, there may be a minimum reactor size and flow rate to
ensure that organisms which are rare but important, such as those
that can metabolize endocrine-disrupting chemicals, are main-
tained in the system. Or we might be able to predict the frequency
with which important taxa are likely to drift below critical thresh-
olds. More generally, those seeking to engineer or explore any
real microbial environment, and many such systems are under
consideration for fuel generation or carbon capture, will benefit
from a sound body of theory. We believe that NCM should form
the core of that body of theory.

Methods

The two microbial time series examined as part of this study were obtained
from the same local environment (the four well-mixed aeration basins of the
PARWQCP) and during the same time period (February 2005-February 2006).
The activated sludge samples are 24-h composite (collected every 30 min),
gathered weekly from the combined outlet of all basins. The first time series
was generated via f-proteobacterial-specific amoA T-RFLP (digested with the
restriction enzyme Taql/), and the second was generated via bacterial-specific
16S rDNA T-RFLP (digested with the restriction enzyme Rsal). The optimal
volume (and hence DNA quantity) applied for fragment sizing was chosen
to maximize total fluorescence signal while avoiding detector saturation.
Both T-RFLP datasets were binned and normalized, such that individual
OTU scores in each sample represent a measure of relative abundance. All
peaks below the background noise (<0.5% of the total summed peak heights
in any given sample) were neglected, yielding a detection limit of d = 0.005.
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