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We present a computational method for identifying potential tar-
gets of a transcription factor (TF) using wild-type gene expression
time series data. For each putative target gene we fit a simple dif-
ferential equation model of transcriptional regulation, and the
model likelihood serves as a score to rank targets. The expression
profile of the TF is modeled as a sample from a Gaussian process
prior distribution that is integrated out using a nonparametric
Bayesian procedure. This results in a parsimonious model with re-
latively few parameters that can be applied to short time series da-
tasets without noticeable overfitting. We assess our method using
genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-
of-function mutant expression data for two TFs, Twist, and Mef2,
controlling mesoderm development in Drosophila. Lists of top-
ranked genes identified by our method are significantly enriched
for genes close to bound regions identified in the ChIP-chip data
and for genes that are differentially expressed in loss-of-function
mutants. Targets of Twist display diverse expression profiles, and in
this case a model-based approach performs significantly better
than scoring based on correlation with TF expression. Our ap-
proach is found to be comparable or superior to ranking based on
mutant differential expression scores. Also, we show how integrat-
ing complementary wild-type spatial expression data can further
improve target ranking performance.

Bayesian inference ∣ Gaussian process inference ∣ gene regulation ∣
gene regulatory network ∣ systems biology

Transcription factors are key nodes in the gene regulatory net-
works that determine the function and fate of cells. An impor-

tant first step in uncovering a gene regulatory network is the
identification of target genes regulated by a specific transcription
factor (TF). A common approach to this problem is to experi-
mentally locate physical binding of TF proteins to the DNA
sequence in vivo using a genome-wide chromatin immunopreci-
pitation (ChIP) experiment (1, 2). However, recent studies sug-
gest that many observed binding events are neutral and do not
regulate transcription, while regulatory binding events often oc-
cur at enhancers that are not proximal to the target gene that they
control (3, 4). Therefore, the task of identifying transcriptional
targets requires the integration of ChIP binding predictions with
evidence from expression data to help associate binding events
with target gene regulation. If there is access to expression data
from a mutant in which the TF has been knocked out or overex-
pressed, then differential expression of genes between wild type
and mutant is indicative of a potential regulatory interaction (5,
6). Available spatial expression data for the TF and the putative
target can also provide support for a hypothesized regulatory link.

A problem with the above approach is that the creation of mu-
tant strains is challenging or impossible for many TFs of interest.
Even when available, mutants may provide very limited informa-
tion because of redundancy or due to the confounding of signal
from indirect regulatory feedback (7). For these reasons it is use-
ful to seek other sources of evidence to complement ChIP bind-
ing predictions. In this contribution we demonstrate how a
dynamical model of wild-type transcriptional regulation can be

used for genome-wide scoring of putative target genes. All that
is required to apply our method is wild-type time series data col-
lected over a period where TF activity is changing. Our approach
allows for complementary evidence from expression data to be
integrated with ChIP binding data for a specific TF without carry-
ing out TF perturbations.

To score putative targets we use the data likelihood under a
simple cascaded differential equation model of transcriptional
regulation. The regulation model we apply is “open” in the sense
that we do not explicitly model regulation of the TF itself. To deal
with this technical issue we use a recently developed nonpara-
metric probabilistic inference methodology to effectively deal
with open differential equation systems (8). We model the TF
concentration as a function drawn from a Gaussian process prior
distribution (9, 10). This functional prior can either be placed on
the TF mRNA, for TFs primarily under transcriptional regula-
tion, or the TF protein, for TFs activated posttranslationally.
In the application considered here the TFs are transcriptionally
regulated, and we take the former approach. We use Bayesian
marginalization (also known as Bayesian model averaging) to
integrate out these functional degrees of freedom. This greatly
reduces the number of parameters required to model the data,
making a likelihood-based approach feasible even for short
time series.

There are many existing approaches to inferring gene regula-
tory networks from time series expression data, including dy-
namic Bayesian networks, information theoretic approaches,
and differential equation approaches (reviewed in ref. 11). These
methods typically require many more data from a greater diver-
sity of experimental conditions than are available from the short
unperturbed wild-type time series that we consider. Indeed, most
real gene expression time course data are short relative to the
simulated data used to assess computational methods for network
inference (12). However, our goal is more limited in scope since
we are primarily interested in providing additional support for
hypothesized targets of a specific TF. Again, most approaches
to this problem are designed for data containing large numbers
of diverse conditions, as exemplified by the DREAM 2 (Dialogue
for Reverse Engineering Assessments and Methods 2) target
identification challenge 1 (13). Others have addressed this target
identification problem using time series data with a regulation
model (14, 15). However, these approaches either require a
known target set for training (14) or they require measured TF
protein data (15). In addition to these differences in the assumed
prior knowledge and available data, it is also difficult to validate
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other approaches on the same data used in these studies as they
carried out validation only of selected targets that they identified,
rather than using unbiased genome-wide experimental validation.

We validate our proposed method by comparing the model-
based target ranking with published ChIP-chip data for two TFs
controlling mesoderm development in Drosophila. Our method is
shown to be comparable to, or out-perform, the use of knockout
mutant data, which are available for these TFs. We demonstrate
that a model-based approach is significantly better than a simpler
approach using correlation when targets display a diverse set of
expression profiles. We further show how integrating comple-
mentary wild-type spatial in situ expression data can greatly im-
prove target ranking accuracy.

Gaussian Process Inference for a Linear Activation Model.
A Gaussian process is a probability distribution over functions f
that take the value f ðtÞ at time t. Analogous to the Gaussian dis-
tribution, which is fully characterized by a mean and covariance,
the Gaussian process is characterized by a mean function E½f ðtÞ�
and a covariance function kðt; t0Þ ¼ E½f ðtÞf ðt0Þ� − E½f ðtÞ�E½f ðt0Þ�,
where the expectation is over function evaluations at times t
and t0 (9).

For the prior distribution of TFmRNA concentration profile f ,
we use a zero-mean Gaussian process with squared exponential
covariance kðt; t0Þ ¼ a exp½−ðt − t0Þ2∕l2�. Samples from a Gaussian
process with this choice of covariance are smooth, infinitely dif-
ferentiable, stationary functions. Although single-cell mRNA

counts may be low and vary in a highly stochastic manner, here
we consider microarray data that corresponds to a population
average and is therefore more appropriately modeled using a
smooth process. The parameters a and l describe the typical
amplitude and time scale of samples from the prior.

To simplify the inference we model translation and transcrip-
tional activation using linear ordinary differential equations,

dpðtÞ
dt

¼f ðtÞ−δpðtÞ; [1]

dmjðtÞ
dt

¼BjþSjpðtÞ−DjmjðtÞ; [2]

where pðtÞ is the TF protein and mjðtÞ is the jth target mRNA
concentration at time t. The parameters Bj, Sj, and Dj are the
baseline transcription rate, sensitivity, and decay rate, respec-
tively, for the mRNA of the jth target (as described in ref. 14).
The parameter δ is the decay rate of the TF protein. This linear
system of differential equations can be explicitly solved, and we
find that the functions p and mj are linear functions of f . Given k
target genes, the functions f and m≡ ½mj� therefore describe a
kþ 1-dimensional Gaussian process prior pðf ;mjθÞ for which
the covariance function can be calculated explicitly in terms of
the three global and 3k gene-dependent model parameters
θ ¼ ½δ; a; l; fBj; Sj; Djg� (see Materials and Methods).

A microarray time-course experiment provides a data vector y
containing the noise-corrupted TF and target mRNA measure-
ments at n times, y ¼ ½f̂ ðt1Þ; f̂ ðt2Þ;…; f̂ ðtnÞ; fm̂jðt1Þ;…; m̂jðtnÞg�T.
In this continuous-time modeling framework, there is no require-
ment that times are equally spaced. We assume Gaussian noise:
pðyjf ;mÞ ¼ Q

iN½f̂ ðtiÞjf ðtiÞ; σ2if �
Q

jN½m̂jðtiÞjmjðtiÞ; σ2ijm�, where the
gene and condition specific measurement variance parameters
σ2if and σ2ijm are obtained from a probe-level analysis of the micro-
array data (16, 17) (see Materials and Methods). The log likeli-
hood for the model parameters θ can then be calculated
exactly using standard Gaussian process regression techniques
to integrate out the functions m and f (9). This allows us to com-
pute the set of maximum likelihood model parameters θ using
gradient-based optimization. For independent replicate datasets,
with R experiments in total, the log likelihood is

LðθÞ¼log pðy1;y2;…;yRjθÞ¼∑
R

r¼1

log
Z

pðyrjf ;mÞpðf ;mjθÞdfdm

¼∑
R

r¼1

�
−
1

2
ðyr−μyÞTK−1

r ðyr−μyÞ−
1

2
logjKrj

�
−C;
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Fig. 1. Examples of the model fit for two different classes of Gaussian process model fitted to potential targets of the TF Twist. (A) Three independent single-
target models for likely targets. Red marks denote observed expression levels from ref. 21 with 2 SD error bars. The inferred posterior means of the functions
are shown in blue and the shaded regions denote 2 SD posterior confidence intervals. (B) A joint multiple-target model for the same set of target genes as in A.
Note that the multiple-target models used in evaluation have more targets than the one shown here.
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Fig. 2. Examples of the model fit for three independent single-target Gaus-
sian process models for likely targets of the TF Mef2 (compare to the exam-
ples in Fig. 1A for Twist).
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where μy is the mean and Kr is the covariance matrix for the
noise-corrupted dataset yr under the Gaussian process prior
(see Materials and Methods), and C is a constant independent
of the parameters.

We use the likelihood to rank genes according to their fit to the
regulation model. Genes with a near-constant profile may have
high likelihoods without being targets, but we find that filtering
of weakly expressed genes removes most of these (see Materials
and Methods). It is also possible to filter targets using a compar-
ison to a model with zero sensitivity, but we find that the pro-
posed approach achieves similar results with significantly
smaller computational cost.

Rather than assuming that the TF protein is primarily under
transcriptional control, as indicated by Eq. 1, one can alterna-
tively use the idea pioneered in refs. 14 and 18 and model the TF
protein as an unobserved latent variable. This approach can natu-
rally be carried out using a similar Gaussian process framework as
shown in ref. 8. However, unlike the approach described above,
that procedure requires a set of known targets for training the
model. We therefore prefer the above cascade model for cases
where the level of active TF is under direct transcriptional
control.

Results
We applied our model-based approach to identify targets of the
TFs Twist and Mef2 that regulate mesoderm and muscle devel-
opment inDrosophila (19, 20). We used a microarray dataset con-
taining three independent time series of 12 time points collected
hourly throughout Drosophila embryogenesis in wild-type em-
bryos (21). Weakly expressed candidate targets were eliminated
by considering average z scores of expression values as described
in Materials and Methods.

For each TF we fitted two sets of Gaussian process models. In
one approach all other genes were considered as individual can-
didate targets one at a time (“single-target GP”). The candidate
targets were ranked according to their likelihood under the mod-
el. Note that even the global parameters can vary between models
for different genes under this approach as the models are fitted
completely independently. In an alternative approach we fitted
another set of models using the five top-ranking genes in the sin-
gle-target case as the training set (“multiple-target GP”; see Ma-
terials and Methods). An illustration comparing these alternative
modeling approaches applied to the TF Twist is shown in Fig. 1.
The single-target model is more flexible because each potential
target gene can be associated with a different inferred TF protein
profile. The multiple-target model is constrained to explain all
targets with the same TF protein profile and may therefore assign
a low score to targets that have a high score according to the sin-
gle-target model (this is the case for gene FBgn0003486 in Fig. 1).
Nevertheless, both models are sufficiently flexible to fit target
genes with significantly different profiles (genes FBgn0033188
and FBgn0035257 in Fig. 1). In Fig. 2 we show some examples
of the single-target model for Mef2. For this TF most of the
top-ranking targets identified by the model are similar to the pro-
files in the first two columns of the figure. The predicted Mef2
targets show much less variability in expression profile than those
for Twist.

To evaluate the advantage from using Gaussian processes in
our approach, we performed a comparison to direct maximum
likelihood fit of the same differential equation model using
the observed TF mRNA levels f̂ iðtjÞ in trapezoidal quadrature
evaluation of Eqs. 3 and 4 (“single-target quadrature”). For com-
parison, candidates were also ranked by correlation of the expres-
sion profile with the TF expression profile (“correlation”) and by
the q value of the differential expression in TF loss-of-function
mutant experiments from refs. 6 and 19 (“knockout”). To assess
the significance of the observed differences between alternative
ranking approaches, we performed 100,000-fold bootstrap resam-

pling of the dataset, recording relative performances of the dif-
ferent methods for each fold. Full bootstrap results are in
Table S1.

The accuracy of the ranking was first evaluated by looking
globally at the fraction of N top-ranking targets that are signifi-
cantly differentially expressed in knockouts of the TFs and the
fraction of targets with ChIP-chip binding within 2,000 base pairs
of its beginning or end or within the gene in the data from ref. 20.
For Twist the single-target and multiple-target models both per-
form well, with the single-target model performing slightly better
(first column of Fig. 3). The simplified quadrature method is al-
most as good. In the ChIP validation the model-based methods
perform significantly better than ranking using either mutant dif-
ferential expression or correlation with TF expression. In the
knockout validation all model-based approaches significantly
outperform the correlation ranking. For Mef2 (third column of
Fig. 3) the results of all methods have more roughly comparable
performance. In the ChIP validation all methods provide highly
significant enrichment in the top 100 and top 250 lists with the
correlation performing best. In the knockout validation the
model-based and correlation-based rankings both provide highly
significant enrichment in the top 100 and top 250 lists, with the
single-target model performing best.

Because Twist andMef2 activities are specific to the mesoderm
and muscle development, we also looked at accuracy focusing on
genes with annotated expression in these tissues according to the
in situ data from ref. 21. These results are illustrated in the second
and fourth columns of Fig. 3. For the Twist ChIP validation we
now observe better performance for the knockout scores,
although the model-based rankings remain best. However, we ob-
serve that the correlation ranking is no longer statistically signifi-
cantly enriched for ChIP binding on this spatially filtered set of
targets. For the Mef2 ChIP validation the relative performance of
all methods is similar to the global enrichment analysis, although
the knockout top 20 ranking is improved. Overall, the Gaussian
process methods tend to perform better than the quadrature-
based method. The differences are statistically significant in fo-
cused Twist validation for the top 250 list and several Mef2
validation settings for the top 100 and top 250 lists.

The distance threshold of 2,000 bp used in ChIP-chip evalua-
tion is somewhat arbitrary. The performance of different meth-
ods when this threshold is changed is illustrated in Fig. 4 and in
Fig. S1. The figures show that the relative performances of dif-
ferent algorithms are fairly consistent for different choices of
threshold. We see that the model-based rankings consistently per-
form best for Twist, while methods perform more similarly for
Mef2 with the correlation and single-target models performing
comparably well.

Finally, because most expression time series are short (12), we
assessed whether similar results could be obtained with fewer
time points. We subsampled the data keeping only seven time
points most relevant in defining the Twist expression profile
(2, 3, 4, 5, 6, 8, and 10 h). The results in this case, as shown in
Fig. 5, are very similar to those obtained using the complete data
showing that our approach can be applied to typical short wild-
type time series data.

Discussion
We have shown how a very simple regulation model can be used
to rank genes according to their likelihood under a model of tran-
scriptional regulation by a TF of interest. The linear differential
equation model of regulation we use is a simplification, and in
many cases unrealistic, but it can capture important differences
in the profiles of target genes due to differences in protein and
mRNA stability while still keeping the computational load at a
level that allows us to perform genome-wide scoring using reason-
ably modest computational resources without the need for expen-
sive sampling. When data are limited, then the linear model can
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provide a sufficiently good approximation to a nonlinear model.
The linear model does not restrict concentrations from being ne-
gative, and occasionally the inferred credible region of functions
extends to negative values. However, as the parameters and ob-
servations are constrained to be positive, this is rare and does not
seem to affect the ranking performance. Our results show that the
model-based approach presented here can provide a viable alter-
native or complementary method to the use of loss-of-function
mutant data for identifying targets. Such an approach can be
combined with binding location (ChIP-chip or ChIP-sequencing)
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and spatial expression data to identify a confident set of regula-
tory targets. This is especially useful in cases where loss-of-func-
tion mutants are uninformative, either due to redundancy or
because they do not display a phenotype of interest.

The main novelty of our approach is the use of a differential
equation transcription model while minimizing the number of
free parameters. The most effective method is based on recently
proposed techniques to model a time-varying degree of freedom
as a sample from a Gaussian process prior distribution (8). By
marginalizing out these functional degrees of freedom before
computing the likelihood, we keep the number of model para-
meters to a minimum and this allows us to model typical short
wild-type time series without noticeable overfitting. In many ap-
plications it is difficult or impossible to achieve a high degree of
temporal resolution. For example, in studies of embryogenesis it
is often impossible to stage embryos with the precision sufficient
to obtain a long expression time series over the period of inter-
est. For one reason or another, most expression time series
datasets are short (12) and developing inference approaches that
are applicable to short time series datasets is of great practical
importance.

Relatedmethods have been proposed for identifying the targets
of a TF using time series expression data, but few of these are sui-
table given the limited data considered here (11). Our approach
was inspired by the work of Barenco et al. (14) who also use a dif-
ferential equation with a linear activation function to model the
regulation of transcription. They focus on the case where the
TF is activated posttranslation, and they therefore require the
use of a training set of known targets to infer the TF activity. In
the most recent implementation of their method (22), the original
Markov chain Monte Carlo procedure for Bayesian inference has
been dropped due to its computational inefficiency and an alter-
native optimization-based method is used. In our case a Bayesian
treatment of the TF protein concentration is computationally ef-
ficient because we use Gaussian process inference techniques.
Nevertheless, the use of a training set to infer theTF concentration
from targets was a very elegant solution to the problem of dealing
with TFs activated posttranslation. This approach also fits very
naturally into the Gaussian process framework as we have shown
(8). Such a scheme was unnecessary in this application, where the
TFs of interest were known to be transcriptionally regulated, but
can be applied using our techniques in other contexts.

Another relevant method was introduced by Della Gatta et al.
(15). They also use a linear regulation model, but they introduce
simplifications that avoid the explicit solution of differential
equations. An interesting aspect of their approach is the inclusion
of a regulatory network model designed to capture the effect of
indirect regulation of putative targets by other genes. Sparse re-
gression techniques are used to learn the regulation model. A
limitation of their approach is the necessity to have measure-
ments of the TF protein; such data are not readily available in
most cases. As with Barenco’s approach, it is difficult for us to
compare performance on the data they used in ref. 15 because
they do not provide data for genome-wide validation. In our ap-
plication we do not have access to any protein data and therefore
were able to compare to their approach using only mRNA data as
a proxy for protein data. The results of this somewhat unfair com-
parison in Fig. S2 show significant enrichment in only slightly
more than a half of the evaluation settings. It is worth noting that
any measurements of protein levels to help their model could very
easily be incorporated in our models as well.

There are some interesting differences in the ranking results
for the two TFs studied here. The knockout scores for Twist
are found to be less informative about binding location than the
knockout scores for Mef2. This may be because Twist acts earlier
and therefore has many more indirect downstream targets in the
regulatory network. Indeed, Mef2 is a direct target of Twist and
therefore the direct targets of Mef2 are indirect targets of Twist.

These indirect targets will be differentially expressed in the mu-
tant and will therefore increase the false positive rate. We found
that the model-based scores provide a significant improvement
over correlation with TF expression for Twist. This is most likely
due to the diversity of target gene expression profiles for this TF
(recall Fig. 1). The models can fit profiles that are very poorly
correlated with the TF expression profile. For Mef2 the models
still provide highly significant enrichment of both ChIP and
knockout predictions, but the correlation performs similarly well.
Fig. 2 shows that predicted Mef2 targets are much less diverse in
profile than those for Twist. Also, Mef2 is active later, at stages
downstream of Twist. Therefore, there are less data points avail-
able to capture the diversity of profiles that can be explained by
the regulation model, whereas the correlation with TF profile will
typically be good. Conversely, the correlation score is much less
useful for Twist, because it misses many targets that have profiles
very different from the Twist mRNA profile.

The two model-based approaches (single target and multiple
target) perform similarly well, although the single-target ap-
proach gave slightly better results in most comparisons. Fig. 1 sug-
gests that the more constrained multiple-target model conforms
more with our assumption of a shared protein profile for all tar-
gets. However, performance of this model may be strongly influ-
enced by the choice of training genes. In order not to bias our
validation, we chose training genes using the single-target model
ranking, without any reference to ChIP-chip, in situ, or knockout
data. In practice it may be better to use a more confident set of
training genes.

We are pursuing a number of extensions of the current work.
Here, we have limited ourselves to detecting the targets of tran-
scriptional activators. The Gaussian process approach can be
used to compute the likelihood for repression models (8). How-
ever, since models of repression are inherently nonlinear (18), the
likelihood calculation is no longer analytically tractable. There-
fore approximate Bayesian inference methods are required, and
we are currently working on an efficient implementation for
genome-wide ranking. We have also limited our attention to
single input motif models, but many targets will be regulated by
other TFs and cofactors. It seems doubtful that more complex
models of regulation will be useful for target ranking using only
short wild-type time series data, because it is unlikely these data
would be sufficient to parameterize more complex models. How-
ever, more general regulation models may be applicable if we
were to use more data for inferring the model parameters; e.g.,
time series knockout data and time series ChIP data could be
highly informative. Scoring multiple input models moves us closer
to the more general gene regulatory network inference problem.
We expect that Gaussian processes will provide a useful way to
deal with inference over time-varying external inputs in these and
other biological systems, thus paving the way for integration of
probabilistic and mechanistic modeling techniques.

Availability. Complete Matlab code for repeating the ex-
periments is available at http://www.bioinf.manchester.ac.uk/
resources/tiger/. An R implementation of the ranking method
is available from the authors upon request.

Materials and Methods
Expression Data Preprocessing. Drosophila developmental microarray time
series from ref. 21 were reprocessed using mmgMOS from the puma package
(17). The means of the log-scale expression values were equalized across
chips. The distributions over log expression were transformed to means
½m̂iðtjÞ; f̂ iðtjÞ� and variances ðσ2ijm; σ2if Þ of absolute expression by minimizing
the squared deviation of 5%, 25%, 50%, 75%, and 95% quantiles of a Gaus-
sian distribution to corresponding quantiles obtained from mmgMOS.

FilteringWeakly Expressed Genes.Weakly expressed genes can affect the rank-
ing because any model with low or zero sensitivity can fit them well. Genes j
with an average z score
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1

Rn∑
R

r¼1
∑
n

i¼1

m̂jrðtiÞ
σijr

<1.8

were consideredweakly expressed and removed from thedataset. The thresh-
oldwas selectedby visually inspectingmodels for candidate targets: Practically
all targets below the threshold elicited a noninformative constant response.

The Gaussian Process Model. Under suitable initial conditions, the differential
equations 1 and 2 can be solved to obtain

pðtÞ¼expð−δtÞ
Z

t

0

f ðvÞexpðδvÞdv; [3]

mjðtÞ¼
Bj

Dj
þSjexpð−DjtÞ

Z
t

0

pðuÞexpðDjuÞdu: [4]

Assuming E½fðtÞ� ¼ 0, then E½pðtÞ� ¼ 0 and E½mjðtÞ� ¼ Bj

Dj
. Using these solutions

and assuming a squared exponential covariance for fðtÞ, kff ðt; t0Þ ¼
aexp½−ðt − t0Þ2∕l2�, the covariance of the TF and target mRNAs is

kfmk
ðt;t0Þ¼

ffiffiffi
π

p
laSk

2ðδ−DkÞ
½hðt;t0;DkÞ−hðt;t0;δÞ�;

hðt;t0;DÞ¼eγ
2
DþDΔt

�
erf

�
γDþ

t
l

�
−erf

�
γDþ

Δt
l

��
;

where Δt ¼ t − t0, γD ¼ Dl
2 . Similarly the covariance of target mRNAs is

kmjmk
ðt;t0Þ¼

ffiffiffi
π

p
laSjSk
2

½h0jkðt;t0;δÞþh0kjðt0;t;δÞ−h0jkðt;t0;DjÞ
−h0kjðt0;t;DkÞ�;

where

h0jkðt;t0;DxÞ¼
expðγ2x−Dxt−Dkt0Þ
ðDxþδÞðDj−δÞ

��
exp½ðDk−δÞt0�−1

Dk−δ

þ 1

DkþDx

��
erf

�
γx−

t
l

�
−erfðγxÞ

�

þexp½ðDkþDxÞt0�
DkþDx

�
erf

�
γxþ

t0

l

�
−erf

�
γx−

Δt
l

���
;

where γx ¼ Dx l
2 . The full model for inference of pðtÞ is derived in SI Text.

Training Set Ranking. The training set or multiple-target ranking was formed
by fitting joint models to five assumed known targets together with each
new candidate independently and ranking by model likelihood. In our ap-
proach, the training set was formed by taking the five highest-ranking tar-
gets from the single-target method, but naturally any existing background
knowledge of known targets should be used. To speed up the computation,
we first fitted a Gaussian process model to the training set genes alone. All
the parameters concerning these genes were then fixed when fitting the lar-
ger models to the training set plus each candidate.

In Situ and Knockout Data Processing. Genes in the data of ref. 21 with any of
the annotation terms listed in Table S3 of ref. 20 were considered to be ex-
pressed in mesoderm or muscle tissue. The knockout data were processed as
explained in ref. 6. q values were computed at each time point using signifi-
cance analysis of microarrays (23, 24), the values at neighboring time points
were averaged, and the minimum of these averages was used as the final
value. A cutoff value of 0.1 was used for detecting significant differential
expression as in ref. 6.
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