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Using quantitative phase microscopy, we have discovered a qua-
dratic relationship between the radius R and the thickness t of
helical ribbons that form spontaneously in multicomponent cho-
lesterol–surfactant mixtures. These helical ribbons may serve as
mesoscopic springs to measure or to exert forces on nanoscale
biological objects. The spring constants of these helices depend on
their submicroscopic thickness. The quadratic relationship (R � t2)
between radius and thickness is a consequence of the crystal
structure of the ribbons and enables a determination of the spring
constant of any of our helices solely in terms of its observable
geometrical dimensions.

biological force spectroscopy � elasticity of thin films �
phase-contrast microscopy in biophysics

The elastic properties of meso- and nanoscale thin elastic
strips forming helical ribbons or tubules, have been the focus

of active recent research in both biophysics and nanoscience
communities (1–7). We have discovered that in a number of
complex aqueous solutions containing a sterol (cholesterol in
particular) and a mixture of surfactants, the sterol molecules may
self-assemble into ribbons of helical shape (8). The geometry of
the helical ribbons is characterized by the radius, width, thick-
ness, contour length, and pitch angle, see figure 1a in ref. 9.
Remarkably, the pitch angle is always either 11° or 54°, whereas
axial length, width, and radius vary by two orders of magnitude
in the range from 1 to �100 �m. These helical ribbons are
fascinating objects for fundamental studies (2, 8–10). Further-
more, because low-pitch helical ribbons have spring constants in
the range of 0.5 to 500 pN/�m (2), and the elongation of these
springs from 1 �m up to 100 �m can easily be observed
microscopically, it follows that they can be used as mesoscopic
spring scales to measure forces between nanoscale biological
objects in the range from 0.5 pN to 50 nN. For this and other
applications, the ability to readily determine the spring constants
of individual helixes is of crucial importance. In this article, we
establish the relationship between the spring constant of the
low-pitch cholesterol helical ribbons and its readily observable
dimensions: width, radius, and length.

Originally, it had been thought that cholesterol helical ribbons
formed in surfactant mixtures had liquid crystalline structure
and that their shape was governed by elastic properties of liquid
crystalline layer (9, 11, 12). Recently, we have shown by X-ray
diffraction that these helical ribbons are, in fact, single crystals
with structure closely resembling that of cholesterol monohy-
drate (10). Having in mind the single-crystal nature of our
ribbons, we have proposed that their helical shape is determined
by a balance between two terms in the free energy of deforma-
tion of the cholesterol crystalline strip (2). The first term, the
spontaneous bending energy, favors curling toward one of the
two faces of the ribbon and is linear in curvature, �Ks/R. The
second term is the elastic energy of bending a strip. This energy
increases equally upon curling toward either face of the ribbon,
and it is proportional to the square of curvature, Kel/R2. Mini-

mization of the sum of the two terms determines the radius of
the helix, R � 2Kel/Ks. The quantitative theory for the observed
geometrical and elastic properties of these helical ribbons is
elaborated in ref. 2. If the ribbon is anisotropic, Kel(�) depends
on the angle � between the axis of bending and the ribbon edge
[note that in thin ribbons, only cylindrical deformations are
possible (13)]. The equilibrium pitch angle �0 is the preferential
bending direction, for which Kel(�) is minimal. When the crys-
talline helical ribbon with contour length s is stretched or
compressed, its axial length l � s�sin �, and therefore its pitch
angle changes. The ribbon is forced to bend in a less preferable
direction than in equilibrium, and its elastic energy increases.
That leads to axial rigidity and a corresponding spring constant.
We have shown (2) that the spring constant Kspring of such a
crystalline helical ribbon is determined by its width (w), its
contour length (s), and its radius (R) according to:

Kspring �
8w
R2s

K�, [1]

where the effective bending modulus

K� � �2Kel��� /��sin��2����0

According to beam-bending theory for solid ribbons (13), we
expect K� to be proportional to the cube of the thickness t of the
strip, K� � t3.

In this article, we report measurements of the thickness of
cholesterol helical ribbons using quantitative phase microscopy
(14, 15). We found a universal relationship, independent of
solution conditions, between the thickness of the helix and its
radius, consistent with R � t2, as shown on Fig. 1. Because the
bending modulus K� is determined only by internal elastic
properties of the crystalline ribbon and its thickness, the radius
of the helix can be used as a measure of the effective elastic
modulus of the ribbon, according to relationship K� � t3 � R3/2

with a universal proportionality coefficient. This relationship is
of great importance for application purposes because it enables
selection of cholesterol ribbons with desired spring constants
based solely on microscopically observed geometrical parame-
ters of the ribbon. Furthermore, we argue that our approach has
broader applicability to a variety of nanoscale tubules and helical
ribbons constituted of inorganic thin films (4, 5, 16) or thin single
crystals such as ZnO and InP (17, 18).
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Results
The thickness of the ribbons is �200 nm, which is below the
diffraction-limited axial resolution of optical microscopes. To
measure the thickness, we used quantitative phase microscopy
(14, 15), which is developed for imaging of thin, nearly trans-
parent biological specimens and allows examination of unper-
turbed individual ribbons in their solution environment. Al-
though transparent, biological samples induce phase shifts in
transmitted light. The phase shift, ��, due to light passing
through an object of thickness t rather than through the sur-
rounding medium is �� � 2�/�0 �n�t, where �n is the difference
in refractive indices between the object and the surrounding
medium. Therefore, the thickness of the object can be calculated
by using the following relation:

t �
��

2�

�0

�n
. [2]

To measure the phase shifts, we used a Mach–Zehnder inter-
ferometer integrated with an inverted microscope. The incident
laser beam (�0 � 632.8 nm) is split into two beams, one passing
through the sample, and the other serving as a reference beam.
When these two beams are recombined, an interference pattern
is produced. This pattern reflects the phase shifts due to the
optical path difference between the sample beam and the
reference beam.

In Fig. 2A, we show a typical two-dimensional map of the
phase distribution at the detector. The ribbon rests horizontally
on a glass slide inside a fluid cell filled with the solution. Only
the small part of the ribbon near the bottom is in focus and
therefore seen on the picture. The pixels on Fig. 2 A are
color-coded corresponding to the value of phase difference
between the sample and the reference beams. Statistical analysis
of this phase image is shown on Fig. 2B. The histogram of the
phase values at each pixel has two well-defined peaks. These two
peaks correspond to the phase accumulated by the light beam
propagating through the solution, or through the ribbon. Know-
ing this phase difference and the difference in refractive indices
between the ribbons and the solvent, the thickness can be
determined by using Eq. 2.

To determine the thickness–radius relationship, we measured
the thicknesses of a large number of helical ribbons of different
radii. We used solutions of slightly different refractive indices
produced by a variety of surfactant concentrations. The data are
shown in Fig. 1. Because the rigidity vanishes at zero thickness,
we expect that R(0) � 0; hence, the data are consistent with the
functional form: R � ct2. The best fit for the parameter c gives:
c � (3.56 	 0.11) 103 �m�1.

Discussion
From the practical point of view, we have demonstrated that it
is possible to know the spring constant of any of our cholesterol
helical ribbons simply from the easily measurable external
dimensions of the ribbons. Indeed, substituting K� � t3 � R3/2 into
Eq. 1 we arrive at the relationship:

Kspring � 	
w

R1/2s
, [3]
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Fig. 1. Radius, R, vs. thickness, t, of cholesterol helical ribbons. The data are
fitted to R � ct2, c � (3.56 	 0.11) 
 103 �m�1. The radius is determined by
direct observations using a standard bright-field microscope. The thickness
was measured by using quantitative phase microscopy. Horizontal error bars
were calculated from the errors in fitted positions of the peaks on Fig. 2B.

Fig. 2. Phase-contrast microscopy of cholesterol helical ribbons. (A) A color-
coded phase image of a 68-nm-thick helical ribbon (100 pixels � 15.3 �m). The
scale strip on the right shows the phase retardation in radians. Shown is the
lower part of the helical ribbon, which is in focus of the phase microscope. (B)
The histogram of phase retardations for pixels within the black rectangle on
A. The peaks are fitted with a Gaussian distribution. The phase difference
between the fitted centers of the two peaks is used in Eq. 2 to calculate the
thickness of the ribbon.
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with 	 being a constant that depends only on elastic properties
of the material constituting the ribbon. To take advantage of the
Eq. 3, 	 must be measured experimentally by measuring the
spring constant for several ribbons. Here, we have used a
previously measured value of Kspring for a single ribbon to give a
preliminary estimate of 	. From ref. 2, the radius of that ribbon
is R � (19.2 	 1) �m, therefore, the thickness is t � (0.073 	
0.003) �m; the other dimensions are s � (803 	 30) �m, w �
(12.3 	 0.5) �m. The spring constant of this ribbon was Kspring
� (4.8 	 0.9)
10�6 N/m and, therefore, from Eq. 3: Kspring �
1.37 
 10�6w/(R1/2s).

The practical objective of our work is to make use of choles-
terol helical ribbons with the pitch angle of 11° as a mechanical
device. One such use is to measure the forces between nano-
scopic objects by simply observing the extension of a helix
tethered to them. The helices which self-assemble in multicom-
ponent solutions containing sterols and appropriate surfactants
are widely polydisperse in length, width, and radius. We have
now shown that the radius of any given helix can serve as a
measure of its thickness. This, in turn, enables us, by using Eq.
3, to know the spring constant of all observed springs and to
select from the solution a helix most suited for the application
in mind. To use these ribbons as force transducers, we are
developing methods to tether to the helices by chemical activation
of their surfaces. Tethering using an epoxy glue has been demon-
strated already (2).

From the theoretical point of view, the bending deformation
of a ribbon is characterized by its curvature 1/R. When R is large,
we can interpret the spontaneous bending energy (�Ks/R) and
the elastic energy (Kel/R2) as the first two terms in a Taylor
expansion of the deformation free energy of the ribbon:

F 
 F0 � 

Ks

R
�

Kel

R2 � … [4]

Minimizing the free energy with respect to R, we find that

R �
2Kel

Ks
. [5]

Physically, the first term in Eq. 4 might arise from a difference
in surface tension between the two sides of the helical strip.
Indeed, if S is the area of the middle plane of the strip, then the
outer surface area is S(1 � t/(2R)), whereas the inner surface
area is S(1 � t/(2R)). If �i is the surface tension of the inner side,
and �0 � �i is that of the outer, then the total surface free energy
is S(�i � �0) � S(�i � �0)t/(2R). Thus, if there is a surface tension
difference between the inner and outer sides this will result in a
linear in 1/R contribution to the free energy, with Ks � St(�i �
�0)/2. Experimentally, however, the relationship between thick-
ness and the radius of the helix is not affected by the type and
concentrations of surfactants added. Thus, the difference in
surface tensions is a less than satisfying interpretation for the
cause of spontaneous bending. Alternatively, the first term in Eq.
4 can arise from the spontaneous curling of all molecular layers
in a ribbon because of the chiral nature of the sterol molecules.
The Ks/R term in Eq. 4 is then proportional to ribbon volume,
V � S�t, i.e., is linear in t. We stress that regardless of whether
the spontaneous bending is caused by surface or bulk effects, the
associated spontaneous bending term in the free energy is
proportional to ribbon thickness.

Our experiments have shown that R � t2. Because Ks � t, it
follows from Eq. 5 that Kel � t3, and the second term in the Taylor
expansion (4) has the structure of the regular elastic energy of
a solid body: V�Kt2/R2, which is proportional to the second power
of deformation t/R , elastic modulus K, and volume V. [For an
isotropic solid ribbon, K � E/(24(1 � �2)), where E and � are
Young’s modulus and Poisson’s coefficient, respectively (13).]

This form of elastic free energy is consistent with and reconfirms
our model of cholesterol helical ribbons as solid, crystalline
objects, whose helical form is determined by relatively weak
spontaneous bending forces arising from chirality of cholesterol
molecules balanced by equally weak bending elasticity of a very
thin solid band. If one includes the anisotropy of the elastic
modulus K, the pitch angle and the longitudinal spring constant
can be naturally explained, and analytically expressed (2, 19). On
the other hand, the dependence of the elastic deformation
energy on the third power of thickness is inconsistent with
liquid-crystalline models for helical ribbons (9, 11, 12). Indeed,
in those liquid-crystalline models, the molecular layers in the
strip are not in register relative to one another. The deformation
(e.g., the variation in the director orientation) of all layers is
identical, the elastic energy of each layer is the same, and the
total energy is proportional to the volume, giving a linear
dependence on the thickness.

The growth of cholesterol crystals in a ribbon-like shape is a
consequence of large differences in the rates of crystallization
along different crystallographic axes. However, we observed no
fixed relationship between length, width, and thickness of the
ribbon. This is because crystallization at the ends, edges, and
surface of the ribbon can be arrested in different ways by
impurities or imperfections. As a result, our ribbons exist in a
broad range of thickness, length, and width. In our work, we
measured thickness ranging from 0.06 �m to 0.18 �m. On the
other hand, ribbons just several bilayers, each of which is 3.5 nm
thick, were observed by electron microscopy (20).

We wish to draw attention to another type of mesoscopic
helical ribbons: thin film strips of Si, Si/SiGe, or InGaAs/GaAs
grown on single-crystal substrates. Lattice constant mismatch
between a film and a substrate creates elastic strain, leading to
the curling of the strip into a helical ribbon (6, 21). These
semiconductor helices, of 1 �m in diameter and of tens of
nanometers in thickness, are smaller than typical cholesterol
ribbons. The spring constants of the Si/SiGe helical ribbons are
several picoNewtons/micron (5). Similarly to cholesterol helical
ribbons, the pitch angle of these ribbons is defined by the strip
orientation of the substrate, and the anisotropy of the elastic
constants of the bilayer (4, 5, 22). In contrast to our helical
ribbons, the pitch angle can be varied in the manufacturing
process. The radius vs. thickness of semiconductor helixes and
tubes is a matter of current debates (23). We believe that the
analysis presented here and in ref. 2 may apply to elastic
properties of these recently developed inorganic helical ribbons.

In conclusion, we have presented experiments and theoretical
analysis, which confirms the validity of the crystal model for our
cholesterol helical ribbons. Within the framework of this model,
we have obtained an explicit formula for the spring constant of
any chosen ribbon as a function of its readily observable external
dimensions: length, width, and radius. In this way, we can now
select, from a polydisperse solution, a ribbon with spring con-
stant and size desired for a particular application. This is an
important advance toward the practical utilization of these
mesoscopic springs as devices for measuring and transducing
forces between biological objects.

Materials and Methods
We measured low-pitch helical ribbons (pitch angle of 11°) formed in com-
mercially available Chemically Defined Lipid Concentrate (CDLC), purchased
from GIBCO. CDLC is a water solution that contains nonionic surfactants
(Pluronic F-68 and Tween 80), a mixture of fatty acids and cholesterol. The
molar ratio (percentage) of these components is 94.2:1.9:3.9. CDLC produces,
with high yield, helical ribbons that remain stable for weeks. The helices in
CDLC have radii ranging from 5 to 100 �m, contour lengths between 150 and
1,500 �m, and widths between 1 and 20 �m.

The two-dimensional optical thickness of the sample, or a phase image, is
reconstructed from the interference patterns. The phase difference between
the sample and reference beams is measured by using a heterodyne technique
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that utilizes acoustooptical modulators to shift the frequency of the ref-
erence beam by 1.25 kHz relative to that of the sample beam. Four
interference images are taken by a camera with the frame rate of 5 kHz,
four times larger than the frequency shift of reference beam. As a result,
the relative phase between the sample and reference beams differs by �/2
between consecutive interference images. The phase image of a sample is
then calculated from these four interference images by using so-called
phase-shifting interferometry algorithm (14). We measure the phase dif-
ference between the sample and reference beams with milliradian preci-
sion, which translates into a few nanometers resolution in the optical
thickness of our samples.

Our instrument uses a coherent light source, and the phase images
display a fixed pattern of diffraction from particles in the beam path, such
as dust or micelles, as well as from the specimen itself. To remove the
background diffraction pattern and thus enhance the signal-to-noise ratio
of phase detection, we synthesize phase images taken at different angles
of illumination, so that only images from the specimen in the focal plane
add up constructively (15).

To use Eq. 2, we assume that our helices have the same index of refraction
as cholesterol monohydrate crystals, which have essentially the same structure

as our helical strips (10). Because, to the best of our knowledge, this index of
refraction has not been reported, we grew flat single crystals of cholesterol
monohydrate, sufficiently thick to allow direct determination of their thick-
ness microscopically by focusing on polystyrene beads adsorbed on the upper
and lower surfaces and thin enough to permit the use of phase microscopy to
measure phase retardation (in water solutions of potassium thiocyanate,
having refractive indices of either n � 1.4152 or 1.4406). Using Eq. 2, we found
that the refractive index of cholesterol monohydrate along the c axis, which
is perpendicular to both the plate shaped crystal and the ribbon surface, is n �

1.522 	 0.003. Interestingly, this value falls into the range 1.49 	 0.06, which
was measured by ellipsometry for a cholesterol monolayer on air–water
interface (24).
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