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Rising demand for food and bioenergy makes it imperative to breed
for increased crop yield. Vegetative plant growth could be driven by
resource acquisition or developmental programs. Metabolite profil-
ing in 94 Arabidopsis accessions revealed that biomass correlates
negatively with many metabolites, especially starch. Starch accumu-
lates in the light and is degraded at night to provide a sustained
supply of carbon for growth. Multivariate analysis revealed that
starch is an integrator of the overall metabolic response. We hypoth-
esized that this reflects variation in a regulatory network that bal-
ances growth with the carbon supply. Transcript profiling in 21
accessions revealed coordinated changes of transcripts of more than
70 carbon-regulated genes and identified 2 genes (myo-inositol-1-
phosphate synthase, a Kelch-domain protein) whose transcripts cor-
relate with biomass. The impact of allelic variation at these 2 loci was
shown by association mapping, identifying them as candidate lead
genes with the potential to increase biomass production.

Arabidopsis � association mapping � biomass � metabolites � predictive

P lants use light energy to convert CO2 into carbohydrates.
Although we might expect plant growth to be driven by the

availability of carbohydrates and other central metabolites, recent
studies point to a more complex interaction. Numerous free air CO2
elevation studies show that higher rates of photosynthesis do not
lead to a commensurate increase in biomass and yield (1). Studies
of natural genetic diversity reveal a negative correlation between
the levels of metabolites and biomass or yield (2–4). Although
biomass was only very weakly correlated with individual metabo-
lites in an Arabidopsis recombinant inbred line (RIL) population, a
highly significant prediction was obtained when multivariate anal-
ysis was used on the entire metabolite profile (3). These results
indicate that much of the genetic variation for biomass production
affects the balance between resource availability and developmen-
tal programs, which determine how rapidly these resources are used
for growth.

Plants are exposed to a changeable environment and need to
cope with continual changes in carbon (C) availability. One
striking example is the daily alternation between a positive C
balance in the light and a negative C balance in the dark. Growth
nevertheless continues at night (5). This continued growth is
possible because some newly fixed C accumulates as starch in the
light and is remobilized at night to support respiration and
growth. Starch is almost completely exhausted by the end of the
night. If a change in the conditions (e.g., longer nights) leads to
a temporary period of C starvation, the C budget is rebalanced
(6–11) by increasing the rate of starch synthesis, decreasing the
rate of starch breakdown, and decreasing the rate of growth (10,
11). Starchless mutants illustrate the importance of this buffer;
they cannot grow in a light/dark cycle because they become
C-starved every night, leading to an inhibition of growth that is
not reversed for several hours into the next day (8, 12).

The following experiments test the hypothesis that starch
turnover and C allocation occupy a central role in the network
that coordinates metabolism with growth. We first investigate
biomass and metabolite levels in 94 Arabidopsis accessions. This
species-wide analysis reveals that starch content at the end of the
day integrates many other metabolic traits and is negatively
correlated with biomass. We then compare the expression of
C-responsive transcripts in 21 accessions, identify candidate
genes that may contribute to genetic variation in the regulation
of metabolism and growth, and test their role by association
mapping of sequence polymorphisms.

Results and Discussion
Many Metabolites Are Negatively Correlated to Biomass. Over 400
Arabidopsis thaliana accessions were genotyped with 419 markers
(13) to identify a genotypically diverse set of 94 accessions with
maximized allelic richness (Table S1). The accessions were grown
in short-day conditions (8 h light/16 h dark) in moderate light and
well-fertilized soil to apply a moderate C deprivation. They were
harvested at the end of the day, 5 weeks after germination when
they were still in the vegetative growth phase. Rosette fresh weight
(FW) was measured as an indicator of biomass. We have docu-
mented a very close relation between rosette FW and rosette dry
weight (2). We analyzed starch, total protein, chlorophyll, and 48
low-molecular-weight metabolites, including individual amino ac-
ids, organic acids, sugars, lipids, and secondary metabolites (Table
S1). Pair-wise Spearman’s correlations were calculated for biomass
against every metabolic trait (Table 1). Rosette biomass showed a
high negative correlation to starch (R � �0.54); lower but signif-
icant negative correlations with protein (R � �0.37), chlorophyll
(R � �0.31), and several low-molecular-weight metabolites (su-
crose, total amino acids, glycine, alanine, glutamate, threonic acid,
benzoic acid, sinapic acid); and nonsignificant negative correlations
with other metabolites.

Partial Correlation Analysis to Remove Spurious Correlations. Be-
cause many metabolic traits correlate with each other (2), some
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of the correlations with biomass may be secondary. Partial
Correlation Analysis was performed to correct for spurious
secondary correlations (Fig. 1A). The analysis confirmed the link
between biomass and starch but did not provide evidence for
direct links of biomass to any other individual metabolic traits.
Some links were found between metabolites; starch was linked
to sucrose, glucose was linked to fructose but not to sucrose or
starch, several amino acids were linked, and raffinose was linked
to galactinol and myo-inositol, which are involved in its synthesis.

The negative correlation between biomass and starch was not
due to population structure. Using Structure 2.1 (14) on 419
markers distributed across the whole genome, the smallest K
value for highest posterior probability split the population into
7 subpopulations (Table S1). These 7 subpopulations had similar
average values for biomass and starch. R values between starch
and biomass were less than �0.63 in 3 subpopulations (contain-
ing 61 accessions), less than �0.42 in 2 subpopulations (con-
taining 25 accessions), and less than �0.24 in the other 2
subpopulations (containing 11 accessions).

Partial Least Squares (PLS) Regression Reveals that Starch Integrates
the Metabolic Status. It has been shown that predictive power can
be increased by using multivariate analysis to predict biomass
from a linear combination of a set of low-molecular-weight
metabolites (3). We investigated whether this was the case in our

study. In datasets like ours, where the number of predictors (54)
is close to the number of accessions (94), the predictive power
of linear models is often improved by dimensionality-reduction
methods like PLS regression. PLS identifies combinations of the
original predictors that have the maximum covariance with the
trait of interest. These orthogonal combinations are then used to
predict the trait. The PLS prediction of biomass was significantly
(F-test, P � 0.002) but only slightly improved when all of the
metabolic traits were used as predictors, compared with the
prediction provided by starch alone (R � 0.57 and 0.50, respec-
tively; the value for starch was checked by cross-validation, hence
the sign is absent and the value slightly lower than in Table 1).

To investigate the reasons for this lack of additivity, we divided
the dataset into 3 univariate traits (biomass, starch, total protein)
and 1 multivariate trait class (all other metabolites). The uni-
variate traits were compared by using linear regression, and the
multivariate trait class was used to predict each univariate trait
using PLS regression (Fig. 1B). The predictive accuracy of each
pair-wise comparison was assessed by cross-validation (see Ma-
terials and Methods). Starch and total protein showed a signifi-
cant negative correlation with biomass (R � 0.50 and 0.32,
respectively) and correlated weakly with each other (R � 0.22).
PLS regression on the multivariate metabolite class allowed
prediction of starch, protein, and biomass (R � 0.38, 0.30, and
0.32, respectively). Variance importance in the projection (VIP)
gives an estimate of the contribution of a given predictor for a
PLS regression. Starch, protein, and rosette biomass (Fig. 1 C
and D) were predicted by the same metabolites, with remarkably
similar VIP values (for a full list, see Table S2).

This analysis shows that starch and, to a lesser extent, total
protein integrate metabolic status. It also indicates that the regu-
latory network that determines starch and protein levels contributes
to the regulation of biomass. To provide functional information
about this network, we subjected the reference genotype Col0 and
10 large and 10 small accessions (listed in Table S3) to a more
detailed physiological and molecular analysis.

Ranking of Accessions for Biomass and Negative Correlation with
Starch Retained in Different Growth Conditions. The simplest expla-
nation for the negative relation between biomass and starch would
be that large accessions maximize growth at the expense of their C
reserves. Such a strategy would be advantageous when excess C is
available, but not when C is in short supply. We compared the
biomass of the 21 accessions at 20 °C in an 8 h light/16 h dark regime
with biomass at 20 °C in a much shorter (3 h light/12 h dark) or
longer (12 h light/12 h dark) photoperiod (when C availability would
be severely decreased and increased, respectively), and with bio-
mass in an 8 h light/16 h dark photoperiod at 16 °C or 24 °C (when
growth would be decreased and accelerated, respectively). A similar
ranking was retained in all conditions (Table S4). Biomass was
always negatively correlated to starch, and this relation was signif-
icant except in very short days (Table S4). These results indicate that
large accessions gauge their growth to the C supply across a wide
range of environmental conditions.

Sugar-Responsive Gene Network. Changes in the C supply modify
the transcript levels for hundreds of genes during the diurnal cycle
(10, 11, 15–17). We asked whether C-responsive genes show coor-
dinated changes of expression between the 21 accessions and
whether any of their transcripts correlate with the levels of major
metabolites or biomass. Two nonoverlapping sets of C-responsive
genes were selected (Fig. S2) from published data, one including 52
genes whose transcripts change �log21.4 within 30 min of adding
sucrose to C-starved seedlings (18) and one containing another 42
genes that show changes of expression during a diurnal cycle and an
extended night (15, 17). Transcript levels were measured at the end
of the night (Table S3), when changes in the C status have the
largest impact (15, 17). Principal component analysis (PCA) gen-

Table 1. Spearman coefficients of metabolic traits against
biomass

Structural components Amino acids and derivatives 
Protein content 0.37 Glycine 0.36 
Chl b 0.31 L-Alanine 0.33 
Total chl 0.28 Amino acids 0.30 
Chl a 0.25 Valine 0.28 

Glutamate 0.27 
Carbohydrates Arginine 0.26 
Starch 0.54 Aspartate 0.24 
Sucrose 0.34 Asparagine 0.21 
Total sugars 0.24 Lysine 0.19 
Xylose 0.14 Putrescine 0.18 
Erythritol 0.05 Threonine 0.16 
Fructose 0.03 Glutamine 0.16 
myo-inositol 0.02 Serine 0.14 
Reducing sugars 0.01 βAlanine 0.14 
Trehalose 0.00 Leucine 0.11 
Maltose 0.05 Proline 0.11 
Glucose 0.05 Phenylalanine 0.10 
Galactinol 0.08 Tryptophane 0.08 
Raffinose 0.10 Isoleucine 0.08 

Tyrosine 0.08 
Organic acids Methionine 0.06 
Threonic acid 0.44 4-hydroxyproline 0.05 
Benzoic acid 0.28 
Sinapate 0.28 Other metabolites 
Salicylate 0.24 Urea 0.04 
fumarate 0.19 Guanidine 0.13
Pyruvate 0.17 
Octadecanoate 0.16 
oxoglutarate 0.13 
Glycerate 0.13 
Shikimate 0.12 
Citrate 0.05 
4-amino butyrate 0.02 
Dehydroascorbate 0.04 
Succinate 0.04 

Correlations were calculated from mean data. Significant correlations at
P � 0.00001, P � 0.001, and P � 0.01 are indicated by dark, medium, and light
shading. Blue and red distinguish positive and negative correlations, respec-
tively. The original data are in Table S1.
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erated a similar separation of the accessions (R � 0.93) in the first
component, irrespective of which gene set was used (see Fig. S3).
There was a significant correlation between the separation of
accessions along the first component and biomass (R � 0.53, P �
0.013). The finding that transcript levels of C-regulated genes
possess predictive power for biomass and that an almost identical
result is given by 2 nonoverlapping sets of genes encouraged us to
pursue the analysis.

Combined Network for Transcripts, Metabolites, and Biomass. We
used an algorithm that identifies functional modules within complex
networks (19) to generate a correlation network that combines
transcript levels, metabolite levels, and biomass (Fig. 2). This
algorithm defines a module as a subset of nodes that are more
connected to each other than to nodes in other modules. Starting
from the initial state, in which each node represents a module, it
performs iterations of merging, splitting, and transferring nodes
between modules to maximize the interconnectivity of edges within
modules and, thus, the modularity of the network. The resulting
network contained 71 of the 94 genes investigated in this study.
They were organized in 2 large, well-connected modules, a smaller
module and several nodes that are only connected by 1 to 2 edges.
One large module contains mainly C-repressed genes (23 of 28),
and the second contains 16 C-repressed and 12 C-induced genes.
Thus, most C-responsive genes show coordinated changes of ex-
pression across this set of 21 accessions.

Comparison with a Transcript Network Obtained by Perturbing C
Status in Col0. We compared the correlation network in Fig. 2
with a correlation network for the same 94 transcripts, which we
generated from data obtained in earlier studies where we
subjected 5-week-old rosettes of the reference accession Col0 to
23 treatments that alter endogenous C levels (15, 17, 18). The
network that was obtained will be termed the ‘C-perturbation’
network. When we compared the R value for each gene–gene
pair in the 2 correlation networks, data shuffling revealed a
significant enrichment of shared positive (P � 6 � 10�5) and
shared negative (P � 2.4 � 10�3) correlations (Fig. S4A). There
was a lower, but still significant, enrichment of shared correla-

tions with networks generated from a Col0 leaf developmental
series (P � 3.5 � 10�3) (Fig. S4B) and a rosette abiotic stress
series (P � 2 � 10�4) (Fig. S4C), but no significant enrichment
in a root abiotic stress series (P � 0.21) (Fig. S4E).

We identified 26 genes where �30% of the significant gene–gene
correlations are shared in the accession and C-perturbation net-
works (Table S5). They include many potential regulatory compo-
nents, including bZIP transcription factors, F-box proteins, ATG8e,
and two BTB/POZ proteins. Recent evidence implicates trehalose-
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Fig. 1. Multivariate analysis of the relations between
biomass and metabolic traits. (A) Graphical Gaussian
Model. Partial correlation was used to identify direct
association between 2 metabolites and/or traits with the
influence of all other ones removed. For clarity, the
different classes of traits have been colored: green, bio-
mass; gray, chlorophylls; yellow, sugars and sugar alco-
hols; orange, organic acids; red, amino acids; pink, other
metabolites. (B) PLS regression analysis of the relation
between 5 inputs. These include 3 univariate inputs (bio-
mass, starch, total protein) and 1 multivariate input (all
other metabolites). Linear regression was used to com-
pare the univariate inputs, and PLS regression was used
to predict each univariate class from the multivariate
class. Cross-validation was used to determine regression
coefficients (Rpls � regression coefficient obtained by
PLS, Ru � regression coefficient obtained by univariate
correlation with cross-validation) and their P values (val-
ues in italics are nonsignificant), with red and blue ar-
rows indicating negative and positive relationships be-
tween inputs. (C–D) VIP values of metabolites in the PLS
regression. Metabolites with high VIP values are indi-
cated by numbers: 1, amino acids; 2, Arg; 3, L-alanine; 4,
DHA;5,Asn;6,Glc;7,Gln;8,Glu;9,Gly;10,guanidine;11,
fumarate; 12, OHPro; 13, Pro; 14, raffinose; 15, red sug-
ars; 16, sucrose; 17, total sugars; 18, threonate; 19, serine.
(C) Comparison of loadings for the PLS prediction of
starch and biomass (blue) or protein and biomass
(green). (D) Comparison of loadings for the PLS predic-
tion of starch and protein.
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Fig. 2. Cartographic representation of the sugar-responsive gene network.
Correlations were considered as significant for Rs �0.7 and P � 0.01 for gene–
gene interactions and Rs �0.6 and P � 0.01 for gene–metabolites and metabo-
lite–metabolite interactions, respectively. Genes are depicted as circles, with
green and orange distinguishing between sugar-induced and sugar-repressed
genes, respectively. Blue and red lines are for positive and negative correlations,
respectively. Metabolic traits are depicted as squares. ED, end of the day; EN, end
of the night.
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6-phosphate (Tre6P) (17, 20, 21) and AKIN10/11 (17, 20) in C
signaling. The 26 genes included 3 members of the trehalose-
phosphate synthase gene family (TPS8, TPS10, TPS11) and 19
genes whose transcripts respond to AKIN10 overexpression, in-
cluding bZIP1/AT5G49450, a direct target of AKIN10 (20). This
overlap with known upstream components in sugar signaling sup-
ports the validity of our network approach. This set of genes
represents a robust core of a C-signaling response. They show
coordinated changes during perturbations of the C status in Col0
and between a diverse set of accessions.

Two Candidate Genes Whose Transcripts Correlate with Rosette
Biomass. Rosette biomass correlated with 2 genes in the network of Fig.
2, a Kelch repeat F-box protein (At1g23390) and myo-inositol-1-
phosphate synthase 1 (IPS1/At4g39800) (R � 0.65 and �0.62 and P �
0.0016 and 0.0026, respectively). The Kelch repeat F-box protein
At1g23390 is located in one of the large modules in the accession
network (Fig. 2), and many of the connections are retained in the
C-perturbation network (Table S5). IPS1 (At4g39800) is connected to
many genes in the C-perturbation network (Table S5), but these
connections are absent in the accession network (Fig. 2), except for a
negative correlation with ATG8e (22).

Candidate Gene Allelic Variation. This correlation indicated that
sequence diversity in IPS1/At4g39800 and At1g23390 might influ-
ence biomass. Genomic DNA, containing 1065 base pairs of the
promotor and the entire transcribed region of At4g39800 and 1279
base pairs of the promotor and the entire transcribed region of
At1g23390, was amplified and sequenced from 92 of the 94 acces-
sions. We detected 95 SNPs, 9 insertion-deletion polymorphisms
(InDels), and 1 simple sequence repeat (SSR) in Atlg23390 and 79
SNPs, 7 InDels, and 1 in SSR in At4g39800 (Table S6). The
frequency of single, rare (�5), minor (�15), and major (�15)
polymorphisms was 34%, 19%, 15%, and 32% for At1g23390 and
38%, 28%, 17%, and 17% for At4g39800, respectively. Linkage
disequilibrium (LD) was calculated by using Graphical Genotype

2.0 (23). Rare polymorphisms were excluded for the calculation.
Both genes contained a set of polymorphisms in strong LD in the
transcribed region and further polymorphisms in weaker LD in the
promotor region (Table S6; a summary is provided in Fig. 3). The
decay of LD to below 0.2 in 1–2 kB is in the range reported in ref.
24. Repeat number for the SSR in the At1g23390 promotor varied
independently of loci in the remainder of the gene, probably
because changes in repeat number can occur independently of, and
more rapidly than, recombination.

Sequence diversity in these genes is not closely tied to population
structure. When we K-clustered the accessions into 7 classes based
on the polymorphisms in each of the genes and compared these with
the 7 classes obtained after K-clustering (see Materials and Methods
and Fig. S1), the overlap was only slightly larger than that expected
by chance (2.7%).

Candidate Gene Association Mapping. Using these polymorphisms
and the trait values for rosette biomass, amino acid, starch,
sucrose, and protein, marker trait association (Fig. 3) was
determined in TASSEL (25) with a general linear model (GLM)
using the population structure from Fig. S1 to control for
population-structure effects (see Materials and Methods). Ad-
justed P values were calculated by using 10,000 permutations to
correct for multiple testing.

For At1g23390, the SSR in the promoter (2 classes were
formed with �12 and �12 repeats) was significantly associated
with FW and starch. Ten SNPs in the transcribed region showed
significant associations with protein and sucrose. They were in
strong LD, and 7 caused nonsynonymous changes in the coding
region (285, Asn/Lys; 680, Pro/Leu; 761, Val/Gly, 775, Met/Val;
826, Glu/Lys; 977, Gly/Asp; 1074, Lys/Asn). They were also in LD
with 3 SNPs in the promotor (�1084, �845, �299) that showed
associations with sucrose or amino acids and an SNP in the
3�UTR (position 1380) that associated with sucrose. For
At4g39800, 3 adjacent SNPs in the promoter (�786, �785, and
�784) associated with rosette biomass, amino acids, and starch.

AT1G23390 Poly-
morphism

bp to Start 
Codon

Locus 
Number

5 21 22 23 44 52 54 68 72 77 79 80 81 82 85 86 87 88 103
Col0
Allele

Non 
Col0
Allele

Amino 
acids FW Protein Starch Sucrose

SNP -1084 5 83 9 3.7 2.8 0.0 1.5 2.2
-751 to -748 21 87 5 0.2 3.2 1.8 1.4 1.9
-747 to -746 22 86 6 0.3 4.3 1.2 1.9 2.2
-745 to -744 23 85 7 0.3 3.5 0.9 3.4 2.2

SNP -299 44 57 35 0.9 0.4 0.0 0.0 4.1
SNP -30 52 74 18 0.4 0.1 1.4 0.1 4.4
SNP -19 54 30 62 0.7 0.5 0.0 0.1 4.9

Asn/Lys SNP 285 68 45 47 2.0 0.0 0.2 0.2 3.4
Ala/Ser SNP 412 72 83 9 2.5 0.0 1.3 0.0 0.0
Pro/Leu SNP 680 77 63 29 0.3 0.7 1.9 0.0 4.4
Val/Gly SNP 761 79 57 35 0.1 2.2 4.4 0.0 3.6
Met/Val SNP 775 80 56 36 0.2 1.4 3.9 0.0 2.6
Glu/Lys SNP 826 81 56 36 0.2 1.4 3.9 0.0 2.6
Silent SNP 864 82 56 36 0.2 1.4 3.9 0.0 2.6
Silent SNP 972 85 56 36 0.2 1.4 3.9 0.0 2.6

Gly/Asp SNP 977 86 56 36 0.2 1.4 3.9 0.0 2.6
Silent SNP 1026 87 56 36 0.2 1.4 3.9 0.0 2.6

Lys/Asn SNP 1074 88 55 37 0.0 0.6 3.7 0.2 1.2
SNP 1380 103 64 28 0.4 0.5 2.0 0.2 3.8

LD (R2)

SSR

% genetic variance explained (R2
M)Allele Frequency

At4g39800 Poly-
morphism

bp to 
Start 

Codon

Locus 
Number

17 18 49 51 54 56 74 79
Col0
Allele

Non 
Col0
Allele

Amino 
acids FW Protein Starch Sucrose

SNP -785 17 63 29 3.6 2.0 2.0 0.2 0.3
SNP -784 18 70 22 6.2 4.8 1.1 0.4 0.1

Silent SNP 324 49 27 65 1.4 3.6 4.0 2.2 0.1
SNP 593 51 72 20 1.8 1.2 3.5 2.4 0.1

Asp/Asn SNP 699 54 72 20 2.5 1.1 2.9 2.6 0.1
Silent SNP 797 56 83 9 0.0 0.2 1.2 0.2 1.9
Silent SNP 2124 74 39 53 1.5 3.9 1.9 0.7 0.2

SNP 2298 79 23 69 0.1 3.9 0.8 0.6 0.3

Allele Frequency % genetic variance explained (R2
M)LD (R2)B

A

Fig. 3. Sequence polymorphisms in Kelch/At1g23390 (A) and IPS1/At4g39800 (B) that are significantly associated with the traits FW, starch, protein, sucrose
or total amino acids. Full information about sequence polymorphisms and associations are given in Table S6. This display summarizes polymorphisms that show
significant trait associations and is based on TAIR gene models At4g23390.1 and At4g39800. Gene regions are distinguished by coloring (orange, upstream
sequence; green, exons; yellow, introns; salmon, downstream region). Significant (corrected P values �5%) polymorphisms are identified by their distance from
the start codon, the locus number, and, for the ORF, the effect on the protein sequence. LD (expressed as R2 values) is classified in 6 classes (R2 � 0.1; 0.1 � R2 �
0.2; 0.2 � R2 � 0.4; 0.4 � R2 � 0.6; 0.6 � R2 � 0.8; 0.8 � R2) that are shaded from light to dark gray. For each polymorphism, the allele frequency is summed. The
proportion of the genetic variance of the 5 traits explained by the marker main effect (RM

2 ) are shaded to indicate the significance of the association (dark, P �
0.01; light, 0.01 � P � 0.05), with blue or red signifying a negative or positive effect of the Col0 allele, respectively.
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Another 4 SNPs in exon/intron regions of the gene and a SNP
in the downstream region (2298) associated with rosette biomass,
protein, and starch. These 5 SNPs were in strong LD, and one
led to a nonsynonymous change in the coding sequence (699,
Asp/Asn). As a control, we performed association mapping for
the 419 markers used to genotype the population (see Materials
and Methods), using the same trait and structure population
datasets. No significant associations were found to any trait.

The large number of polymorphisms prevented association map-
ping against all individual haplotypes. Instead, we built haplotypes
from the polymorphisms that showed associations and led to
nonsynonymous changes. For At4g39800, we used position �784
(promotor) and position 699 (Asp/Asn). There were significant
associations for FW (P � 0.0065; RM

2 � 4.8%), starch (P � 0.043;
RM

2 � 3.1%), protein (P � 0.029; RM
2 � 3.1%), and amino acids

(P � 0.0003; RM
2 � 7%). For At1g3200, we used the SSR in the

promotor and a set of 9 SNPs in strong LD in the ORF (680, 761,
775, 826, 864, 972, 977, 1026, 1074). They generated 6 haplotypes,
with significant associations for FW (P � 0.008; RM

2 � 7.4%),
protein (P � 0.048; RM

2 � 4.9%), sucrose (P � 0.0004; RM
2 � 9.7%),

and, at a lower level of significance, starch (P � 0.085; RM
2 � 4.8%).

These results indicate interactive functions for the promotor and
ORF of these 2 genes. In all cases where associations were found,
a given allele or haplotype displayed an opposite effect on biomass
and metabolic traits.

Finally, we checked whether any of the polymorphisms in the
promotor correlated with transcript levels. Genotype informa-
tion was available for 20 of the accessions in which transcript
levels were determined. For At4g39800/IPS1, the minor (non-
Col0) alleles at �785, �784, and �410 in the promoter region
were found in 6, 8, and 2 of the accessions. They correlated with
higher IPS1 transcript levels (P � 0.02, 0.05, and 0.02, respec-
tively) (Table S6). For At1g23390, no significant correlations
were found at P � 0.05, but several polymorphisms in the
promoter region correlated at P � 0.1.

Concluding Remarks. There is increasing interest in the possibility
of using biomarkers to predict plant biomass. Meyer and col-
leagues showed that biomass can be predicted by a set of
low-molecular-weight metabolites (3), but their study was re-
stricted to a single biparental RIL population and did not reveal
why this set of metabolites have predictive power. We show that
metabolite levels change reciprocally to biomass across a large
set of genotypically diverse Arabidopsis accessions. Further, and
importantly, the changes of metabolites are integrated as
changes in the level of starch and, to a lesser extent, protein.

This finding has the practical advantage that starch can be easily
extracted and assayed. Using robotized systems (8), we can precisely
measure starch levels in 400 samples per day. This will make it
possible to identify genotypes where changes in biomass production
are, and are not, connected to changes in central metabolism.

It also points to a biological explanation for the negative relation
between biomass and metabolites, namely, that large accessions
have a modified balance between the C supply and growth, which
is integrated as a change in starch levels. In agreement, profiling of
C-regulated transcripts revealed coordinated changes of many
C-responsive transcripts between Arabidopsis accessions, including
genes involved in Tre6P and AKIN10 signaling (16, 20, 21, 26). This
hypothesis-driven approach also identified 2 candidate genes, en-
coding a myo-inositol-1-phosphate synthase and an unusual Kelch
repeat-containing F-box family protein, whose transcript levels
correlate with rosette biomass. Association mapping revealed poly-
morphisms in these genes that are related to rosette biomass and
show opposite allelic effects on metabolites, including starch and
protein. It has already been shown that antisense inhibition of a
homolog to IPS1/At4g39800 in potato leads to increased levels of
sucrose and starch, altered leaf morphology, precocious senes-
cence, and decreased tuber yield (27), as expected if this enzyme or

its products contribute to the regulation of C partitioning and
growth.

Starch is a C-storage polymer without demonstrated regula-
tory activities. It is more likely that regulators of starch metab-
olism or signals derived from starch act as integrators of plant
metabolism and growth. It is intriguing that starch and protein
are correlated and are predicted by the same set of metabolites.
A strong correlation between starch turnover, protein content,
and biomass is also found when Col0 is grown in different
photoperiods (9). The conserved correlation might reflect the
large energy costs associated with protein synthesis and main-
tenance (see ref. 9 and references therein). The TOR/RSK
pathway is known to regulate ribosome numbers, protein level,
and growth in response to the nutrient status in yeast and animals
(28, 29), and evidence is emerging for an analogous role in plants
(30). It will be interesting to investigate whether this signaling
pathway contributes to the close link between starch, protein,
and biomass.

Thus, multilevel metabolic and molecular phenotyping can be
used to systematically identify metabolic traits and genes that
correlate species-wide with growth and, combined with deep
genotyping, to identify allelic variation that underlies these
relationships. This work identifies candidate genes and polymor-
phisms that may be used directly or through the isolation of
homologs to modulate biomass production in crops and provides
precedence for an efficient strategy for future use to identify
(crop-) species-specific lead genes.

Materials and Methods
Plant Material and Growth. A. thaliana accessions were obtained as in ref. 13
and grown in soil as in ref. 2. They were grown in at least 2 independent
experiments. Each experiment contained 3 replicates of 5 pooled plants, with
full randomization in growth cabinets to avoid microenvironmental effects.
Material was harvested at the end of the light period. Samples typically
contained 5 rosettes (�800 mg of FW). They were powdered in liquid N2,
subaliquoted, and stored at �80 °C.

Metabolite Assays. Analysis of total amino acids, glucose, fructose, sucrose,
starch, total protein, and chlorophyll was performed as in ref. 2 and GC-MS as
in ref. 31, identifying metabolites by comparison with database entries of
authentic standards (32).

Design and Validation of qRT-PCR Primers, RNA Preparation, and RT-PCR Assays.
Primers were designed and synthesized at MWG Biotech AG using the PRIME
program of GCG Wisconsin Package, version 10.2. Global alignments of sug-
gestedprimersequenceswithgenomicandtranscript sequenceswereperformed
using NCBI-BLASTn (33) to ensure unique oligonucleotide sequences. All primers
were checked for nonspecific signals arising from primer dimers or template
contamination by measuring a water control. Sequences of primers are in Table
S3. RNA preparation, real time PCR, data analysis, and procedures for cDNA
synthesis were as in ref. 34. Cut-off CT values for all primers were set to 35 cycles.
CT values were normalized to 4 reference genes (34), At2g28390 (SAND family
protein), At3g53090 (HECT-domain-containing protein), At5g08290 (yellow-leaf
specific protein 8), and At5g25760 (ubiquitin-conjugating enzyme), by subtract-
ing the average CT value of the 4 reference genes from the CT value of the gene
of interest for each accession. Data were normalized based on the gene-wise
average of all accessions including Col0, so that ��CT represents �CTA minus
�CTAv. ��CT values of technical and biological replicates within one accession
wereaveraged, if theydidnotdifferbymorethan0.8and1.5, respectively.Genes
were excluded if �11 accessions gave valid ��CT values. Of the 92 genes in set 1
and set 2, 42 and 52 were retained, respectively. Average transcript levels for all
genes in the accessions are provided in Table S3.

Genotyping and Analysis of Population Structure. Selected accessions were
genotyped with 460 SNP markers: 149 framework SNPs assembled in the frame of
the A. thaliana ‘‘HapMap’’ project (J. Borevitz, personal communication; see
http://naturalvariation.org/hapmap) and 311 SNPs with intermediate allele fre-
quency selected by Warthmann et al. (35) (Table S1). Genotyping was carried out
at Sequenom Inc. Population structure was analyzed by using Structure 2.1 (14),
a model-based clustering method for inferring population structure that uses
genotypic data from unlinked markers and accounts for the presence of LD by
introducing population structure and attempting to find population groupings
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that are not in disequilibrium (14). An ancestry model allows population admix-
ture. From the 460 SNP markers, 419 were used that had �25% missing data.
Allele frequencies were assumed to be correlated (i.e., allele frequencies were
likely to be similar due to shared ancestry or migration). The optimal number of
subpopulations was simulated by setting K (number of subpopulation) from 1 to
15. The length of burn-in period as well as Markov Chain Monte Carlo iterations
(MCMC) after burn-in were set to 100,000 for each run, and each run was iterated
10 times. When K was varied from 1 to 15, the posterior probability [Ln P(D)]
improved steadily until K reached 7. The smallest K value for highest posterior
probability was taken as optimal, splitting the entire population into 7 panels for
associations mapping (Fig. S1). Accessions were assigned to the subpopulation or
group to which they showed the highest probability of membership.

Spearman Regression Analysis and Partial Correlation Analysis. Correlations
were calculated from mean data for an accession across all replicates and
experiments. The original data are given in Table S2. For Spearman correlation
coefficients, Microsoft Office Excel was used. For partial correlation analysis,
the data for trait levels were loaded into R (36), a graphical Gaussian model
was fitted (37), the R package (38) was used to obtain a robust estimate of the
partial correlation, a P value was inferred, and significant correlations be-
tween traits at a local FDR of 20% were extracted and depicted as edges
between traits.

PLS Regression and Cross-Validation. PLS identifies the combinations of the
original predictor variables with maximum covariance with the response (39,
40). These orthogonal combinations replace the original data matrix and are
used in a multivariate ordinary least squares regression to predict the re-
sponse. The optimal number of components is determined by the maximum
proportion of explained variance obtained in 5-fold cross-validation. The
observations are divided into 5 subsets, a training set (4 subsets) is used to
build a model that is applied to predict the response of the remaining subset,
and this procedure is repeated 5 times to estimate the response for all
observations. Cross-validation was also applied each time to the training set.
The estimated vector is correlated with the measured response to obtain a
measure of the predictive power of the predictor variables.

The weight of a predictor j in the linear combination resulting in PLS
component i is denoted as wij. The VIP of each predictor j gives an estimate of
the importance of that predictor for the PLS prediction using the h most
important orthogonal components and is calculated as the sum of the wij (i �
1,… h) multiplied by the correlation of PLS component i with the response (41).

Cartographic Representation of the Sugar-Responsive Network. The combined
network (Fig. 2) was visualized using the algorithm developed by Guimera and
Amaral (19), using a threshold for significant interactions of Rs �0.7 and P �
0.01 for gene–gene interactions and Rs �0.6 and P � 0.01 for gene–
metabolites and metabolite–metabolite interactions, respectively. The net-
work was generated from log2 transformation of the average data, given for
metabolites and FW in Table S1 and transcript data in Table S3.

Sequencing. Sequencing was performed using genomic DNA amplified from 92
of the 94 accessions, corresponding to 3745 base pairs of At4g39800 and 2668
base pairs of At1g23390. DNA was isolated by using a standard protocol (37).
Genomic sequencing was performed on both strands using LargeDye terminator
chemistry on ABI 3730 sequencers (Applied Biosystems) by the Automatic DNA
Isolation and Sequencing unit at the Max Planck Institute for Plant Breeding. The
sequences were assembled by using a Sequencher 4.8 (GeneCode) (see Table S6).

Candidate Gene Association Testing. Association mapping was performed
using the sequence-verified SNPs that occurred with a minimum allele fre-
quency of 0.05 in the entire accession panel. The GLM function of the TASSEL
(25) program was applied with the STRUCTURE results used to control for
population structure, with 10,000 permutations to determine significance.
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