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We develop and validate a density functional, XYG3, based on the
adiabatic connection formalism and the Görling–Levy coupling-
constant perturbation expansion to the second order (PT2). XYG3
is a doubly hybrid functional, containing 3 mixing parameters. It
has a nonlocal orbital-dependent component in the exchange term
(exact exchange) plus information about the unoccupied Kohn–
Sham orbitals in the correlation part (PT2 double excitation). XYG3
is remarkably accurate for thermochemistry, reaction barrier
heights, and nonbond interactions of main group molecules. In
addition, the accuracy remains nearly constant with system size.

Becke 3-parameter hybrid functional combined with Lee–Yang–Parr
correlation functional � density functional theory � generalized gradient
approximation � local density approximation � mean absolute deviation

Density functional theory (DFT) has revolutionized the role
of theory by providing accurate first-principles predictions

of critical properties for applications in physics, chemistry,
biology, and materials science (1). Despite dramatic successes,
there remain serious deficiencies, for example, in describing
weak interactions (London dispersion), which are so important
to the packing of molecules into solids, the binding of drug
molecules to proteins, and the magnitude of reaction barriers.
We propose here a DFT functional that dramatically improves
the accuracy for these properties by including the role of the
virtual (unoccupied) states.

Solution of the Schrödinger equation leads to the wavefunc-
tion, �(r1, r2, …, rN) (2), which depends on the 3N space
coordinates and N spin coordinates of N-electrons in the system.
Solving for such a wavefunction usually starts with the Hartree–
Fock (HF) mean field description involving N self-consistent
1-particle spin-orbitals (in a Slater determinant), which is then
used as the basis for expanding the wavefunction in a hierarchy
of excited N-electron configurations, by using methods referred
to as Møller–Plesset theory (e.g., MP2, MP3, MP4), couple-
cluster theory (e.g., CCSD(T)), and quadratic configuration
interaction theory (e.g., QCISD(T)), etc. These methods are ab
initio but suffer from problems of slow convergence with the size
of the basis sets and the configuration expansion lengths, pre-
venting scaling to large systems.

In contrast, DFT is formulated in terms of the 1-particle
density, �(r), depending on only 3 spatial coordinates rather than
3N, as the fundamental quantity (3, 4). This dramatically sim-
plifies the process of calculating the structures and properties.
However, the exact form of the functional, whose solution will
lead to the correct density, is not known. Even so, there has been
an evolution of successively better approximations to this func-
tional, that has already provided quite good accuracy for many
problems (5–15).

Perdew (16) has formulated the hierarchy of DFT approxi-
mations as a ‘‘Jacob’s ladder’’ rising from the ‘‘earth of Hartree’’
to the ‘‘heaven of chemical accuracy.’’ The first rung of this
ladder is the local (spin) density approximation [LDA, e.g.,

SVWN (4, 5)] and the second rung is the generalized gradient
approximation [GGA, e.g., BLYP (6, 7) and PBE (8)]. Although
LDA uses densities �(r) as local ingredients, GGA employs both
the local densities and their gradients ƒ�(r). The third rung is
termed metaGGA [e.g., TPSS (9)], which expands GGA to
include further the kinetic energy density �, and/or the Laplacian
of the density ƒ2�(r). Up to this third rung, they are all local and
multiplicative.

The fourth rung of DFT is a hybrid that introduces nonlocality
by replacing some portion of the local exchange energy density
with the exact (HF-like) exchange energy density. The most
popular such hyperGGA flavor is B3LYP (5–7, 10), which has
been shown to provide accurate predictions for thermochemistry
of small covalent systems (11). However, B3LYP is poor for the
predictions of noncovalent bonding interactions (15) and reac-
tion barrier heights (14), with performance degrading dramat-
ically as system sizes increase (12, 13).

The final fifth rung of Jacob’s ladder utilizes the unoccupied
Kohn–Sham (KS) orbitals (16) in addition to the occupied KS
orbitals. This final rung is expected to allow the heaven of
chemical accuracy to be achieved for broad applications. How-
ever, no such functional based on first principles (17) and
practical for general use has been proposed. Empirical versions
(18) have led to promising results for thermochemistry and
reaction barriers, but they still fail to account for van der Waals
interactions.

Here, we develop a fifth-rung functional that incorporates
information about the unoccupied KS orbitals [based on the
Görling–Levy coupling-constant perturbation expansion to the
second order (19)], along with 3 empirical mixing parameters.
We demonstrate that this functional is highly accurate for
thermochemistry, reaction barriers, and nonbond interactions.

Theory
DFT was placed on a firm theoretical footing by the Hohenberg–
Kohn (HK) theorems (3). These HK theorems prove that there
exists a total energy functional E[�], from which one can obtain
the ground state electron density �0 by minimizing E[�] with
respect to the density �,

E��0� � Min
�

E��� . [1]

where �0 contains all information that can be known about the
electronic structure of the system. However, the HK theorems do
not specify this true total energy functional.
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The most popular implementation of DFT is through the KS
method (4), which assumes a noninteracting N-electron system
having the same density as the original many-body system. The
KS wavefunction can be expressed exactly as a Slater determi-
nant leading to an exact form for the kinetic energy Ts of the
noninteracting system and the classic Coulomb energy U. The
total energy is then expressed as

E � Ts � U � Vext � Exc, [2]

where Vext is the external potential energy, and Exc is the
exchange-correlation energy, which remains unknown.

The adiabatic connection formalism (10, 20–25) provides a
rigorous way to define Exc. It assumes an adiabatic path between
the fictitious noninteracting KS system (� � 0) and the physical
system (� � 1) while holding the electron density � fixed at its
physical � � 1 value for all � of a family of partially interacting
N-electron systems:

Exc��� � �
0

1

Uxc,����d� . [3]

Uxc,� is the potential energy of exchange correlation at interme-
diate coupling strength �. The only problem is that the exact
integrand Uxc,� is unknown.

Becke first used this formalism as a practical tool for func-
tional construction (10, 23) by assuming a linear model (23)

Uxc,� � a � b� , [4]

and taking Uxc,��0 � Ex
exact, the exact exchange of the KS orbitals,

and approximating Uxc,��0 � Uxc,��0
LDA . Becke’s half-and-half

functional (23) may be approximated by

Exc��� �
1
2

�Ex
exact � Ex

LDA� �
1
2

Ec
LDA, [5]

where we have partitioned Exc
LDA � Ex

LDA � Ec
LDA and set

a � Ex
exact; b � Exc

LDA � Ex
exact. [6]

The popular Becke’s 3-parameter functional modifies Eq. 5
empirically to obtain Eq. 7 (10):

Exc
B3��� � Exc

LDA � c1�Ex
exact � Ex

LDA� � c2�Ex
GGA � c3�Ec

GGA,

[7]

where �Ex
GGA is the gradient-containing correction terms to the

LDA exchange and �Ec
GGA is the gradient-containing correction

to the LDA correlation, whereas {c1,c2,c3} are constants fitted
against selected experimental thermochemical data. The success
of Eq. 7 in achieving high accuracy demonstrates that errors of
Exc

DFT for covalent bonding arise principally from the � 3 0 or
exchange limit, making it important to introduce some portion
of exact exchange (10, 23–25).

An alternative to fixing the {a,b} parameters in Eq. 4 is to use
the Görling–Levy theory of coupling-constant perturbation ex-
pansion (19), in which the initial slope (U	xc,��0) is defined by the
second-order correlation energy:

U	xc,��0 �
�Uxc,�

��
�

��0
� 2Ec

GL2. [8]

We may define Ec
GL2 as (19):

Ec
GL2 � �

1
4 �

ij

�
	


�
� i� j� �̂ee��	�
� �2


 i � 
 j � 
	 � 



� �
i

�
	

�
� i� �̂x � f̂ ��	� �2


 i � 
	

, [9]

where �̂ee is the electron–electron repulsion operator, �̂x is the
local exchange operator, and f̂ is the Fock-like, nonlocal ex-
change operator. We may calculate Ec

GL2 from the KS orbitals
with eigenvalues 
, where the subscripts (i, j) and (	, 
) denote
the occupied and unoccupied KS orbitals, respectively.

Combining Eq. 8 with Eq. 4 leads to:

b � 2Ec
GL2. [10]

Eqs. 6 and 10 lead to 2 choices of b, which we combine using
empirical parameters, {b1,b2}, to optimize the functional per-
formance:

b � b1Ec
GL2 � b2�Exc

DFT � Ex
exact� . [11]

In principle, Ec
DFT � (Exc

DFT � Ex
exact) contains a complete

description of correlation effects, so that the second term of Eq.
11 may be interpreted as a way to extrapolate the second-order
perturbation to infinite order. Hence, we propose to use an
empirical formula of the form:

Exc
R5��� � Exc

LDA � c1�Ex
exact � Ex

LDA� � c2�Ex
GGA

� c3�Ec
PT2 � Ec

LDA� � c4�Ec
GGA. [12]

In comparison with the Becke 3-parameter scheme (10) of Eq.
7, Eq. 12 is a doubly hybrid DFT that mixes some exact exchange
into Ex

DFT while also introducing a certain portion of Ec
PT2 into

Ec
DFT. Here, Ec

PT2contains the double-excitation contributions of
Ec

GL2 (i.e., the first term in Eq. 9). The single-excitation contri-
butions in Ec

GL2may not be zero, but we absorb them into Ec
DFT

and in the fitting parameters. Eq. 12 presents a fifth-rung
functional (R5) that embodies information from both the occu-
pied and the unoccupied KS orbitals as shown in Eq. 9.

In our current applications to test this functional, we calculate
the B3LYP wavefunction and use the B3LYP orbitals as the KS
orbitals to generate the density and to evaluate the PT2 term.
Instead, the original GL2 perturbation theory (19) uses KS
orbitals generated from a local exchange-correlation potential
(see Eq. 9). Ref. 26 has shown that B3LYP densities are similar
to those from CCSD(T) ab initio wavefunctions (for the mole-
cules discussed in ref. 26). Nevertheless, the eigenvalues from
B3LYP, whose potential is nonlocal, might differ considerably
from those of the KS orbitals obtained from a local potential.
Thus, it could be better to use some different set of KS orbitals.

Here, we adopt the LYP correlation functional but constrain
c4 � (1 � c3) in Eq. 12. This constraint is not necessary, but it
eliminates 1 fitting parameter while excluding compensation
from the LDA correlation term. The final 3 parameters {c1,c2,c3}
are determined empirically by fitting only to thermochemical
data of the G3/99 set, leading to:


c1 � 0.8033, c2 � 0.2107, c3 � 0.3211�. [13]

We denote this generalized 3-parameter functional as XYG3.

Results and Discussion
Heats of Formation (Thermochemistry). The Gn paradigm devel-
oped by Pople and coworkers provides a hierarchy for extrap-
olating levels of correlation and basis sets to obtain increasingly
accurate thermochemistry (11, 12, 27). To adjust the empirical
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constants in Gn, they developed a database (DB) of accurate
experimental heats of formation that are valuable for developing
functionals to describe covalent bonding in the main group
molecules. In particular, we use the G3 DB of 223 molecules
collected in 1999 (the G3/99 set) (12).

Using XYG3 with the 6-311�G(3df,2p) basis set to calculate
the heats of formation of the G3/99 set leads to a mean absolute
deviation (MAD) of 1.81 kcal/mol, substantially better than any
other DFT methods (Table 1). For comparison, B3LYP leads to
MAD � 4.74 kcal/mol. Indeed the G3 method gives MAD �
1.05, whereas G2 gives MAD � 1.88 kcal/mol but at far higher
computational cost.

A recent important development in DFT is the M06 family of
functionals (M06, M06-2X, M06-HF, and M06-L) (14, 30), which
currently provides the highest accuracy with a broad applicability
for chemistry. M06, M06-2X, M06-HF are hybrid methods,
whereas M06-L is a pure DFT. For the G3/99 set, these methods
lead to MAD � 4.17 kcal/mol for M06, 2.93 for M06-2x, and 5.82
for M06-L.

B2PLYP is also a doubly hybrid functional that incorporates
a perturbation correction as in Eq. 12, but with different
parameters of {c1 � 0.53, c2 � 0.47, c3 � 0.27} (18, 31). The first
2 parameters for the exchange part are normalized to 1.0, which
reduces the number of independent fitting parameters to 2. The
salient difference between B2PLYP and XYG3 is that B2PLYP
employs the DFT portion of Eq. 12 to generate the density used
to calculate the DFT energy and orbitals from which the PT2
correction is computed. Such a truncated DFT may give density
and orbitals that are dramatically different from the real ones.
Thus, using just the DFT portion of B2PLYP leads to MAD �
174.2 kcal/mol for the G3/99, whereas the complete B2PLYP

method leads to MAD � 4.63 kcal/mol (with our present basis
set). Because the doubly hybrid functionals are rooted within the
adiabatic connection theorem (20, 21) and the Görling–Levy
theory of coupling-constant perturbation expansion (19), we
consider it very important to have accurate KS orbitals to
provide an accurate density and the zero-order approximation
for perturbation theory.

The G3/99 set consists of 3 subsets of molecules: G2–1 with
56 molecules having up to 3 heavy atoms, G2–2 with 92 additional
molecules up to 6 heavy atoms, and G3–3 with 75 additional
molecules up to 10 heavy atoms. B3LYP leads to errors that
increase dramatically with size (12, 13), with MAD � 2.12
kcal/mol (G2-1), 3.69 (G2-2), and 8.97 (G3-3). B2PLYP [at the
6-311�G(3df,2p) level] does not improve over B3LYP, leading
to MADs of 1.85 (G2-1), 3.70 (G2-2) and 7.83 kcal/mol (G3-3).
M06-L gives MADs of 3.76 (G2-1), 5.71 (G2-2) and 7.50 kcal/mol
(G3-3). This is significantly improved by M06-2X, which includes
a doubled portion of exact exchange, leading to MADs of 1.89
(G2-1), 3.22 (G2-2), and 3.36 (G3-3) kcal/mol. For XYG3, we
obtain MADs of 1.52 (G2-1), 1.79 (G2-2), and 2.06 kcal/mol
(G3-3), which exhibits the best description for larger molecules.

Reaction Barrier Heights. Zhao and Truhlar compiled several
benchmark DBs of barrier heights in 2004 (14, 15, 33), including
forward and reverse barrier heights for 19 hydrogen transfer
(HT) reactions, 6 heavy-atom transfer (HAT) reactions, 8
nucleophilic substitution (NS) reactions, and 5 unimolecular and
association (UM) reactions. We used the 6-311�G(3df,2p) basis
set to compute the barriers (see Table 2). Geometries and
reference energies were taken from the Truhlar DB web site (14,
15, 33).

DFT methods usually underestimate reaction barrier heights.
Table 2 shows MAD errors (kcal/mol) of 14.88 (LDA), 8.71
(PBE), and 4.28 (B3LYP). B2PLYP (MAD � 1.94) leads to a
substantial improvement, but M06-2X (MAD � 1.20) and
XYG3 (MAD � 1.02) are remarkably accurate for all types of
reactions for a total of 76 barrier heights. This accuracy is

Table 1. Accuracy of various QM methods for predicting
standard enthalpies of formation (� fH298

0 , kcal/mol) for the
experimental data of 223 molecules in the G3/99 set

Functional MAD Max (�) Max (�)

DFT
XYG3* 1.81 16.67 (SF6) �6.28 (BCl3)
M06-2X* 2.93 20.77 (O3) �17.39 (P4)
M06* 4.17 11.25 (O3) �25.89 (C2F6)
B2PLYP* 4.63 20.37 (n-octane) �8.01 (C2F4)
B3LYP* 4.74 19.22 (SF6) �8.03 (BeH)
M06-L* 5.82 14.75 (PF5) �27.13 (C2Cl4)
BLYP† 9.49 41.0 (C8H18) �28.1 (NO2)
PBE† 22.22 10.8 (Si2H6) �79.7 (azulene)
LDA† 121.85 0.4 (Li2) �347.5 (azulene)

Ab initio
HF* 211.48 582.72 (n-octane) �0.46 (BeH)
MP2* 10.93 29.21 (Si(CH3)4) �48.34 (C2F6)
QCISD(T)‡ 15.22 42.78 (n-octane) �1.44 (Na2)
G2‡ 1.88 7.2 (SiF4) �9.4 (C2F6)
G3‡ 1.05 7.1 (PF5) �4.9 (C2F4)

MADs, in kcal/mol, with the largest positive error (Max(�) energy too high)
and the largest negative error (Max(�) energy too low).
*The geometries were optimized by using B3LYP with the 6-311�G(d,p) basis
set. Analytical vibrational frequencies were calculated at the same level and
scaled by 0.9877 to estimate zero-point energies. Spin-orbit corrections are
included. Single point calculations are performed with the 6-311�G(3df,2p)
basis set.

†Data are from ref. 28 and computed by using B3LYP/6-311�G(3df,3pd). The
geometries were optimized by using B3LYP/6-31G(2df,p). Analytical vibra-
tional frequencies were calculated at the same level and scaled by 0.9854 to
estimate zero-point energies.

‡Data are from ref. 29. The QCISD(T) results were obtained by removing the
empirical �high-level corrections� from the G3 theory to approximate the
results of QCISD(full,T)/6-311�G (3d2f,2df,2p) by a series of extrapolations in
both the 1-particle and many-particle spaces.

Table 2. Accuracy of various QM methods for energy barriers

Functional All (76) HT38 HAT12 NS16 UM10

DFT
XYG3* 1.02 0.75 1.38 1.42 0.98
M06-2X† 1.20 1.13 1.61 1.22 0.92
B2PLYP* 1.94 1.81 3.06 2.16 0.73
M06† 2.13 2.00 3.38 1.78 1.69
M06-L† 3.88 4.16 5.93 3.58 1.86
B3LYP* 4.28 4.23 8.49 3.25 2.02
BLYP† 8.23 7.52 14.66 8.40 3.51
PBE† 8.71 9.32 14.93 6.97 3.35
LDA‡ 14.88 17.72 23.38 8.50 5.90

Ab initio
HF‡ 11.28 13.66 16.87 6.67 3.82
MP2‡ 4.57 4.14 11.76 0.74 5.44
QCISD(T)‡ 1.10 1.24 1.21 1.08 0.53

MADs in kcal/mol for the 76 reactions in the Truhlar database web site (14,
15, 33), which contains the best available ab initio reference data for reaction
barrier heights. Here, HT38 refers to the forward and reverse barrier heights
for 19 hydrogen transfer reactions; HAT12 refers to the forward and reverse
barrier heights for 6 heavy-atom transfer reactions, NS16 refers to the forward
and reverse barrier heights for 8 nucleophilic substitution reactions, and
UM10 refers to the forward and reverse barrier heights for 5 association and
unimolecular reactions.
*Our calculations used the 6-311�G(3df,2p) basis sets with geometries from
the Truhlar database web site.

†Data are from refs. 14 and 15.
‡Data are from ref. 33.
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comparable with that of the QCISD(T) ab initio method with the
same basis set (1.10 kcal/mol). We emphasize that barrier heights
are not included in the XYG3 training set but are included in the
M06 training set. Probably it is the presence of �80% exact
exchange in XYG3 that decreases the self-interaction errors
(SIE) of local DFT functionals (25), whereas SIE make local
DFT functionals problematic for the stretched partially broken
bonds, characteristic of the transition states for chemical
reactions.

Accurate potential energy surfaces (PES) are essential for
using theory to predict chemical processes, but the accuracy
depends critically on the level of the theory. Here, we test various
methods for describing the H � CH4 3 H2 � CH3 reaction.
Because of its important roles in CH4/O2 combustion chemistry,
this reaction has long been the subject of both experimental and
theoretical interest (34). Fig. 1 presents a point-to-point com-
parison among the results of various methods along the reaction
coordinate. We expect that the CCSD(T) curve should be the
most accurate, leading to a barrier of 15.03 kcal/mol. Remark-
ably, XYG3 predicts the barrier of 15.08 kcal/mol, and is within
0.6 kcal/mol of the CCSD(T) results for the entire reaction path.

The LDA (SVWN) reaction path is qualitatively wrong,
predicting a barrierless reverse reaction. HF overestimates the
barrier height by 10.89 kcal/mol, whereas HF�PT2, which uses
exact exchange plus PT2 correlation, overestimates the endo-
thermicity of the reaction by 6.30 kcal/mol. Here, the tendency
that BLYP underestimates the barrier heights is seen clearly in
Fig. 1, whereas B3LYP, with inclusion of some exact exchange,
leads to improved results, but remains inadequate for PES
calculations.

Noncovalent Interactions. The noncovalent interaction DB from
Zhao and Truhlar (14, 15) (NCIE31/05) consists of 6 HB
complexes, 7 charge-transfer (CT) complexes, 6 dipole interac-
tion (DI) complexes, 7 weak interaction (WI) complexes, and 5
�–� stacking (PPS) complexes. We tested the performance of
the XYG3 functional for these noncovalent interactions using
the 6-311�G(3df,2p) basis set, with geometries and reference
energies taken from the Truhlar DB web site (14, 15).

The errors are summarized in Table 3. We did not include
basis set superposition error corrections, which may increase the
calculated interaction energies slightly.

We expect that the QCISD(T) ab initio method provides the
highest accuracy, leading to a MAD � 0.57 kcal/mol. Remark-
ably M06-2X (MAD � 0.30) and XYG3 (MAD � 0.32) have half
this error including WI and PPS for which London dispersion
dominates. Also M06 (MAD � 0.43) and M06-L (MAD � 0.58)
perform well for all 5 sets. Note that these nonbond interactions
were not included in the XYG3 training set but were included in
the M06 training set.

WI and PPS lead to notorious failures for common DFT
methods because dispersion interactions are lacking in the
correlation functionals. The PT2 term in XYG3 reduces this
error, but B2PLYP was not able to describe the PPS complexes.
It was suggested that this might be because the PT portion
(�27%) is too small to overcome the repulsion from the DFT
part (35). However, we suspect that it is because the orbitals from
the truncated DFT in B2PLYP stray too far from the real KS
orbitals.

Fig. 2 compares the intermolecular potentials of the CH4–
C6H6 complexes calculated by XYG3 and CCSD(T) (36), along
with some other DFT results. Proper description of such poten-
tial energy curves is very important for describing the binding of
ligands to biological systems, because steric constraints might
prevent the ligand from adopting its optimum geometry. We find
that XYG3 results compare extremely well with those of
CCSD(T), with deviations generally �0.1 kcal/mol.

Fig. 2B shows the exchange contributions to the noncovalent
interaction energy. Here, we see that XYG3 agrees closely with
HF, which we expect to be the most accurate. We note here that
Slater exchange (S) leads to a spurious well, whereas the GGA
correction (Becke88) causes the potential curve to be far too
repulsive.

Fig. 2C shows that correlation (attractive) contributions to the
noncovalent interaction energy. Here, we see that XYG3 agrees
closely with CCSD(T), which we expect to be the most accurate.
Note that PT2 by itself is too attractive. Thus, it is the combi-
nation of PT2 with LYP that provides the excellent correlation
description in XYG3.

That the exchange and correlation parts of XYG3 indepen-
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Fig. 1. Accuracy of various QM methods for calculating the potential energy
surface for the H � CH43 H2 � CH3 reaction coordinate [defined as R(CH) �
R(HH)]. The CCSD(T) calculations using the 6-311��G(3df,2pd) basis set, are
expected to be the most accurate. B3LYP calculations were performed self-
consistently by using the 6-311�G(3df,2p) basis set. All other results (HF,
HF�PT2, XYG3, BLYP, and SVWN) used the density and orbitals from the B3LYP
calculation. The XYG3 results superimpose nearly exactly on the CCSD(T)
curve.

Table 3. Accuracy of various QM methods for predicting
noncovalent interactions

Functional Total HB6/04 CT7/04 DI6/04 WI7/05 PPS5/05

DFT
M06-2X* 0.30 0.45 0.36 0.25 0.17 0.26
XYG3† 0.32 0.38 0.64 0.19 0.12 0.25
M06* 0.43 0.26 1.11 0.26 0.20 0.21
M06-L* 0.58 0.21 1.80 0.32 0.19 0.17
B2PLYP† 0.75 0.35 0.75 0.30 0.12 2.68
B3LYP† 0.97 0.60 0.71 0.78 0.31 2.95
PBE‡ 1.17 0.45 2.95 0.46 0.13 1.86
BLYP‡ 1.48 1.18 1.67 1.00 0.45 3.58
LDA‡ 3.12 4.64 6.78 2.93 0.30 0.35

Ab initio
HF† 2.08 2.25 3.61 2.17 0.29 2.11
MP2‡ 0.64 0.99 0.47 0.29 0.08 1.69
QCISD(T)‡ 0.57 0.90 0.62 0.47 0.07 0.95

MADs in kcal/mol for the 31 cases in the Truhlar web site DB (14, 15), which
contains the best available information from ab initio calculations of nonco-
valent interactions (NCIE31/05). This consists of 6 HB complexes, 7 CT com-
plexes, 6 DI complexes, 7 WI complexes, and 5 PPS complexes. The WI and PPS
are dominated by London dispersion.
*Data are from ref. 14.
†Our calculations used the 6-311�G(3df,2p) basis sets with geometries from
the Truhlar DB web site. Counterpoise corrections for possible basis set
superposition errors were not included.

‡Data are from ref. 15.
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dently fit what are expected to be the most accurate descriptions
indicates that XYG3 gets the right answer for the right reason
with a correct description of the fundamental physics.

Summary
We develop here the extension of DFT to the fifth rung of the
Perdew Jacob ladder hierarchy. This is done through a construc-
tion based on the adiabatic connection formalism using the
Görling–Levy coupling-constant perturbation expansion to the
second order. This leads to a doubly hybrid functional, XYG3,
that uses exact exchange to improve the quality of DFT exchange

at the exchange limit (� � 0), while using both occupied and
unoccupied KS orbitals through double-excitation contributions
from the PT2 term. In this work, we use the KS orbitals and
eigenvalues from a self-consistent B3LYP calculation to com-
pute the PT2 term, which is supplemented with a fraction of LYP
to provide the complete correlation energy. Other choices of the
virtual orbitals would be possible.

XYG3 contains 3 empirical parameters: (i) the proportion of
exact exchange (normalized with the portion of LDA exchange),
(ii) the proportion of GGA exchange correction, and (iii) the
proportion of PT2 (normalized with the portion of LYP corre-
lation), which determined by using only thermochemical data. In
addition to the accuracy of XYG3 for thermochemistry, we find
that it is remarkably accurate for the energy along the reaction
pathway including reaction barrier heights and for nonbond
interactions, neither of which were included in the training set.
This suggests that XYG3 captures a consistent description of the
physics.

XYG3 does have limitations. Approximate functionals may
break the variational principle, leading to energies lower than
exact. This can be a serious problem for the PT2 term when there
is near-degeneracy of the orbitals as, for example, in the system
containing transition metals.

It is also important to consider the scaling of such DFT
methods to judge the practicality for application to large systems.
Thus, pure DFT methods scale most favorably with size. Includ-
ing the exact exchange as in B3LYP leads a formal scaling as N4,
whereas including the PT2 term leads to a formal scaling as N5,
just as for MP2. Linear scaling methods have been developed for
MP2 (37–39) that dramatically accelerate calculations for large
molecules, and we expect that these can be used with XYG3. See
SI for additional information
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Fig. 2. Enlarged figure for CH4-C6H6 system (see Fig. S1). (A) The intermo-
lecular potentials for the CH4–C6H6 complexes from various methods. The most
accurate is expected to be CCSD(T), which is at the complete basis set limit from
ref. 36. XYG3 nearly superimposes on CCSD(T). B3LYP calculations were per-
formed self-consistently by using the 6-311�G(3df,2p) basis set. All other
results used density and orbitals from B3LYP. (B) The exchange part of the
interaction energy. The HF result is expected to be the most accurate. The
exchange part of XYG3 nearly superimposes on the HF. (C) The correlation part
of the interaction energy. The CCSD(T) results are expected to be the most
accurate. XYG3 is closest among the DFT.
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